A CUSTOMIZED WIDEBAND BANDREJECT FILTER WITH MEANDER LINE AND CROSS COUPLING

Ravi Jaiswal
Department of ECE
MMMUT, Gorakhpur, (U.P), India

B. S. Rai
Department of ECE
MMMUT, Gorakhpur, (U.P), India

G. D. Bharti
Department of ECE
MMMUT, Gorakhpur, (U.P.), India

Abstract—A new customized Wideband Bandreject Filter with Meander line structure and cross coupling. Conventionally the size of Bandreject filter resonator should be in Quarter wave length. With the help of meander line, size of filter can be decreased up to 42%. To convert the long thin microstrip line into meander line, no need of extra calculation is necessary. An extra electric-coupling into two side by side Quarter wave length stubs is achieved, roll-off and sharp skirt successfully attain by introducing two transmissions zero in reject band. A Bandreject filter example is given with calculated attenuation of bandreject filter is 25.5 dB on fractional Bandwidth of 143 % with accessible tool HFSS-13.0, filter is analyzed with available reported result.

Keywords—Bandstop filter (BSF); Meander line; Wideband; Cross coupling.

I. INTRODUCTION

WIDEBAND Band reject filter widely employed in wireless and satellite communication system. Important role of Bandreject filter is to filter out unwanted and surplus signal and allow to pass only preferred signal. In oscillator and Mixer harmonics can be eliminated with the help of Bandreject filter. Sharp skirt and high roll of required in filter when frequency of operation change from passband to stopband. High attenuation in stop band and low insertion loss in passband is requirement of preferred communication system. Typically Microstrip bandreject filter [1] is made off open-circuited Shunt resonators that are λg/4 long with linking lines that also λg/4. This filter with more number of transmissions zero in stop band gives the excellent reject band. As large reject band output is required in band reject filter, the photonic band gap [2] structures and the defected ground plane structures [3] are different solutions. To advance the selectivity and reject band refusal, the introduction of electrical [4] or magnetic [5]-[6] cross couplings and the deployment of several signal transmission paths [9]-[11] have been verified to be two rather professional methods for introducing additional transmission zeros (TZs).

At the Reject band central frequency f_R , all transmission line are in proportion measurement lengthwise is λg/4. High order response is realized by introducing the further more introduced capacitances mutually with part 2. For improving the pass band range at upper cut off frequency open circuit shunt stub is converted into stepped impedance resonator, means conversion of UIR into SIR has done. We can carry out
the even and odd mode study because circuit is unique with their geometry. In S-plane, if I/O admittance is equal for even and odd mode then by means of Richard’s Transformation:

$$S = j\omega = j \tan \frac{x}{2\epsilon} \quad (1)$$

Where Richard’s, lumped and scattered element frequency variables, will be given as S, Ω, and f are the correspondingly.

(A). Meander Structure design by means of Kotch Curve

The Kotch curve [9] understanding is obtained in notice for predictable new pattern. Up to two iteration of curve is provided in Fig.[2] with the help of Basic Kotch curve style. Basic Kotch curve is used where very thin microstrip line structure is used.

![Figure 2. Basic Kotch curve arrangement: (a) Zero iteration; (b) 1st iteration; (c) 2nd iteration](image)

Figure 2. Basic Kotch curve arrangement: (a) Zero iteration; (b) 1st iteration; (c) 2nd iteration

The Fig.[a] is given for zero iteration, where the initial length of thin microstrip line (p to q) is d. Fig.[b] is given for first iteration, where the length of microstrip line will get reduced by $d/2$ and Fig.[c] is given for second iteration, where the length of microstrip line will reduce by $d/4$. In first iteration the gap between the point p and q is reduced by $d/2$ and length of unit section line will $L/8$. In second iteration the distance between p and q is reduced by $d/4$ and the length of unit section line will $d/64$. By using this procedure the length of thin microstrip line can be reduced up to $1/4$ times. This procedure can be appropriate for Band stop filter (BSF) and Low pass filter (LPF). In this proposed work, after performing 2nd iteration length of unit section line will very small that will create problem in filter fabrication so we are doing only 1st iteration in this work.

III. EXPERIMENT AND RESULT

A Customized wide bandreject filter with meander line and cross coupling is intended with substrate thickness of 0.73mm, dielectric constant of 2.65 and loss tangent of material will 0.003. The BSF is made up of stepped-impedance coupled line be involve with an open-circuited shunt Stepped impedance resonator (SIR). Proportionate electrical span of $\lambda g/4$, stepped impedance coupled line are used in filter design. Frequency of reject band can be determined with the help of typical impedance ratio and SICL span. Coupling gap between the $\lambda g/4$ resonators is main deciding factor for bandwidth of reject band. Utilize of simulator ANSYS HFSS-13 has done for simulation of anticipated customized Wideband Bandreject Filter with Meander line structure and cross coupling.

![Figure 3 estimated design of filter with Meander lines and Stepped Impedance resonator.](image)

Figure 3 illustrate the design of predicted filter. The design of figure (II) is applied to reference [7]. After applying Kotch structure in reference [7] length of Patch reduced by 19%. New structure is again modified by changing the open circuit shunt UIR stub into open circuit shunt SIR stub and two slots have been etched at the surface of substrate. New modified structure is portrayed in figure3. New modified structure length of meander line is 19.45mm. Coupling is increase by reducing gap between the Stepped impedance coupled lines.
imposed on almost every of the long thin transmission line. Projected work diminished the excess of 19% of the dimension with several modifications in the reference diagram of BSF. Converting open circuit shunt Uniform impedance response (UIR) into stepped impedance resonator (SIR) was helpful in the increment of upper pass band filter, some small stubs are used for impedance matching has done to get desired attenuation. Reduction in size has achieved from 0.040 $\lambda_g \times \lambda_g$ to 0.033 $\lambda_g \times \lambda_g$. A BSF example is given with measured attenuation of stop reject filter is 25.5 dB on a fractional bandwidth of 143%.

V. REFERENCE

IV. CONCLUSION

The projected method is a doing well and capable of size diminution technique with simplicity. This method of dimension diminution (Meander line structure) can be

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Ope.</th>
<th>order</th>
<th>no. of zero</th>
<th>fbw %</th>
<th>attenuation (db)</th>
<th>size ($\lambda_g \times \lambda_g$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10]</td>
<td>4</td>
<td>≥5</td>
<td>3</td>
<td>47</td>
<td>23</td>
<td>0.181</td>
</tr>
<tr>
<td>[7]</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>20</td>
<td>0.109</td>
</tr>
<tr>
<td>[8]</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>140</td>
<td>20</td>
<td>0.056</td>
</tr>
<tr>
<td>[5]</td>
<td>1.5</td>
<td>5</td>
<td>5</td>
<td>113.4</td>
<td>34.4</td>
<td>0.040</td>
</tr>
<tr>
<td>[this work]</td>
<td>1.5</td>
<td>4</td>
<td>4</td>
<td>143</td>
<td>25.5</td>
<td>0.033</td>
</tr>
</tbody>
</table>

The result of simulated filter is given in Fig. 4. Achieved maximum attenuation in reject band is 25.5 dB. Measured insertion loss in lower pass band from (0.01-0.234 GHz) less than 0.28 dB and Insertion loss in upper pass band (2.73-3.8 GHz) less than 1.50 dB. The packed size of anticipated filter is 0.60$\lambda_g \times 0.05\lambda_g$. where λ_g denotes the guided wavelength of a 50 Ω transmission line on the centre-stopband. Table (I) uncovered the evaluation of the performance of unlike BSF with unlike previous design. The anticipated BSF show immense FBW and a reduced amount of packing in size.