
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 2, ISSN No. 2455-2143, Pages 113-117
 Published Online December-January 2016 in IJEAST (http://www.ijeast.com)

113

SOFTWARE TESTING TECHNIQUES AND

STRATEGIES

Rajendra Kumar

Abstract— Software Testing is a process of finding errors

while executing a program so that we will get a zero defect

software. It is aimed at evaluating the capability or

usability of a program. Software testing is an important

feature of accessing quality of software. Software testing

provides a means to reduce errors, decrees maintenance

and overall software costs. One of the major problems

within software testing area is how to get a suitable set of

cases to test a software system. Though a lot of

advancements have been done in formal methods and

verification techniques, still we need software to be fully

tested before it could be handled to the customer side.

Thus there are a number of testing techniques and tools

made to accomplish the task. Software testing is an

important area of research and a lot of development has

been made in this field. In this paper, testing techniques

and tools have been described. Some typical latest

researches have been summarized. Software testing is

gaining more and more importance in the future.

Keywords— Software testing, Software Testing Goals,

Software testing strategies, Software testing principles,

Software Testing Methodologies.

I. INTRODUCTION

Software testing is more than just error detection; Testing

software is operating the software under controlled conditions,

to verify that it behaves “as specified”; to detect errors, and

to validate that what has been specified is what the user

actually wanted. Software testing refers to process of

evaluating the software with intention to find out error in it.

Software testing is a technique aimed at evaluating an attribute

or capability of a program or product and determining that it

meets its quality. It is also used to test the software for other

software quality factors like reliability, usability, integrity,

security, capability, efficiency, portability, maintainability,
compatibility etc. For many years now we are still using the

same testing techniques .some of which is crafted method

rather than good engineering methods. Testing can be costly

but not testing software can be even more costly. Software

testing aims at achieving certain a goals and principles which

are to be followed.

II. SOFTWARE TESTING GOALS

Goals are the output of the software process. Software testing

has following goals.

Verification and validation: Verification is a review without

actually executing the process while validation is checking the

product with actual execution. For instance, code review and

syntax check is verification while actually running the product

and checking the results is validation. Testing can also be used

for verifying that the product or the software works as desired

and validate whether the software fulfills condition laid down.

 Priority Coverage: Testing should be performed in efficient

and effective manner within the budget and schedule limits.

Balanced: Testing process must balance the requirements,
technical limitation and user expectation.

Traceable: Documents should be prepared of both success

and failures of testing process. So no need to test same thing

again.

 Deterministic: We should know what we are doing, what we

are targeting, what will be the possible outcome.

III. SOFTWARE TESTING STRATEGIES

A software testing strategy integrates various software test

case design methods into a well planned series of steps that

result in successful testing of software. Software testing
strategies are thus important for testing. Software testing

strategy is generally developed by testing specialist, project

managers and software engineer. There are four software

testing strategies:

Unit testing: It is done at the lowest level. It tests the basic

unit of software, which can be a module or component. Unit is

the smallest module i.e. smallest set of lines of code which can

be tested. Unit testing is just one of the levels of testing which

contribute to make the big picture of testing a whole system.

Unit testing is generally considered as a white box test class.

Integration Testing: It is done when two or more tested units

are combined into a larger structure. This testing is often done
on the interfaces that are between the components and the

larger structure that is being constructed, if its quality property

cannot be properly assessed from its components.

System Testing: It tends to test the end-to-end quality of the

entire system. System test is often based on the functional and

requirement specifications of the system. Non-functional

quality attributes, such as security, reliability, and

maintainability, are also checked.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 2, ISSN No. 2455-2143, Pages 113-117
 Published Online December-January 2016 in IJEAST (http://www.ijeast.com)

114

Acceptance Testing :It is done when the complete system is

handed over to the customers or users from developer side.
The aim of acceptance testing is to give assure that the system

is working rather than to find errors.

 Unit testing :Unit is the smallest module i.e. smallest

collection of lines of code which can be tested. Unit testing is

just one of the levels of testing which go together to make the

big picture of testing a system. IT complements integration

and system level testing. It should also complement code

reviews and walkthroughs. Unit testing is generally seen as a

white box test class. That is it is biased to looking at and

evaluating the code as implemented. Rather than evaluating

conformance to some set of requirements.

Benefits of Unit Testing:-
1) Unit level testing is very cost effective.

2) It provides a much greater reliability improvement for

resources expanded than system level testing. In particular, it

tends to reveal bugs which are otherwise insidious and are

often catastrophic like the strange system crashes that occur in

the field when something unusual happens.

3) Be able to test parts of a project without waiting for the

other parts to be available,

4) Achieve parallelism in testing by being able to test and fix

problems simultaneously by many engineers,

5) Be able to detect and remove defects at a much less cost

compared to other later stages of testing,

6) Be able to take advantage of a number of formal testing

techniques available for unit testing,

7) Simplify debugging by limiting to a small unit the possible

code areas in which to search for bugs,

8) Be able to test internal conditions that are not easily reached

by external inputs in the larger integrated systems

9) Be able to achieve a high level of structural coverage of the
code,

10) Avoid lengthy compile-build-debug cycles when

debugging difficult problems.

Unit testing techniques: A number of effective testing

techniques are usable in unit testing stage. The testing

techniques may be broadly divided into three types:

1. Functional Testing

2. Structural Testing

3. Heuristic or Intuitive Testing

Integration testing: Integration testing is a systematic

technique for constructing the program structure while at the

same time conducting tests to uncover errors associated with

interfacing. The objective is to take unit tested components

and build a program structure that has been dictated by design.

Different Integration testing Strategies are discussed below:-

1) Top down Integration testing

2) Bottom up Integration testing
Top down Integration: Top-down integration testing is an

incremental approach to construct program structure. Modules

are integrated by moving downward through the structure,

beginning with the main control module. Modules subordinate
to the main control module are incorporated into the structure

in either a depth-first or breadth-first manner. [4] The

integration process is performed in a series of five steps:

 The main control module is used as a test driver and

stubs are substituted for all components directly

subordinate to the main control module.

 Depending on the integration approach selected

subordinate stubs are replaced one at a time with

actual components.

 Tests are conducted as each component is integrated.

 On completion of each set of tests, another stub is
replaced with the real component.

 Regression testing may be conducted to ensure that

new errors have not been introduced. It is not as

relatively simple as it looks. In this logistic problem

can arise. Problem arises when testing low level

module which requires testing upper level. Stub

replace low level module at the beginning of top

down testing. So no data can flow in upward

direction.

 Bottom up Integration: Bottom-up integration testing, as its

name implies, begins construction and testing with atomic

modules. Because components are integrated from the bottom
up, processing required for components subordinate to a given

level is always available and the need for stubs is eliminated.

[4] A bottom-up integration strategy may be implemented

with the following steps:

 Low-level components are combined into clusters

that perform a specific software subfunction.

 A driver is written to coordinate test case input and

output.

 The cluster is tested.

 Drivers are removed and clusters are combined

moving upward in the program structure.
Acceptance testing: Acceptance testing (also known as user

acceptance testing) is a type of testing carried out in order to

verify if the product is developed as per the standards and

specified criteria and meets all the requirements specified by

customer. [4] This type of testing is generally carried out by a

user/customer where the product is developed externally by

another party. Acceptance testing falls under black box testing

methodology where the user is not very much interested in

internal working/coding of the system, but evaluates the

overall functioning of the system and compares it with the

requirements specified by them. User acceptance testing is
considered to be one of the most important testing by user

before the system is finally delivered or handed over to the

end user. Acceptance testing is also known as validation

testing, final testing, QA testing, factory acceptance testing

and application testing etc. And in software engineering,

acceptance testing may be carried out at two different levels;

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 2, ISSN No. 2455-2143, Pages 113-117
 Published Online December-January 2016 in IJEAST (http://www.ijeast.com)

115

one at the system provider level and another at the end user

level.

Types of Acceptance Testing User Acceptance Testing:

User acceptance testing in software engineering is considered

to be an essential step before the system is finally accepted by

the end user. In general terms, user acceptance testing is a

process of testing the system before it is finally accepted by

user.

 Alpha Testing & Beta Testing Alpha testing is a

type of acceptance testing carried out at developer‟s

site by users.[4] In this type of testing, the user goes

on testing the system and the outcome is noted and

observed by the developer simultaneously. Beta

testing is a type of testing done at user‟s site. The
users provide their feedback to the developer for the

outcome of testing. This type of testing is also

known as field testing. Feedback from users is used

to improve the system/product before it is released to

other users/customers.

 Operational Acceptance Testing This type of

testing is also known as operational

readiness/preparedness testing. It is a process of

ensuring all the required components (processes and

procedures) of the system are in place in order to

allow user/tester to use it.

 Contact and Regulation Acceptance Testing In

contract and regulation acceptance testing, the

system is tested against the specified criteria as

mentioned in the contract document and also tested

to check if it meets/obeys all the government and

local authority regulations and laws and also all the

basic standards.

 System testing:
System testing of software or hardware is testing conducted on

a complete, integrated system to evaluate the system's

compliance with its specified requirements. System testing
falls within the scope of black box testing, and as such, should

require no knowledge of the inner design of the code or logic

System testing is actually a series of different tests whose

primary purpose is to fully exercise the computer-based

system. Although each test has a different purpose, all work to

verify that system elements have been properly integrated and

perform allocated functions. Some of Different types of

system testing are as follows:-

 Recovery testing

 Security testing

 graphical user interface testing

 Compatibility testing

Recovery Testing : Recovery testing is a system test that

forces the software to fail in a variety of ways and verifies that

recovery is properly performed. If recovery is automatic, re-

initialization, check pointing mechanisms, data recovery, and

restart are evaluated for correctness. If recovery requires

human intervention, the mean-time-to-repair is evaluated to

determine whether it is within acceptable limits.

Security testing: Security testing attempts to verify that
protection mechanisms built into a system will, in fact, protect

it from improper penetration. During security testing, the

tester plays the role(s) of the individual who desires to

penetrate the system. Anything goes! The tester may attempt

to acquire passwords through external clerical means; may

attack the system with custom software designed to

breakdown any defenses that have been constructed; may

overwhelm the system, thereby denying service to others; may

purposely cause system errors, hoping to penetrate during

recovery; may browse through insecure data, hoping to find

the key to system entry.

Graphical user interface testing: Graphical user interface
testing is the process of testing a product's graphical user

interface to ensure it meets its written specifications. This is

normally done through the use of a variety of test cases.

 Compatibility testing: Compatibility testing, part of software

non-functional tests, is testing conducted on the application to

evaluate the application's compatibility with the computing

environment.

Software Testing Principles: Different software testing

principles are as follows:

Test a program so as to make it fail: Testing is the process of

executing a program with the intent of finding bugs and errors.
Testing becomes more effective when failures are exposed.

Start testing early: This helps in finding and fixing a number

of errors in the early stages of development, thus reduces the

rework of finding the errors in the later stages.

Testing is context dependent: Testing should be appropriate

and different for different context and also at different points

of time.

Test Plan: Test Plan usually describes test strategy, test scope,

test objectives, test environment, deliverables of the test, risks

and mitigation involved, schedule, levels of testing to be

applied, techniques, methods and tools to be used. Test plan

should accurately meet the needs of an organization and
customer as well (IEEE(1990), IEEE Standard Glossary of

Software Engineering Terminology, Los Alamitos, CA: IEEE

Computer Society Press).

Effective Test cases: Effective test cases must be designed so

that they can be measured and clear test results are produced.

Test valid as well as invalid Conditions: In addition to valid

test cases, test cases for invalid and unexpected

inputs/conditions must also be checked. This form of testing is

sometimes specified as regression testing.

Test at different levels: Different testing must be done at

different level of testing so different people can perform
testing differently using different testing techniques at all

level.

End of Testing: Testing has to be stopped somewhere. It is

stopped when risks are under some limit or if there is some

limitation to it.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 2, ISSN No. 2455-2143, Pages 113-117
 Published Online December-January 2016 in IJEAST (http://www.ijeast.com)

116

IV. SOFTWARE TESTING METHODOLOGIES

Correctness is the minimum requirement of software.
Correctness testing will need some type of oracle, to tell the

right behavior from the wrong one. The tester may or may not

know the inside details of the software module under test. [3]

Therefore either white box testing or black box testing can be

used. Correctness testing has following three forms:-

1) White box testing

2) Black box testing

3) Grey box testing

Black box: it is testing strategy based solely on requirements

and specifications. Black box testing requires no knowledge of

internal paths, structures, or implementation of the software
being tested.

White box: testing is a testing strategy based on internal

paths, code structures, and implementation of the software

being tested. White box testing generally requires detailed

programming skills.

Gray box testing: In this we look into the "box" being tested

just long enough to understand how it has been implemented.

Then we close up the box and use our knowledge to choose

more effective black box tests.

 Fig.1

The above figure shows how both types of testers view an
accounting application during testing. Black box testers view

the basic accounting application. While during white box

testing the tester knows the internal structure of the

application. In most scenarios white box testing is done by

developers as they know the internals of the application. In

black box testing we check the overall functionality of the

application while in white box testing we do code reviews,

view the architecture, remove bad code practices, and do

component level testing. There are a number of tools available

in market for software testing. Some have been used from a

very long time and some new tools have also been developed
with a lot of new functionalities. Here, we are going to discuss

few tools that are used for automated testing:

Ranorex: This is a simple, comprehensive and cost effective

tool used for automatic testing. It is a better alternative to

other testing tools because it tests applications from a user’s

perspective, using standard language and common

programming techniques like C# and VB.net. It does not

require understanding a scripting language, because it is coded

in pure .net code. Any one of the three languages, VB.net, C#

and Iron Python can be used. It is used by a lot of commercial

software companies and enterprises around the globe. These

simulation tools such can have same problems to the same
record and playback methods, as the test plan and test cases

are often tightly coupled to the code, and both methods still

depend highly on experts to create the correct these tests to

ensure full coverage. Future work for ranorex involves

creating an easily accessible, open and highly documented

interface for the clients to write their own plug-ins, which

provides the maximum of recognition for their own

applications. Some of the features of this tool are:

 It does image-based recognition

 It contains Record-Replay functionality which is

called Ranorex Recorder

 It provides easy integration for 32 and 64 bit

operating systems

 It is built on the .NET Framework

 It offers a standard and flexible test automation

interface

 The Ranorex Recorder provides user code actions,

which allows developers to provide special validation

or automation methods for their testers with less

experience in programming

 It targets to get everything flexible and automated

 It supports all the technologies via Ranorex Plug-Ins

 It allows user interface for managing test cases, plans

and configurations

 It supports the use of data variables

 The test automation modules can be created with a

standard .NET compiler.

 It provides the ability to do test automation in client’s

own environment

 It uses standard and modern programming techniques

 It allows testers with little programming knowledge

to create professional test plans and cases and

modules with Ranorex Recorder.

Rational Functional Tester (RFT): IBM developed this

product in 1999. It is an object-oriented programming based

automated testing tool. It includes regression and functional

testing tools which note down the results of black box tests in

a well scripted format. Once captured, these scripts can be

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 2, ISSN No. 2455-2143, Pages 113-117
 Published Online December-January 2016 in IJEAST (http://www.ijeast.com)

117

executed against future script builds of any application to

verify that
new functionalities have not disabled any previous

functionality. With the help of this tool, black box tests can be

run as well as white box tests for code bottlenecks, memory

leaks or measuring code coverage. In 2006, IBM made a

major transition to its software development platform to better

help companies build complex software and applications. The

Baltic or IBM Rational 7 was developed in 2006. Some of the

advantages of this tool are:

 It enables regression testing

 It frees up Quality Assurance departments from

maintaining and executing basic tests plan and cases,
and encourages the creation of additional, thorough

tests

 It automates other non testing activities such as

functional and test lab machine preparation.

 It reduces the probability of human error that can

occur during activities such as test step execution and

also test result recording

It works with Web based, Java, and Microsoft Visual Studio,

.NET, SAP, terminal-based, Siebel and Web 2.0 applications.

This product also uses a Object Code Insertion (OCI)

technology where no source code is used. This technology

looks at the executable files in an application. These tools
when built into the software, including Pure Coverage and

Purify Quantify, perform white box testing on a third party

code. Some of the advantages of these tools are:

 It provides memory leak detection and run-time error

 It records the exact amount of time an application

spends in a given block of code for the purpose of

finding all inefficient code bottlenecks

 It pinpoints areas of application that have been and

have not been executed

 When performing regression tests on a product, if the

application changes, like, images in different
locations, tests will not fail because the product uses

robust

Janova : This tool is much similar to others as it enables some

users to automate software testing solutions and with the help

of this tool it is done in a cloud too. This tool does not require

any scripts to be written i.e. only simple English-based tools

are used that simplify the task of software implementation

with efficient and easy to use tools. Other advantage of this

tool is that its cost is very less i.e. $10 per month. There is no

such software to download and thus no infrastructural
investment is required. Since it is used in the cloud, it has a

very quick and easy setup that includes no install. This cloud

based software has an easy navigation to home page.

V. CONCLUSION

This paper on Software testing describes in detail about

software testing, need of software testing, Software testing

goals and principles. . Software testing is often less formal and

rigorous than it should, and a main reason for that is because
we have struggled to define best practices, methodologies,

principles, standards for optimal software testing. To perform

testing effectively and efficiently, everyone involved with

testing should be familiar with basic software testing goals,

principles, limitations and concepts. We further explains

different Software testing techniques such as Correctness

testing, Performance testing, Reliability testing, Security

testing. Further we have discussed the basic principles of

black box testing, white box testing and gray box testing. We

have surveyed some of the strategies supporting these

paradigms, and have discussed their pros and cons.

VI. REFERENCES

[1] Sahil Batra and Dr. Rahul Rishi,”IMPROVING QUALITY

USING TESTING STRATEGIES,” Journal of Gobal

Research in Computer Science, Volume 2,No.6,June 2011.

[2] S.M.K Quadri and Sheikh Umar Farooq,”Software

Testing-Goals,Principles and Limitations,” International

Journal of Computer Applications, Volume 6-No.9,September

2010.

[3] Mohd. Ehmer Khan,”Different Forms of Software Testing

Techniques for Finding Errors,”IJCSI International Journal of
Computer Science Issues,Vol. 7, Issue 3, No 1, May 2010.

[4] Ajay Jangra, Gurbaj Singh, Jasbir Singh and Rajesh

Verma,”EXPLORING TESTING

STRATEGIES,”International Journal of Information

Technology and Knowledge Management, Volume 4,

NO.1,January-June 2011.

[5] Jovanovic and Irena,”Software Testing Methods and

Techniques,” May 26,2008.

[6] Fu Bo (2007), Automatic Generation Method of Test Data

Based on Ant Colony Algorithm, Computer Engineering and

Applications.43(12).

[7] Stacey, D. A.(2004), Software Testing Techniques Guide
to the Software Engineering Body of Knowledge, Swebok – A

project of the IEEE Computer Society Professional Practices

Committee.

[8] R.S. Pressman & Associates, Inc. (2005). Software

Engineering: A Practitioner’s Approach, 6/e; Chapter 14:

Software Testing Techniques,

[9] ger S. Pressman, “Software engineering: A practitioner‟s

Approach,” fifth edition, 2001.

[10]Myers, Glenford J.(1979), IBM Systems Research

Institute, Lecturer in Computer Science, Polytechnic Institute

of New York, The Art of Software Testing, by John Wiley &
Sons, Inc.

[11] Redmill, Felix (2005), Theory and Practice of Risk-based

Testing, Vol. 15, No. 1.

[12] IEEE(1990), IEEE Standard Glossary of Software

Engineering Terminology , Los Alamitos, CA: IEEE

Computer Society Press.

