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Abstract—Some radial basis functions with positive non-

half-integer (PNH-RBFs) exponents have been used to 

develop numerical methods that are claimed to produce 

better numerical approximations when compared to 

methods constructed with radial basis functions having 

negative-integer/half-integer exponents referred to as 

standard RBFs. In this paper, we develop a numerical 

method for approximating the solution of steady state 

partial differential equations (PDEs) and a radial basis 

function method of lines (RBF-MOLs) for solving time-

dependent PDEs in two space dimensions using two PNH-

RBFs. Two Poisson equations and a heat equation in two 

space dimensions were used as test problems to perform 

numerical experiments and compared with results from 

methods developed with the standard RBFs. From our 

results, all the radial basis function methods produced 

nearly the same accuracy regardless of the value of the 

exponent.  

Keywords—Radial Basis Functions, Method of Lines and 

Generalized Multiquadrics 

I. INTRODUCTION 

 Partial differential equations (PDEs) are used for modelling 

real life phenomenon in different mathematical and 

engineering communities. Not all PDEs have analytical 

solutions, so numerical methods are required to provide 

approximate solutions in such cases. Sometimes even if there 

exists an analytical solution, numerical methods are developed  

for the purpose of comparison and to prepare for situations 

where the analytical solution may fail. In 1950’s, PDEs were 

approximated mainly with finite difference method (FDM), 
while in 1960’s, the finite element method (FEM) was mostly 

used since it can be applied on irregular shaped domains 

(Fasshauer [1]). However, these methods have algebraic 

convergence (Sarra and Kansa [2]) which limit their accuracy. 

Spectral methods were developed in 1970’s to provide 

exponential convergence [1] to PDEs both on structured and 
unstructured domains. 

Mesh-free methods stated appearing in literature in 

1980’s Fasshauer [1] and are becoming viable tools for 

approximating the solutions of many mathematical and 

engineering problems in recent times because of two major 

reasons: (1) the ease to generate mesh over two- and three-

dimensional complicated domains which take longer time with 

the traditional methods such as FDM and FEM, (2) the 

convergence rate of the traditional methods which are 

typically second order and require more discretization and 

operations than the mesh-free methods Kansa [2]. Radial basis 
functions (RBFs) are mesh-free methods whose value depends 

only on distance from the origin or points called centres. RBFs 

were derived for the purpose of multivariate scattered data 

interpolation Hardy [3], however, the application of RBFs for 

solving PDEs appeared in 1990 when Kansa [4] and [5] 

developed a multiquadratic (MQ) collocation method and 

applied it to approximate the solutions of some PDEs. The 

breakthrough of Kansa lead to the applications of RBFs for 

solving PDEs in different computing communities. 

One of the most frequently used RBFs are the 

multiquadrics (MQ) (Chenoweth [6]; Kansa [2] and Kansa and 

Holobrodko [7]), this may be traced to the experiments 
conducted by Frank [8] and other researchers such as Madych 

and Nelson [9] and Madych [10] that proved theoretically that 

multiquadrics converges exponentially. The multiquadrics are 

member of the generalized MQ (GMQ) family 

 
where the exponent  may be any real number except non-
negative integers Sarra and Kansa [11]. Some RBFs with 

negative integer exponent are the inverse quadratic (IQ), 

 and the generalized inverse MQ (GIMQ), . 
Commonly used half-integer exponent GMQ RBFs are the 

MQ,   and the inverse (IMQ),   . The IQ, GIMQ, 

MQ and IMQ have been successfully applied by Bibi [12]; 
Luga et al. [13], [14] and Sarra and Kansa [11] among others 
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to approximate the solutions of some PDEs. Higher positive 

half-integer exponents of equation (1.1),  =  , 

are becoming interesting area of research 
especially with advent of advanpix MATLAB tool box Kansa 
and Holobrodko [7]. The paper by Kansa et al. [15] and some 

experiments in the book of Sarra and Kansa [11] confirm that 

higher positive half-integers exponents GMQ RBFs yield good 

approximation. Wertz et al. [16] showed that the values of 

GMQ for  under some conditions may produce better 

results than other values of , regardless of whether the data 
points are randomly or uniformly distributed. 

Contrary to the conclusion of Wertz et al. [16], some 

positive non-half integer exponents of equation (1.1) have 

been shown by some researchers to produce better results. For 

instance, Wang and Liu [17] proposed a radial point 
interpolation method (radial PIM) in which they studied the 

effect of shape parameters on the numerical accuracy of 

different exponents  of GMQ RBFs and the Gaussian RBF, 
from the various experiments performed, they observed that 

the optimal value of the shape parameters was obtained at 

. Similarly, Xiao and McCarthy [18] developed a 
meshless method for stress analysis of two-dimensional solids 

based on a local weighted residual method with the Heaviside 

step function over a local subdomain. Experiments were 

performed with equation (1.1) using 

, the difference between the relative 

errors and the analytical solutions confirmed that the value of 

 produced the optimal results. Furthermore, Xiao et 
al. [19] also showed that to get efficient results with RBFs, the 

exponent  in equation (1.1) has to be optimized, meaning that 

 does not have to be restricted to half-integer values. They 

obtained good results with the value of  and confirmed 

that non-half- integer values of  accelerated convergence. 
Chenoweth [6] observed that the claims by some 

researchers that non-half-integer exponents GMQ RBFs 

produced optimal results are not proved and have no 

theoretical backings. She conducted series of numerical 

experiments on interpolation in one and two dimensions with 

different values of  in equation (1.1) to determine the 
existence of an optimal value, but concluded that the optimal 

value of is problem dependent. In this paper, we used the 

values of  in equation (1.1) to develop RBF 
collocation method and apply the methods to approximate the 

solutions of some steady state and a time-dependent partial 

differential equation in two space dimensions. The solution of 

the time-dependent PDEs are approximated with the method 
of lines (MOLs) constructed by combining the positive non-

half-integer exponent GMQ RBFs with the fourth order 

Runge-Kutta method. The aim is to verify the claim that some 

non-half-integer GMQ RBFs produce better numerical results 

when compared to other RBFs using second order PDEs. The 

MQ RBF is used as a standard for our comparison.  

The rest of the paper is structured as follows: Section II 

deals with the methods developed for performing experiments, 

the results are presented in Section III, while the discussion 
and conclusion are done in Sections IV and V respectively and 

the references are provided in Section VI. 

II. METHODS 

The Formulation of GMQ-RBF having non-standard 

exponents  and  for solving steady state and 
time-dependent PDEs is presented in this Section. For the 

time-dependent PDEs, non-standard exponent GMQ-RBFs are 

used for space discretization, while the 4th order Runge-Kutta 

method is used as a time-stepping method. 

Radial Basis Function Interpolation Method 

To obtain RBF interpolation, we first assume that if 

, is an unknown function, it can be approximated 

with an RBF interpolant of the form  defined by 

 
The interpolant on the right hand side of equation (2.1) is 

given by  

 
where  denotes the Euclidean norm,  is a 

polynomial of degree  and   is an 

unknown vector to be found. If an RBF is positive definite, 

then equation (2.2) is used without appending the polynomial 

term, yet the interpolant produces an invertible interpolation 

matrix. On the other hand, the interpolant of a conditionally 

positive RBFs need to be appended with the polynomial term 

in order to get an invertible interpolation matrix (Fasshauer 

[1]). Equation (1.1) is called positive definite if , and 

conditionally positive definite if  Although the RBFs 
we are using for the space discretization of the PDEs are 

conditionally positive definite, we shall apply them without 

appending the polynomial term as explained in (Sarra and 

Kansa [11]). Thus equation (2.2) reduces to  

 
Substituting equation (2.3) in equation (2.1) and expanding for 

each ,           , gives the 

interpolation matrix in  dimensions 

 
In vector-matrix notation, equation (2.4) is written as  
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The unknown vector  is obtained from equation (2.5) as 
shown in equation (2.6) 

 
The evaluation matrix is obtained by evaluating equation (2.3) 

for each data point ,  
centres, however, to ensure a symmetric evaluation matrix, 

both  data points and centres are used. The evaluation matrix 
is expressed as  

 
where  has the entries  

Differentiating (2.7), we get the differentiation matrix, 

 
equation (2.8) can be differentiated the number of required 

times to get the order of the derivative of interest. 

Thus, relating equation (2.8) and equation (2.1) shows that  

 
Substituting equation (2.6) in equation (2.9) yields  

 
Let 

 
Equation (2.10) is called the differentiation matrix which is 

used for approximating the derivatives of a given PDE. 

Substituting the basic functions  

 
and  

 
we get the following basis functions which can be substituted 

to get the interpolation matrix (2.4) and evaluation matrix 

(2.7) which are used for the formulation of the differentiation 

matrix in two dimensions. 

 
 

and  

 
 

Existence and Uniqueness of Interpolation Matrix 

For an RBF method applied for discretizing the space 

derivatives of a PDE to exist and be unique, the interpolation 
matrix of the RBF must be invertible. There are many methods 

for characterizing the existence and uniqueness of an 

interpolation matrix (Fasshauer [1]), however, we shall verify 

that the RBF of interest are completely monotone. 

Completely Monotone Functions (Sarra and Kansa [11]) 

A function  is completely monotone on  if  

(i)  

(ii)  

(iiii)  

where  and  
The RBFs we have selected are conditionally positive 

definite, thus we shall verify that their basic functions are 

completely monotone using a proof in (Fasshauer [1]). 

2.2.2 Theorem 2: (Fasshauer [1]) 

Suppose is completely monotone, then 

 
imply 

 
so that  

 
where  means the least integer greater than  

If  and , then both  and  are 
equal to 2. 

Thus equation (2.15) in both cases reduce to  

 
and  

 
Equation (2.16) and (2.17) shows that Theorem 1 is verified. 

 

Algorithm for Discretizing Steady State Partial 

Differential Equations 

Let  denote distinct data points and centres that are 
divided into two subsets, one containing the interior data 

points and centres while the other is used to enforce boundary 

conditions denoted by  

 
Let  and  denote the differential operators on the interior, 

and boundary points, , applying the operators, we get  

 
and  
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The right hand side of equations (2.18) and (2.19) can be 

written in matrix notation as , where the evaluation 

matrix  that discretizes the PDE consist of  

 
 

The entries of (2.20) are defined by 

 

 
 Multiplying  to equation (2.20) yields the differentiation 
matrix used for discretizing steady state PDEs which only 

have space derivatives, i.e. equation (2.10). The 
implementation is done using a MATLAB programme. 

 

2.4 Algorithm for Discretizing Time-Dependent Partial 

Differential Equations 

For the time-dependent PDEs considered in this paper, once 

the space discretization is performed, the PDE can be written 

as 

 

 
where  

 
and  

 
 

Equation (2.21), (2.22) and (2.23) can be written as a single 

equation as shown below 

 
For time-dependent PDEs, equation (2.5) takes the form 

 
by making  the subject of the formula gives equation (2.6). 
Substituting equation (2.6) in (2.24) yields  

 
or 

 
where  is differential matrix. 
 
Equation (2.27) is a system of ODEs which can be integrated 

using a suitable time-stepping method. In this paper, the 4th 

order Runge-Kutta method is used as a time-stepping method. 

Discretizing Derivatives with Radial Basis Functions 

To discretize a derivative using RBFs  , the chain 
rule for the first two derivatives according to Sarra and Kansa 

[11] are given as  

 
and  

 
where  

 
and  

 
 

For the GMQ RBF having the value of , 

 
and 

 
 

Similarly, for the GMQ RBF having the value of  

 
and 

 
 

III. RESULTS 

In the section, we present the numerical results of two 

steady state PDEs and a two-dimensional heat equation solved 

by the methods formulated and described in Section 2. These 

methods are implemented in MATLAB, while the results are 
displayed in Tables and graphs for comparison discussion and 

conclusion. All the programmes are written in Windows 8 

Operating system using MATLAB 2017b. The test problems 

and parameter values are drawn from Sarra and Kansa [11]. 

Domains and Data Points Distribution  

 

First, we provide three different domains with data points 

that are also used as centres for approximating the solutions of 

the PDEs used as test problems. Figure 1(a) is a domain that 

consists of 441 points, 80 boundary points and 361 interior 

points. Similarly, the domain of Figure 1(b) is made up 399 

points, 80 boundary points and 319 scattered (Halton) interior 
points. Figure 1(c) is complex domain with a total of 635 

points, 310 boundary points and 505 interior points adopted 

from Sarra and Kansa [11]. 
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Fig. 1: Computational Domain and Data Points Distribution on                                                        

(a) Equally Spaced Points   (b) Scattered Data Points (c) 

Complex Domain 

 

 

Example 3.1 

Consider the Poisson equation  

 
where 

, 

 

 

 
The exact solution is given by  

 
The Dirichlet boundary conditions, 

 are chosen to satisfy the 
exact solution. 

This problem is implemented in MATLAB using equation 

(1.1) with  on the domains 

displayed in Fig. 1(a) and (b) and recorded in Table 1 and 

Figs. 2-5. 

Table 1: Comparison of MQ, GMQ  and 

GMQ  for Example 3.1 

S/

N 

RBF Data 

Distribution 

Shape 

Parameter  

MPE 

1 MQ Equally Spaced 0.12 3.8161  

Scattered  0.12 3.6105  

  

2 

GMQ

 

Equally Spaced 0.4 1.8051  

Scattered  0.5 1.1305  

  

3 

GMQ

 

Equally Spaced 0.3  

Scattered  0.6  

 

                                                        (a) 
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                                               (b) 

 

                                                 (c) 

Fig. 2: Maximum Error versus the Shape Parameter for Example 

3.1 on Equally Spaced Data Points using (a) MQ                 

(b) GMQ   and  (c) GMQ  

 

                                                (a) 

 

                                                      (b) 

 

                                                        (c) 

Fig. 3: Condition Number of the System Matrix for Example 3.1 

on Equally Spaced Data Points using (a) MQ        (b) 

GMQ   and  (c) GMQ  

 

                                                         (a) 
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                                                       (b) 

 

                                                      (c) 

Fig. 4: Maximum Error versus the Shape Parameter for Example 

3.1 on Scattered Data Points using (a) MQ                        

(b) GMQ   and  (c) GMQ  

 

                                                          (a) 

 

                                                           (b) 

 

                                                           (c) 

Fig. 5: Condition Number of the System Matrix for Example 3.1 

on Scattered Data Points using (a) MQ                               

(b) GMQ   and  (c) GMQ  

Example 3.2 

 Consider equation (3.1) such that  

 
The exact solution is given by 

 
the boundary conditions are given as  

 

 

 

 
MATLAB programmes are used to implement this 

problem using equation (1.1) with  and 

 on the domains provided in Figs. 1(a) and 1(b) and 
recorded in Table 2 and Figs. 6 and 7. 
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Table 2: Comparison of MQ, GMQ  and 

GMQ  for Example 3.2 

S

/

N 

RBF Data 

Distribution 

Shape 

Parameter  

     MPE 

1 MQ Equally Spaced 2.0  

Scattered  2.5  

  

2 

GMQ

 

Equally Spaced 2.7  

Scattered  2.1  

  

3 

GMQ

 

Equally Spaced 3.5  

Scattered  2.6  

 

 

                                                   (a)  

 

                                                       (b) 

 

                                                            (c) 

Figure 6:  Numerical Solution of Example 3.2 on Equally Spaced 

Data Points using  (a) MQ (b) GMQ   and  

(c) GMQ  

 

                                                        (a)  

 

                                                         (b) 
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                                                     (c) 

Fig. 7: Numerical Solution of Example 3.2 on Scattered Data 

Points using (a) MQ (b) GMQ   and               

(c) GMQ  

Example 3.3  

Consider the two-dimensional heat equation 

 
The Dirichlet boundary conditions are specified using the 

exact solution 

 
while the initial condition is given as 

 

 This problem is solved on three domains containing 

different patterns of spaced data points namely, equally spaced 

data points, Fig. 1(a), scattered data points, Fig. 1(b) and 

scattered points on a complex domain, Fig. 1(c) as shown in 

Fig. 1. The space derivatives are discretized using GMQ RBF 

for the values of the exponents   and  while  

                                               (a) 

the resulting system of ODEs are integrated using the fourth  

order Runge-Kutta method. The numerical results are 
displayed in Table 3 and Figs. 8 and 9. 

Table 3: Comparison of MQ, IMQ, IQ, GIMQ, GMQ ( ) 

and GMQ ( ) RBF-MOLs for Example 3.3 
S/

N 

RBF-MOLs N 
 

FT 
 

          MPE       

SOURCE 

(a)                 Solution on the Domain containing Equally Spaced Data Points 

 1 MQ 441 
 

0.1 3.0 
 

Sarra and 

Kansa[11] 

 2 IMQ 441 
 

0.1 2.5 
 

Luga [20] 

 3 IQ 441 
 

0.1 2.5 
 

Luga [20] 

 4 GIMQ 441 
 

0.1 2.0 
 

Luga [20] 

 5 GMQ(

 

441 
 

0.1 3.0 
 

 

 6 GMQ  ( 

 

441 
 

0.1 4.0 
 

 

(b)                   Solution on the Domain containing Scattered Data Points 

 1 MQ 399 
 

0.1 3.0 
 

Sarra 

and 

Kansa

[11] 

 2 IMQ 399 
 

0.1 2.0 
 

Luga [20] 

 3 IQ 399 
 

0.1 2.0 
 

Luga [20] 

 4 GIMQ 399 
 

0.1 2.0 
 

Luga [20] 

 5 GMQ 

(

 

399 
 

0.1 2.5 
 

 

 6 GMQ 

 

399 
 

0.1 3.5 
 

 

(c)             Solution on the Complex Domain Containing Scattered Data Points 

 1 MQ 635 
 

0.1 2.0 
 

Sarra and 

Kansa[11] 

 2 IMQ 635 
 

0.1 1.5 
 

Luga [20] 

 3 IQ 635 
 

0.1 1.5 
 

Luga [20] 

 4 GIMQ 635 
 

0.1 1.5 
 

Luga [20] 

 5 GMQ   

(

 

635 
 

0.1 2.5 
 

 

 6 GMQ 

(

  

635 
 

0.1 2.5 
 

 

                                 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

x 10
-5

xy

u(
x,

y,
t)

 

                                                           (b) 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

x 10
-5

xy

u(
x,

y,
t)



                             International Journal of Engineering Applied Sciences and Technology, 2020    

                                                      Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 1-12 
                                   Published Online May 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    

 

10 

 

                                                           

 

 

 

 

 

                  

                                                                   

(
 (c)    

Fig. 8:  Numerical Solution of Example 3.3 on Equally Spaced 

Data Points using  (a) MQ (b) GMQ   and    

(c) GMQ  
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                                                       ( c) 

Fig. 9:  Numerical Solution of Example 3.3 on Scattered Data 

Points using (a) MQ (b) GMQ   and             

(c) GMQ  

      

IV. DISCUSSION  

Steady State Partial Differential Equations 

The solutions of two Poisson partial differential equations 

in two space dimensions were approximated using the GMQ-

RBFs having the exponents,  ,  and . 

The first problem has Dirichlet boundary conditions, while the 

second contains Neumann boundary conditions. Both 

problems were approximated using the data points on the 

domains,  as shown in Figs. 1(a) and (b). The shape 

parameters  were obtained by plotting the maximum error 
versus the shape parameter where the minimum points of the 

plots as displayed in Figs. 2(a), (b), (c), 4(a), (b) and (c) were 

chosen as suitable estimates for the shape parameters to ensure 

stable and accurate numerical approximations. The numerical 

results for Example 3.1 recorded in Table 1 shows that the 

maximum point-wise error (MPE) from MQ-RBF method 
yielded the least error on both domains containing equally 

spaced data points and scattered data points. For Example 3.2, 

Table 2 shows that all the RBFs used for approximating 

solution of this PDE yielded approximately the same MPE on 

both data points. The plots for the various RBFs are provided 

in Figs. 6 and 7. 

The Two-Dimensional Heat Equation 

Example 3.3 is a two-dimensional heat equation. Sarra 

and Kansa [11] solved this particular problem using MQ RBF-

MOLs on a complex domain, Figure 1(c). Also, Luga [20] 

solved the same problem using IMQ, IQ and GIMQ RBF-
MOLs on all the domains displayed in Figures 1(a), (b) and 

(c). In this paper, we approximated the solution of this 

problem using two positive non-half-integer/non-integer 

exponent GMQ RBF-MOLs with the exponents  and 
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 on all the domains provided in Section III. The 

space derivatives were discretized using GMQ with  

and , while the fourth order Runge-Kutta method 
was used to integrate the resulting system of ODEs. A step 

size of  was applied on the domains in Figs. 

1(a) and (b), while  was used on the complex 
domain, Fig. 1(c) to advance the solution up to the final time 

. The numerical solutions for the two-dimensional 
heat equation is displayed in Table 3 and Figs. 8 and 9. 
Comparing the numerical results obtained from MQ RBF-

MOLs of Sarra and Kansa [11], IMQ, IQ and GIMQ RBF-

MOLs of Luga [20] with GMQ RBF-MOLs constructed with 

GMQ RBFs having  and  using maximum 
point-wise error (MPE) revealed that all the RBF-MOLs 

considered yielded approximately the same accuracy. 

  

V. CONCLUSION  

 The GMQ-RBFs with the values of the exponents 

 and  were used to develop numerical 
methods for approximating the solutions of two steady state 

PDEs and a heat equation in two-dimensions. The accuracy of 

the RBF methods were measured in terms of maximum point-

wise errors (MPE) and compared with some standard GMQ 

RBFs. Our numerical experiments show that all the GMQ 

RBF methods produced nearly the same relative accuracy, 

regardless of the value of the exponent  Our results also 

suggest that the claims that some values of  produce optimal 

results is not true, instead the value of  in equation (1.1) is 
problem dependent. 
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