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Abstract—The present investigation deals with the 

deformation in micro polar generalized thermo elastic 

medium with mass diffusion subjected to thermo 

mechanical loading due to thermal laser pulse. Laplace 

and Fourier transform technique is used to solve the 

problem. Concentrated normal force and thermal source 

are taken to illustrate the utility of approach. The closed 

form expressions of normal stress, tangential stress, 

tangential couple stress, mass concentration and 

temperature distribution are obtained in the transformed 

domain. Numerical inversion technique of Laplace 

transform and Fourier transform has been applied to 

obtain the resulting quantities in the physical domain after 

developing a computer program. The normal stress, 

tangential stress, tangential coupled stress, temperature 

distribution and mass concentration are depicted 

graphically to show the effect of relaxation times. Some 

particular cases of interest are deduced from the present 

investigation. 

Keywords—Laser Pulse, Micro polar, Mass diffusion, 

uniformly and linearly distributed source. 

I.  INTRODUCTION 

Micro polar theory of elasticity was introduced by 

Eringen (1966). This theory incorporates the local deformation 

and rotation of the material points of the composite. This 

theory provides a model that can support body couples and 

surface couples and exhibits a high frequency optical wave 

spectrum. Eringen (1971, 1999), Maugin and Mild (1986), 

Nowacki (1970) developed the linear theory of micro polar 

thermo elasticity by excluding the micro polar theory of 
elasticity to include the thermal effects. Touchert et al. (1968), 

derived the basic equations of linear theory of micro polar 

coupled thermo elasticity.  

Diffusion is defined as the spontaneous movement of 

the particles from a high concentration region to the low-

concentration region, and it occurs in response to a 

concentration gradient expresses as the change in the 

concentration due to change in position. Thermal diffusion 

utilizes the transfer of heat across a thin liquid or gas to 

accomplish isotope separation. Today, thermal diffusion 

remains a practical process to separate isotopes of noble gases 

e.g., Xenon and other light isotopes e.g., Carbon for research 

purposes. In most of the applications, the concentration is 

calculated using Fick’s law. This is a simple law which does 
not take into consideration the mutual interaction between the 

introduced substance and the medium into which it is 

introduced or the effect of temperature of this interaction. 

However, there is a certain degree of coupling with 

temperature and temperature gradients as temperature speeds 

up the diffusion process. Nowacki (1974, 1976) developed the 

theory of thermo elastic diffusion by using coupled thermo 

elastic model. Dudziak and Kowalski and Olesiak and Pyryev 

(1995), respectively, discussed the theory of thermo diffusion 

and coupled quasi stationary problems of thermal diffusion for 

an elastic layer.  

Laser technology has a vital application in nondestructive 
materials testing and evaluation. When a solid is heated with a 

laser pulse, it absorbs some energy which results in an 

increase in localized temperature. This cause thermal 

expansion and generation of the ultrasonic waves in the 

material. There are generally two mechanisms for such wave 

generation, depending on the energy density deposited by the 

laser pulse. At high energy density, a thin surface layer of the 

solid material melts, followed by an ablation process whereby 

particles fly off the surface, thus giving rise to forces that 

generates ultrasonic waves. At low energy density, the surface 

material does not melt, but it expands at a high rate and wave 
and wave motion is generated due to thermo elastic processes.  

 

Very rapid thermal processes (e.g., the thermal shock due 

to exposure to an ultra-short laser pulse) are interesting from 

the stand point of thermo elasticity, since they require a 

coupled analysis of the temperature and deformation fields. A 

thermal shock induces very rapid movement in the structural 
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elements, giving the rise to very significant inertial forces, and 

thereby, an increase in vibration. Rapidly oscillating 

contraction and expansion generates temperature changes in 

materials susceptible to diffusion of heat by conduction 

(1999). This mechanism has attracted considerable attention 

due to the extensive use of pulsed laser technologies in 

material processing and non-destructive testing and 

characterization (2001, 2002). The so-called ultra short lasers 
are those with pulse durations ranging from nanoseconds to 

femto seconds. In the case of ultra short pulsed laser heating, 

the high intensity energy flux and ultra short duration lead to a 

very large thermal gradients or ultra-high heating may exist at 

the boundaries. In such cases, as pointed out by many 

investigators, the classical Fourier model, which leads to an 

infinite propagation speed of the thermal energy, is no longer 

valid (1989). Researchers have proposed several models to 

describe the mechanism of heat conduction during short-pulse 

laser heating, such as the parabolic one-step model (1994), the 

hyperbolic one-step model (1990), and the parabolic two-step 

and hyperbolic two-step models (1993, 1997). 
 

Dubois (1994) experimentally demonstrated that 

penetration depth play a very important role in the laser-

ultrasound generation process. Ezzat et al. (2012) discussed 

the thermo-elastic behavior in metal films by fractional 

ultrafast laser. Al-Huniti and Al-Nimr (2004) investigated the 

thermo elastic behavior of a composite slab under a rapid 

dual-phase lag heating. The comparison of one-dimensional 

and two-dimensional axisymmetric approaches to the thermo 

mechanical response caused by ultra short laser heating was 

studied by Chen et al. (2002).Kim et al.(1997) studied thermo 
elastic stresses in a bonded layer due to pulsed laser radiation. 

Thermo elastic material response due to laser pulse heating in 

context of four theorems of thermo elasticity was discussed by 

Youssef and Al-Bary (2014),Theoretical study of the effect of 

enamel parameters on laser induced surface acoustic waves in 

human incisor was studied by Yuan et al (2014).A two- 

dimensional generalized thermo elastic diffusion problem for a 

thick plate under the effect of laser pulse thermal heating was 

studied by Elhagary (2014).Othman et al. (2014)studied the 

influence of thermal loading due to laser pulse on generalized 

micro polar thermo elastic solid with comparison of different 
theories. The exact analysis of laser generated thermo elastic 

waves in an anisotropic infinite plate mathematically done by 

Al- Qahtani and Datta (2008).Deswal, Sheoran and Kalkal 

(2013)investigated a two-dimensional problem in 

magnetothermoelasticity with laser pulse under different 

boundary conditions. 

 

In this research, taking into account the mass 

concentration effect and radiation of ultra short laser, we have 

established a model for micro polar thermo elastic medium 

with mass diffusion by using Laplace and Fourier transforms. 

The stress components and temperature distribution have been 
computed numerically. The resulting quantities are shown 

graphically to show the effect of mass concentration and 

temperature.  

II.PROBLEM FORMULATION 

Following Eringen (1999), Sherief (2004) and Al-
Qahtani and Datta (2008) the basic equations for 

homogeneous, isotropic micro polar generalized thermo elastic 

solid with mass diffusion in the absence of body forces and 

body couples are given by: 

(𝜆 + 𝜇)∇(∇. 𝒖) + (𝜇 + 𝐾)∇2𝒖 + 𝐾∇ × 𝝓 − 𝛽1 (1 +

𝜏1
𝜕

𝜕𝑡
) ∇𝑇 − 𝛽2 (1 + 𝜏1 𝜕

𝜕𝑡
) ∇𝐶 = 𝜌�̈�,(1) 

(𝛾∇2 − 2𝐾)𝝓 + (𝛼 + 𝛽)∇(∇. 𝝓) + 𝐾∇ × 𝒖 = 𝜌𝑗�̈�,(2) 

𝐾∗∇2𝑇 = 𝜌𝑐∗ (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
) 𝑇 + (1 + 𝜀𝜏0

𝜕

𝜕𝑡
) (𝛽1𝑇0∇. �̇� −

𝑄) + 𝑎𝑇0 (
𝜕

𝜕𝑡
+ 𝛾1

𝜕2

𝜕𝑡2
) 𝐶,(3)       

𝐷𝛽2∇2(∇. 𝒖) + 𝐷𝑎 (1 + 𝜏1
𝜕

𝜕𝑡
) ∇2𝑇 + (

𝜕

𝜕𝑡
+ 𝜀𝜏0 𝜕2

𝜕𝑡2
) 𝐶 −

𝐷𝑏 (1 + 𝜏1 𝜕

𝜕𝑡
) ∇2𝐶 = 0,(4)                                           

𝑡𝑖𝑗 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝐾(𝑢𝑗,𝑖 − 𝜖𝑖𝑗𝑘𝜙𝑘) −

𝛽1 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝛿𝑖𝑗𝑇 − 𝛽2 (1 + 𝜏1 𝜕

𝜕𝑡
) 𝛿𝑖𝑗𝐶,                      (5) 

𝑚𝑖𝑗 = 𝛼𝜙𝑘,𝑘𝛿𝑖𝑗 + 𝛽𝜙𝑖,𝑗 + 𝛾𝜙𝑗,𝑖,                          (6) 

 

The plate surface is illuminated by laser pulse given by the 
heat input 

 

𝑄 = 𝐼0𝑓(𝑡)𝑔(𝑥1)ℎ(𝑥3)                            (7) 

 

where 𝐼0 is the energy absorbed. The temporal profile 𝑓(𝑡) is 

represented as, 

𝑓(𝑡) =
𝑡

𝑡0
2 𝑒

−(
𝑡

𝑡0
)
                               (8) 

Here 𝑡0 is the pulse rise time. The pulse is also assumed to 

have a Gaussian spatial profile in 𝑥1 

𝑔(𝑥) =
1

2𝜋𝑟2 𝑒
−(

𝑥1
2

𝑟2)
                                      (9) 

where 𝑟 is the beam radius, and as a function of the depth 𝑥3 

the heat deposition dueto the laser pulse is assumed to decay 

exponentially within the solid, 

 

ℎ(𝑥3) = 𝛾∗𝑒−𝛾∗𝑥3                 (10) 
 

Equation (7) with the aid of (8,9 and 10) takes the form 



        International Journal of Engineering Applied Sciences and Technology, 2016 
                                     Vol. 1, Issue 2, ISSN No. 2455-2143, Pages 1-9 

                 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com) 

3 

 

𝑄 =
𝐼0𝛾∗

2𝜋𝑟2𝑡0
2 𝑡𝑒

−(
𝑡

𝑡0
)
𝑒

−(
𝑥1

2

𝑟2)
𝑒−𝛾∗𝑥3   ,       

     (11)   

where 𝜆, µ, 𝛼, 𝛽, 𝛾, 𝐾, are material constants, 𝜌 is 

mass density, 𝒖 = (𝑢1, 𝑢2, 𝑢3)is the displacement vector and  

𝝓 = (𝜙1 , 𝜙2 , 𝜙3)is the microrotation vector, 𝑇 is temperature 

and  𝑇0  is the reference temperature of the body chosen,𝐾∗ is 

the coefficient of the thermal conductivity,𝑐∗ is the specific 

heat at constant strain, 𝐷 is the thermoelastic diffusion 

constant, 𝑎 is the coefficient describing the measure of thermo 

diffusion and 𝑏 is the coefficient describing the measure of 

mass diffusion effects,𝑗 is the microinertia, 𝛽1 =
(3𝜆 + 2𝜇 + 𝐾)𝛼𝑡1 ,𝛽2 = (3𝜆 + 2𝜇 + 𝐾)𝛼𝑐1 , 𝛼𝑡1, 𝛼𝑐1are 
coefficients of linear thermal expansion and coefficients of 

linear diffusion expansion,𝑡0 is the pulse rise time,𝐼0 is the 

energy absorbed,𝑡𝑖𝑗 are components of stress vector,  𝑚𝑖𝑗  are 

components of couple stress vector, 𝛿𝑖𝑗 is Kroneker delta 

function, 𝜏0, 𝜏1are thermal relaxation times with 𝜏0 ≥ 𝜏1 ≥ 0.  

We consider a micro polar generalized thermo elastic 

mass diffusion medium with rectangular Cartesian coordinate 

system 𝑂𝑋1𝑋2𝑋3 having origin on 𝑥3-axis with 𝑥3-axis 

pointing vertically inward the medium.  

We consider plane strain problem with all the field 

variables depending on𝑥1, 𝑥3and 𝑡. For two dimensional 

problems, we take  

 

𝒖 = (𝑢1, 0, 𝑢3),𝝓 = (0, 𝜙2, 0),  (12) 

For further consideration, it is convenient to introduce in 

equations (1.1)-(1.4) the dimensionless quantities defined as: 

𝑢𝑖
′ =

𝜌𝜔∗𝑐1

𝛽1𝑇0
𝑢𝑖 ,   𝑥𝑖

′ =
𝜔∗

𝑐1
𝑥𝑖 ,    𝑡

′ = 𝜔∗𝑡 ,    𝑇′ =
𝑇

𝑇0
 ,    𝜏1

′ =

𝜔∗𝜏1 ,    𝜏0
′ = 𝜔∗𝜏0 ,𝛾1

′ = 𝜔∗𝛾1 , 𝑡𝑖𝑗
′ =

1

𝛽1𝑇0
𝑡𝑖𝑗  ,𝜔∗ =

𝜌𝑐∗𝑐1
2

𝐾∗ , 𝜙𝑖
′ =

𝜌𝑐1
2

𝛽1𝑇0
𝜙𝑖 ,    𝜏1′

= 𝜔∗𝜏1 ,    𝑐1
2 =

𝜆+2𝜇+𝑘

𝜌
 ,    𝑐2

2 =

𝜇+𝑘

𝜌
 ,    𝑐3

2 =
𝛾

𝜌𝑗
 ,     𝑐4

2 =
2𝛼0

𝜌𝑗0
 ,    𝜀 =

𝛾2𝑇0

𝜌2𝑐∗𝑐1
 ,𝑚𝑖𝑗

∗ =

𝜔∗

𝑐𝛽1𝑇0
𝑚𝑖𝑗   ,       𝐶′ =

𝛽2

𝜌𝑐1
2 𝐶 , 𝑄 =

𝐾∗𝜔∗2

𝐶∗ 𝑄′   

 (13) 

 

Making use of (13) in (1)-(4) and with the aid of (12), we 

obtain: 
 

𝑎1
𝜕𝑒

𝜕𝑥1
+ 𝑎2∇2𝑢1 − 𝑎3

𝜕𝜙2

𝜕𝑥3
− (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥1
− 𝑎4 (1 +

𝜏1 𝜕

𝜕𝑡
) 𝐶 = 𝜌

𝜕2𝑢1

𝜕𝑡2  , (14) 

𝑎1
𝜕𝑒

𝜕𝑥3
+ 𝑎2∇2𝑢3 + 𝑎3

𝜕𝜙2

𝜕𝑥1
− (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥3
− 𝑎4 (1 +

𝜏1 𝜕

𝜕𝑡
) 𝐶 = 𝜌

𝜕2𝑢3

𝜕𝑡2  ,(15) 

∇2𝜙2 − 2𝑎6𝜙2 + 𝑎6 (
𝜕𝑢1

𝜕𝑥3
−

𝜕𝑢3

𝜕𝑥1
) = 𝑎7�̈�2    

    (16) 

−∇2𝑇 + (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
) 𝑇 + 𝑎5 (

𝜕

𝜕𝑡
+ 𝜀𝜏0

𝜕2

𝜕𝑡2
) 𝑒 + 𝑎8 (

𝜕

𝜕𝑡
+

𝛾1
𝜕2

𝜕𝑡2
) 𝐶 = 𝑄0𝑓∗(𝑥1, 𝑡)𝑒−𝛾∗𝑥3 (17) 

∇2𝑒 + 𝑎9 (1 + 𝜏1
𝜕

𝜕𝑡
) ∇2𝑇+𝑎10 (1 + 𝜖𝜏0 𝜕

𝜕𝑡
) �̇� −

𝑎11 (1 + 𝜏1 𝜕

𝜕𝑡
) ∇2𝐶 = 0 ,  (18)                                                              

where, 𝑎1 =
𝜆+𝜇

𝜌𝑐1
2  , 𝑎2 =

𝜇+𝐾

𝜌𝑐1
2  , 𝑎3 =

𝐾

𝜌𝑐1
2  , 𝑎4 =

𝜌𝑐1
2

𝛽1𝑇0
 , 𝑎6 =

𝐾𝑐1
2

𝛾𝜔∗2  , 𝑎7 =
𝜌𝑗𝑐1

2

𝛾
 , 𝑎5 =

𝛽1
2𝑇0

𝜌𝐾∗𝜔∗  , 𝑎8 =  
𝑎𝜌𝑐1

4

𝜔∗𝛽2𝐾∗  , 𝑎9 =
𝑎𝜌𝑐1

2

𝛽1𝛽2
,

𝑎10 =  
𝜌𝑐1

4

𝐷𝜔∗𝛽2
2 , 𝑎11 =

𝑏𝜌𝑐1
2

𝛽2
2 , 𝑄0 =

𝑎13𝐼0𝛾∗

2𝜋𝑟2𝑡0
2  

𝑓(𝑥1, 𝑡) = [𝑡 + 𝜖𝜏0 (1 −
𝑡

𝑡0

)] 𝑒
−(

𝑥1
2

𝑟2+
𝑡

𝑡0
)
 

The displacement components 𝑢1 and 𝑢3 are related to the 

non- dimensional potential functions 𝜙 and 𝜓 as: 

𝑢1 =
𝜕𝜙

𝜕𝑥1
−

𝜕𝜓

𝜕𝑥3
  ,    𝑢3 =

𝜕𝜙

𝜕𝑥3
+

𝜕𝜓

𝜕𝑥1
  (19)                   

Substituting the values of 𝑢1and𝑢3 from (19) in (14)-(18) and 

with the aid of (12), we obtain:  

∇2𝜙 − �̈� − (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇 − 𝑎4 (1 + 𝜏1 𝜕

𝜕𝑡
) 𝐶 = 0,       (20) 

 ∇4𝜙 + 𝑎9 (1 + 𝜏1
𝜕

𝜕𝑡
) ∇2𝑇+𝑎10 (1 + 𝜖𝜏0 𝜕

𝜕𝑡
) �̇� −

𝑎11 (1 + 𝜏1 𝜕

𝜕𝑡
) ∇2𝐶 = 0,   (21)                 

(1 + 𝜏0
𝜕

𝜕𝑡
) �̇� + 𝑎5 (

𝜕

𝜕𝑡
+ 𝜀𝜏0

𝜕2

𝜕𝑡2
) ∇2𝜙 + 𝑎8 (

𝜕

𝜕𝑡
+ 𝛾1

𝜕2

𝜕𝑡2
) 𝐶 −

∇2𝑇 = 𝑄0𝑓∗(𝑥1, 𝑡)𝑒−𝛾∗𝑥3,           (22)     

𝑎2∇2𝜓 − �̈� + 𝑎3𝜙2 = 0, (23)∇2𝜙2 − 2𝑎6𝜙2 − 𝑎6∇2ψ =

𝑎7�̈�2 ,     (24)     

III. SOLUTION OF THE PROBLEM 

We define Laplace transform and Fourier transform 

respectively as:  

𝑓̅(𝑠, 𝑥1, 𝑥3) = ∫ 𝑓(𝑡, 𝑥1, 𝑥3)𝑒−𝑠𝑡𝑑𝑡
∞

0
 ,                 (25)                                                                                           

  

𝑓(𝑥3, 𝜉, 𝑠) = ∫ 𝑓̅(𝑠, 𝑥1, 𝑥3)𝑒𝜄𝜉𝑥1𝑑𝑥1
∞

−∞
 ,(26)                                                                  

Applying Laplace transform defined by (25) on (20)-(24) and 
then applying Fourier transforms defined by (26) on the 

resulting quantities and eliminating�̂�&�̂� , �̂�&�̂� ,�̂�&�̂� and �̂�2  
respectively from the resulting equations, we obtain: 
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[𝐷6 + 𝐴𝐷4 + 𝐵𝐷2 + 𝐶]�̂� = 𝑓1𝑒−𝛾∗𝑥3                         (27) 
      

[𝐷6 + 𝐴𝐷4 + 𝐵𝐷2 + 𝐶]�̂� = 𝑓2𝑒−𝛾∗𝑥3                       (28) 
       

[𝐷6 + 𝐴𝐷4 + 𝐵𝐷2 + 𝐶]�̂� = 𝑓3𝑒−𝛾∗𝑥3                       (29) 
       

[𝐷4 + 𝐸𝐷2 + 𝐹]�̂� = 0 ,                                   (30) 
       

where 

𝐴 = −
(𝑎34𝑎37 + 𝑎35 + 𝑎40 + 𝑎36𝑎42)

𝑎39 

, 𝐵

= −
(𝑎34(𝑎38 − 𝑎37𝜉2) + 𝑎36𝑎43 − 𝑎40 − 𝑎41)

𝑎39 

, 𝐶

= −(−𝑎34𝑎38𝜉2 + 𝑎41𝑎35 + 𝑎36𝑎44)/𝑎39  , 𝐸 =
𝑎31

𝑎2

, 𝐹

=
𝑎32

𝑎2

, 𝜏11 = (1 + 𝜏1𝑠), 𝜉1 = 𝜉2 + 𝑠2, 𝑓1

= 𝑄1(𝑎37𝛾∗2 + 𝑎38)/𝑎39 , 

𝑓2 = 𝑄1(𝑎39𝛾∗4 − 𝑎40𝛾∗2 + 𝑎41)/𝑎39 , 𝑓3

= 𝑄1(𝑎42𝛾∗4 + 𝑎43𝛾∗2 + 𝑎44)/𝑎39 , 𝑓4

= [𝛾∗6 + 𝐴𝛾∗4 + 𝐵𝛾∗2 + 𝐶] 
 

 

and 

𝑎12 = 𝑎9𝜏11 , 𝑎13 = 𝑎10(𝑠 + 𝜀𝑠2𝜏0) , 𝑎14 = 𝑎11(1 + 𝜏1𝑠) , 𝑎15

= 𝑎4(𝑠 + 𝜀𝑠2𝜏0) , 𝑎16 = 𝑠 + 𝜉2 + 𝑠2𝜏0, 𝑎17

= 𝑎8(𝑠 + 𝛾1𝑠2) , 𝑎18 = 𝜉2 + 2𝑎6 + 𝑠2𝑎7 , 
 

The solutions of the equations (27)-(30) satisfying the 

radiation conditions that (�̂�, 𝜙 ∗̂, �̂�, 𝜙2̂ , �̂�) → 0 as 𝑥3 → ∞ are 

given by: 

�̂� = 𝐵1𝑒−𝑚1𝑥3 + 𝐵2𝑒−𝑚2𝑥3 + 𝐵3𝑒−𝑚3𝑥3 + 𝐿1𝑒−𝛾∗𝑥3 (31) 

    �̂� = 𝑑1𝐵1𝑒−𝑚1𝑥3 +
𝑑2𝐵2𝑒−𝑚2𝑥3 + 𝑑3𝐵3𝑒−𝑚3𝑥3 + 𝐿2𝑒−𝛾∗𝑥3     .                                                                                             
(32) 

�̂� = 𝑒1𝐵1𝑒−𝑚1𝑥3 + 𝑒2𝐵2𝑒−𝑚2𝑥3 + 𝑒3𝐵3𝑒−𝑚3𝑥3 + 𝐿3𝑒−𝛾∗𝑥3 .                                                                                            
(33)                                  

�̂� = 𝐵4𝑒−𝑚4𝑥3 + 𝐵5𝑒−𝑚5𝑥3(34)  

𝜙2̂ = ℎ4𝐵4𝑒−𝑚4𝑥3 + ℎ5𝐵5𝑒−𝑚5𝑥3(35)                      

where 

𝑑𝑖 =
𝑎39𝑚𝑖

4 − 𝑎40𝑚𝑖
2 + 𝑎41

𝑎37𝑚𝑖
2 + 𝑎38

, 𝑒𝑖 =
𝑎42𝑚𝑖

4 + 𝑎48𝑚𝑖
2 + 𝑎44

𝑎37𝑚𝑖
2 + 𝑎38

 ,

𝑖 = 1,2,3 

&ℎ𝑖 =
𝑎2(𝑚𝑖

2−𝜉1)

𝑎3
 , 𝑖 = 5,6 

𝐿𝑖 =
𝑓𝑖

[𝑚𝑖
6+𝐴𝑚𝑖

4+𝐵𝑚𝑖
2+𝐶]

, 𝑖 = 1,2,3 

and 𝑚𝑖
2(𝑖 = 1,2,3) are the roots of the characteristic equation 

of equation (27) and 𝑚𝑖
2(𝑖 = 4,5) are the roots of the 

characteristic equation of equation (30). 

IV.BOUNDARY CONDITIONS 

We consider concentrated normal force and concentrated 

thermal source at the boundary surface𝑥3 = 0, 

mathematically, these can be written as: 

 

𝑡33 = −𝐹1𝜓1(𝑥1)𝛿(𝑡),,  

𝑡31 = 0,  

𝑚32 = 0, 

𝑇 = 𝐹2𝜓1(𝑥1)𝛿(𝑡) , 

𝐶 = 𝐹3𝜓1(𝑥1)𝛿(𝑡)                                                   (36)  

  

where 𝐹1 is the magnitude of the applied force and 𝐹2 is the 
constant temperature applied on the boundary.      

 

 

Also  

𝑡33 = 𝜆𝑒 + (2𝜇 + 𝐾)𝑢3,3 − 𝛽1 (1 + 𝜏1

𝜕

𝜕𝑡
) 𝑇

− 𝛽2 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝐶 

𝑡31 = (2𝜇 + 𝐾)𝑢3,1 − 𝐾𝜙2  

𝑚32 = 𝛽𝜙2,3(37) 

 

Substituting the values of �̂�, 𝜙 ∗̂, 𝑇,̂ �̂�, 𝜙2̂ from the equations 
(31)-(35) in the boundary condition (36) and using (5)-(11), 

(12)-(13), (25)-(26) and solving the resulting equations, we 

obtain: 

 

𝑡33̂ = ∑ 𝐺1𝑖𝑒
−𝑚𝑖𝑥35

𝑖=1 − 𝑀1𝑒−𝛾∗𝑥3, 𝑖 = 1,2, … ,5 (38) 

      

𝑡31̂ = ∑ 𝐺2𝑖𝑒
−𝑚𝑖𝑥35

𝑖=1 − 𝑀2𝑒−𝛾∗𝑥3, 𝑖 = 1,2, … ,5 (39) 

      

𝑚32̂ = ∑ 𝐺3𝑖𝑒
−𝑚𝑖𝑥35

𝑖=1 − 𝑀3𝑒−𝛾∗𝑥3, 𝑖 = 1,2, … ,5(40)  

   

�̂� = ∑ 𝐺4𝑖𝑒
−𝑚𝑖𝑥3 − 𝑀4𝑒−𝛾∗𝑥35

𝑖=1 , 𝑖 = 1,2, … ,5        (41) 

     

�̂� = ∑ 𝐺5𝑖𝑒
−𝑚𝑖𝑥35

𝑖=1 − 𝑀5𝑒−𝛾∗𝑥3 , 𝑖 = 1,2, … ,5 (42)  

where 

𝐺𝑚𝑖 = 𝑔𝑚𝑖𝐶𝑖  , 𝐶𝑖 =
∆𝑖

∆0
,  𝑖 = 1,2, … ,5 

𝑔1𝑖 = (𝑚𝑖
2 − 𝑏2𝜉2) − (1 + 𝜏1𝑠)𝛼1𝑖 − 𝑏11𝛼2𝑖(1 + 𝜏1𝑠) 

𝑔2𝑖 = (𝑏5 + 𝑏6)𝜄𝜉  ,𝑔3𝑖 = 0  , 𝑔4𝑖 = 𝛼𝑖, 𝑔5𝑖 = 𝑚𝑖𝛽𝑖 ,    𝑖 =

1,2,3 
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𝑔1𝑙 = −𝜄𝜉𝑏3𝑚𝑙 ,𝑔2𝑙 = (𝑏6𝑚𝑙
2 + 𝑏5𝜉2) − 𝑏7𝛼3𝑙, 𝑔3𝑙 =

−𝑏8𝑚𝑙𝛼3𝑙 , 𝑔4𝑙 = 0, 𝑔5𝑙 = 0, 𝑙 = 4,5 

∆0= |
|

𝑔11 𝑔12 𝑔13 𝑔14 𝑔15

𝑔21 𝑔22 𝑔23 𝑔24 𝑔25

𝑔31 𝑔32 𝑔33 𝑔34 𝑔35

𝑔41 𝑔42 𝑔43 𝑔44 𝑔45

𝑔51 𝑔51 𝑔51 𝑔51 𝑔51

|
|, 

∆1, ∆2, ∆3, ∆4&∆5 are obtained by replacing 1st ,2nd ,3rd ,4th and 

5th columns by 

[(𝑀1 + 𝐹1𝜓1̂(𝑠)) , 𝑀2 , 𝑀3 , (𝑀4 − 𝐹1𝜓1̂(𝑠)) , 𝑀5]
′

 in∆0 

and 

𝑀1 = − (
(𝛾∗2

−𝑏2𝜉2)𝑓1−(1+𝜏1𝑠)𝑓2−𝑏11(1+𝜏1𝑠)𝑓3

𝑓4
), 

𝑀2 = −
(𝑏5+𝑏6)𝜄𝜉𝛾∗𝑓1

𝑓4
,𝑀3 = 0, 𝑀4 = −

𝛾∗𝑓2

𝑓4
 , 𝑀5 = −

𝛾∗𝑓3

𝑓4
 

 

Case 1: for the thermal source:𝐹1 = 0 

Case 2: for the normal source:𝐹2 = 0 

V.APPLICATIONS 

(a) Uniformly distributed source: 

The solution due to uniformly distributed force 

applied on the half-space is obtained by setting 

𝜓1(𝑥1) = {
1, |𝑥1| ≤ 𝑑

0, |𝑥1| > 𝑑
                   (43) 

Applying Laplace and Fourier transforms on 

(4.7), gives 

𝜓1̂(𝜉) =
2 𝑠𝑖𝑛(𝜉𝑑)

𝜉
, 𝜉 ≠ 0         (44) 

(b) Linearly distributed source: 

The solution due to linearly distributed force over a 

strip of non-dimensional width 2d, applied on the 

half-space is obtained by setting 

𝜓1(𝑥1) = {
1 −

|𝑥1|

𝑑
, |𝑥1| ≤ 𝑑

0, |𝑥1| > 𝑑
     (45) 

Applying Laplace and Fourier transforms on 

(4.7), gives 

𝜓1̂(𝜉) =
2 (1−𝑐𝑜𝑠(𝜉𝑑))

𝜉2𝑑
, 𝜉 ≠ 0(46) 

Particular cases 

(i) If we take 𝜏1 = 𝜏1 = 0,   𝜀 =  1 , in Eqs. (38)- (42), 

we obtain the corresponding expressions of stresses, 

displacements and temperature distribution for micro 

stretch thermo elastic half space with one relaxation 

time. 

(ii) If we take 𝜀 =  0  in Eqs. (38)- (42), the corresponding 

expressions of stresses, displacements and temperature 

distribution are obtained for micro stretch thermo 

elastic half space with two relaxation times. 

(iii) Taking  𝜏0 = 𝜏1 = 𝜏0 =  𝜏1 = 0 in Eqs. (38)- (42), yield 

the corresponding expressions of stresses, displacements 

and temperature distribution for micro stretch coupled 

thermo elastic half space. 

Special case 

Micropolar Thermoelastic Solid:In absence of mass 

diffusion effect in Equations (38)- (42), we obtain the 

corresponding expressions of stresses, displacements and 

temperature for micropolar generalized thermoelastic half 

space. 

Inversion of the transforms 
The transformed displacements, stresses and 

temperature changes are functions of the parameters of 

Laplace and Fourier transforms 𝑠 and 𝜉 respectively and hence 

these are of the form 𝑓(𝑠, 𝜉, 𝑧) . To obtain the solution of the 
problem in the physical domain, we must invert the Laplace 

and Fourier transform by using the method applied by Kumar 

(2005). 

 

VI.NUMERICAL RESULTS AND DISCUSSIONS 

The analysis is conducted for a magnesium crystal-like 
material. For numerical computations, following Eringen 

(1999), the values of physical constants are: 

𝜆 = 9.4 × 1010Nm−2, 𝜇 = 4.0 × 1010Nm−2, 𝐾 = 1.0 ×
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1016Nm−2, 𝜌 = 1.74 × 103Kgm−3, 𝑗 = 0.2 × 10−19m2,    𝛾 =
0.779 × 10−9N , 

Following Dhaliwal (1983) thermal and diffusion parameters 

are given by: 

𝑐∗ = 1.04 × 103JKg−1K−1, 𝐾∗ = 1.7 × 106Jm−1s−1K−1,
𝛼𝑡1 = 2.33 × 10−5K−1, 𝛼𝑐1

= 2.48 × 1010K−1,    𝑇0 = 298K,    𝜏0

= 0.02,    𝜏1 = 0.01, 𝛼𝑐1

= 2.65 × 10−4m3Kg−1,
𝑎 = 2.9 × 104m2s−2K−1, 𝑏
= 32 × 105Kg−1m5s−2,    𝜏1 = 0.04,    𝜏0

= 0.03,    𝐷 = 0.85 × 10−8Kgm−3s 

A comparison of the dimensionless form of the field 
variables for the cases of micro polar mass diffusion thermo 

elastic medium (MPMD) and micro polar thermo elastic 

medium (MP) for two different values of time t (t=.01 and 

t=.02), subjected to linearly distributed source is shown in 

Figures 1-5. The values of all physical quantities for all cases 

are shown in the range 0 ≤ 𝑥1 ≤ 2. 

 Solid lines, dash lines corresponds to micro polar 

thermo elastic mass diffusion medium (MPMDT1) for t 

=0.01andmicropolar thermo elastic mass diffusion medium 

(MPMDT2) fort=0.02 respectively. 
 Solid lines with central symbol & dash line with 

central symbol corresponds to micro polar thermo elastic 

(MPT1 and MPT2) for t=.01 and t=.02 respectively. 

 

Linearly distributed normal force:   

 

  Fig. 1 shows the variation of normal stress 𝑡33 with 

the distance 𝑥1. It is noticed that for MPMDT1 and 

MPMDT2, 𝑡33 show similar behavior. The value of normal 

stress monotonically increases as 𝑥1 and then oscillates. The 

value of  𝑡33 increases near the application of the normal force 

due to the mass diffusion effect and then remain oscillating for 

all values of 𝑥1. 

Fig. 2 displays the variation of tangential stress 𝑡31 

with the distance𝑥1. It is noticed that initially the behavior of 

𝑡31 for MPMDT1 and MPT1 show variable trend but for 

MPMDT1, MPMDT2 and MPT1, MPT2 exhibits similar 

behavior. 𝑡31 Initially decrease monotonically for all the cases. 

The variation in tangential stress in micropolar thermoelastic 

is more than that of micropolar thermoelastic with mass 

diffusion. 

Fig. 3 shows the variation of couple tangential stress 

𝑚32 with distance𝑥1 . The behavior and variation of 𝑚32 for 

MPMDT1, MPMDT2, MPT1 and MPT2 remain similar to 

each other for all values of 𝑥1. The magnitude of couple 

tangential stress in micropolar thermoelastic with mass 
diffusion is more than that of micropolar thermoelastic 

 Fig. 4 depicts the variation of temperature 𝑇 with 

distance 𝑥1. The trend and variation of 𝑇 is similar in case of 

MPMDT1, MPMDT2 and MPT1 initially. For these curves 

the initial behavior is monotonically decreasing and oscillator 

away from the point of application of normal force. MPT2 

show opposite trend initially. 

 Fig. 5 displays the variation of mass concentration 𝐶 

with distance𝑥1. For MPMDT1 and MPMDT2 the graphs are 
similar. Initially the trend is decreasing. After some oscillatory 

behavior mass concentration approaches to the boundary 

surface away from the application of force. 

 

 
           Fig. 1. Variation of normal stress with 𝑥1 

0 0.4 0.8 1.2 1.6 2
x1

-5

-4

-3

-2

-1

0

1

2

3
t 3

3

MPMDT1

MPMDT2

MPT1

MPT2



        International Journal of Engineering Applied Sciences and Technology, 2016 
                                     Vol. 1, Issue 2, ISSN No. 2455-2143, Pages 1-9 

                 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com) 

7 

 

 
Fig. 2. Variation of tangential stress with 𝑥1 
 

 

 
         Fig. 3. Variation of couple tangential stress with 𝑥1 

 
 Fig. 4. Variation of temperature distribution with 𝑥1 

 

 

 
 Fig. 5. Variation of mass concentration with 𝑥1 

 

VII.CONCLUSION 

 

The problem consists of investigating displacement 
components, scalar mass concentration, temperature 

distribution and stress components in a homogeneous isotropic 

micropolar mass diffusion thermoelastic half space due to 

various sources subjected to laser pulse. Integral transform 

technique is employed to express the results 

mathematically.Theoretically obtained field variables are also 
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exemplified through a specific model to present the results in 

the transformed domain. 

The analysis of results permits some concluding remarks: 

(1) It is clear from the figures that all the field variables have 

nonzero values only in the bounded region of space indicating 

that all the results are in agreement with the generalized theory 

of thermo elasticity. 

(2) The effect of the mass concentration is much pronounced 
in all the resulting quantities. 

(3) It is noticed that the figures that the time 𝑡 plays a 

significant role in all the field quantities. Changes inthe value 

of time 𝑡 cause significant changes in all the simulated 

resulting quantities. 

(4) It can be easily concluded from the figures that the curves 

for various stresses in case of micro polar mass diffusion solid 

show similar trends. 

(5) The variation of mass concentration differs significantly 

due to the presence of normal force and due to the presence of 
thermal source. 

(6) Tangential stress, couple stress and temperature change are 

also affected due to diffusion effect as well as load/source 

applied. 

The new model is employed in a micro polar mass 

diffusion thermo elastic medium as a new improvement in the 

field of thermo elasticity. The subject becomes more 

interesting due to irradiation of a laser pulse with an extensive 

short duration or a very high heat flux has found numerous 

applications. The method used in this article is applicable to a 

wide range of problems in thermodynamics. By the obtained 

results, it is expected that the present model of equations will 
serve as more realistic and will provide motivation to 

investigate micro stretch generalized thermo elasticity 

problems regarding laser pulse heat with high heat flux and/or 

short time duration. 
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