

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

101

NEWGENMAX: A NOVEL ALGORITHM FOR

MINING MAXIMAL FREQUENT ITEMSETS

USING THE CONCEPT OF SUBSET CHECKING

Shalini Bhaskar Bajaj

Department of Computer Science and Engineering
Amity University Haryana

Abstract— Frequent itemset identification from a given

dataset is an important research area. For finding frequent

itemsets use of closed/maximal frequent itemsets is

proposed in the literature as the memory required to store

closed/maximal frequent itemsets is less. In this paper an

effort has been made for finding maximal frequent itemsets

in place of frequent itemsets. The proposed algorithm

NewGenMax finds maximal frequent itemsets in order to

save memory space in a reduced time from the list of local

maximal frequent itemset list. NewGenMax algorithm is

compared to GenMax algorithm in terms of the number of

iterations required and the execution time. In order to

verify the supremacy of the proposed algorithm

NewGenMax over the existing algorithm GenMax the

experiments have been performed on both synthetic and

real datasets. The results obtained are encouraging.

Keywords—prefix tree, maximal frequent itemsets,

transactions, support

I. INTRODUCTION

Mining is the process of extracting valid, previously unknown,

comprehensible and actionable information from large

databases and using it to make crucial business decision.

Association rule mining is a type of mining used to identify

certain kinds of association among the items in the database.

Frequent itemset mining [2, 3, 6, 7, 8] and rule generation [16]

are the two subtasks of association rule mining. Mining of

frequent itemsets is a fundamental and essential need in many

data mining applications such as the discovery of association

rules, strong rules, correlations, multidimensional patterns, and

many other important discovery tasks, etc. Many applications
like inductive databases and query expansion require fast

implementations of frequent itemset mining. Most of the

approaches for frequent itemset mining enumerate candidate

itemsets, determine their support and prune candidates that fail

to reach the user-specified minimum support. These approaches

often results in generating a large number of frequent itemsets

that takes more memory space. Candidate generation-and-test

methodology or the Apriori technique is the base technique of

frequent itemset mining algorithms.

In order to reduce the memory space requirement, maximal

frequent itemsets are identified. Maximal frequent itemsets are

those frequent itemsets which do not have any subset in the
frequent itemset list and they store information about all

frequent itemsets in a precise manner. Mining of frequent

patterns is a basic problem in data mining. Most of the frequent

itemset mining algorithms work by checking the superset for

each itemset. This takes more memory space and is time

consuming. The objective of the paper is to propose an

algorithm that can save memory space by reducing the number

of iterations identified while generating maximal frequent

patterns from the list of local maximal frequent itemsets.

II. BASIC DEFINITIONS AND RELATED EXISTING WORK

Before discussing the proposed algorithm it is important to get

familiarized with the basic terminology:

Association Rule Mining: Association Rule Mining is a popular
and well researched method for discovering interesting

relations between variables in large databases. The task of

mining association rules consists of two steps which involves

finding the set of all frequent itemsets followed by testing and

generating all high confidence rules among these itemsets.

Itemset, I: An itemset is the set of m items {i1, i2… im}, where

m=0, 1, 2, 3, …

Closed Itemset: An itemset is said to be closed if there does not

exist any superset that has the same support.

Database, D: It denotes a database of transactions where each

transaction has a unique identifier (tid) and contains a set of

items (itemsets).

Tidset, T: The set of all transaction identifiers, tids is denoted

by T = {t1, t2, …, tm}.

The set t (X) T, consists of all the transaction identifiers
which contain X as a subset is called the tidset of X.

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

102

K-itemset: An itemset with k items is called a k-itemset.

Example: {A, C, D, T, W} represents a list of 1-itemset or F1

and {AC, CD, AD} denotes a list of a 2-itemset or F2.

Support, σ(X): The number of transactions in which an itemset

X occurs as a subset is termed as support. Thus, σ (X) = |t (X)|

Minimum Support, min_sup: Minimum support is the

predefined threshold support value by the user.

Frequent Itemset, FI: An itemset X is frequent if its support

value is more than or equal to the min_sup value, i.e. σ(X) >=

min_sup. Therefore, a frequent itemset is the one that occurs in

at least a user-specified percentage of the database. Here, Fk
denotes the set of frequent k-itemsets.

Local Maximal Frequent Itemset, LMFI: This list of local

maximal frequent itemsets contains those maximal frequent

itemsets that can potentially be the superset of candidates that

are to be generated from the itemset.

Maximal Frequent Itemset, MFI: A frequent itemset is said

to be maximal, if it is not a subset of any other frequent itemset,

|MFI| << |FI|. These are those frequent itemsets which do not

have a frequent superset in the LMFI list.

Frequent itemset mining is the most researched field of

frequent pattern mining. Many algorithms use frequent itemset
to identify the maximal frequent itemset. The original problem

was to discover association rules, where the main step was to

find maximum frequently occurring itemsets. Among all the

frequent itemset mining algorithms, the majority of them claims

to be efficient and follow the anti-monotone property, i.e. if a

pattern is found to be frequent then all of its non-empty subsets

will be frequent. In other words, if a pattern or itemset is not

frequent, then none of its supersets can be frequent.

2.1 Overview of Existing Algorithms

The candidate generation-and-test methodology, called the

Apriori [2] technique was the first technique to compute

frequent patterns based on the anti-monotone property.

MaxMiner [3] employs a breadth-first traversal of the search

space and it reduces database scanning by employing a look

ahead pruning strategy. FP-growth [10] uses an extended FP-

tree [12] structure to store the database in compressed form.

DepthProject [1] finds large itemsets by using depth first search

on a lexicographic tree of itemsets. Mafia [5] uses three pruning

strategies to remove non-maximal sets. Prefix-tree [13] or Trie
[4] structure, known as an FP-tree is used for storing

compressed information about frequent itemsets and

implemented to mine frequent itemsets. DCI-Closed [11]

proposes a general technique for promptly detecting and

discarding duplicate closed itemsets, without the need of

keeping in the main memory the whole set of closed patterns.

GenMax [9, 15] uses a new format called diffset for fast

frequency testing and progressive focusing for maximality

checking.

Apriori was proposed by Agrawal et al. in the year 1993.

Many of the proposed itemset mining algorithms are variant of

Apriori [14] which employs a bottom-up, breadth-first search

that enumerates every single frequent itemset. In many

applications especially in dense datasets with long frequent

patterns enumerating all possible 2m−2 subsets of a m-length

pattern is computationally unfeasible.

In the year 1998, Bayardo proposed MaxMiner [3] that

employs a breadth-first traversal of the search space for finding

the maximal frequent itemsets. It quickly narrows the search by

using efficient pruning techniques. It also reduces the database

scanning by employing a look-ahead pruning strategy, i.e. if a

node with all its extensions is determined to be frequent then

there is no need to further process that node. It employs item

(re)ordering heuristic to increase the effectiveness of superset-
frequency pruning.

Han et al. proposed tree based algorithm named FP-Growth

[10] in the year 2000. The FP-tree structure is a compressed

representation of all the transactions in the database. It uses a

recursive divide-and-conquer and database projection approach

to mine long patterns. Since it enumerates all frequent patterns

it is impractical when pattern length is long. The FP-growth

uses this FP-Tree as the basic data structure for a compact

representation of all relevant frequency information of a

database and thus removes the infrequent items. Every branch

of the FP-tree represents a frequent itemset, and the nodes
along the branches are stored in decreasing order of frequency

of the corresponding items, with leaves representing the least

frequent items. FP-growth identifies the support of each and

every item in the transaction and therefore prunes the

infrequent items.

In the same year Agarwal et al. proposed DepthProject

algorithm [1] that finds long itemsets using a depth first search

of a lexicographic tree of item-sets, and uses a counting method

based on transaction projections along its branches. This

projection is equivalent to a horizontal version of the tidsets at a

given node in the search tree. DepthProject also uses the look-

ahead pruning method with item reordering. It returns a
superset of the MFI and would require post-pruning to

eliminate non-maximal patterns.

In the year 2001, Burdick proposed Mafia algorithm [5] that

uses three pruning strategies to remove non-maximal sets. The

first strategy is the look-ahead pruning which was earlier used

in MaxMiner. The second is to check if a new set is subsumed

by an existing maximal set. The last strategy checks if t(X) ⊆

t(Y) where X and Y are the subsets of the existing maximal set.
If so, X is considered together with Y for the extension. Mafia

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

103

uses vertical bit-vector data format and compression of bitmaps

to improve the overall performance. Mafia mines a superset of

the FI, and requires a post pruning step to eliminate non-

maximal patterns.

A fast and memory efficient algorithm DCI-Closed [11]

was proposed by Lucchese et al. in the year 2004 to mine

frequent closed itemsets. The paper proposes a general

technique for promptly detecting and discarding duplicate

closed itemsets, without the need of keeping in the main

memory the whole set of closed patterns. To remove duplicity,
a particular visit of the lattice of frequent sets is used to identify

unique generators of each equivalence class. This algorithm

finds generators and computes their closure. As soon as a

generator is found, its closure is computed and new generators

are built as supersets of the closed itemset discovered so far.

For any closed itemset Y, it is possible to find a sequence of

order preserving generators in order to climb a sequence of

closure itemsets and arrive at Y.

Surprising results of trie-based FIM algorithms [4] proposed

by Ferenc Bodon et al. in the year 2004 were published. Prefix

Tree (Trie) is a popular data structure in FIM algorithms which

is an ordered tree data structure that is used to store an array or
strings over an alphabet and efficiently retrieve words of a

dictionary. It is memory-efficient and allows fast construction

and information retrieval. Many trie-related techniques can be

applied in FIM algorithms to improve efficiency for fast

management. The itemset that is obtained by removing

infrequent items from T is known as the filtered transaction of

T. It is useless to store the same filtered transactions multiple

times. Instead store them once and employ counters which store

the multiplicities. This way the memory is saved and run-time

can be significantly improved. The size of the FP-tree that

stores filtered transactions is declared to be “substantially

smaller than the size of database”. A trie thus stores the same

prefixes only once.

In 2005, GenMax algorithm [9] was proposed by Zali et al.

It utilizes a backtracking search for efficiently enumerating all
maximal patterns. It uses a number of optimizations to quickly

prune away a large portion of the subset search space. It uses a

novel progressive focusing technique to eliminate non-maximal

itemsets, and uses the diffset propagation for fast frequency

checking. It first describes the backtracking paradigm in the

context of enumerating all frequent patterns, and then

subsequently modifies this procedure to enumerate the MFI.

This method for finding the maximal elements include the work

of iteratively attempting to extend a working pattern until

failure by maintaining a candidate set of maximal patterns

which help in reducing the number of database scans, by

eliminating non-maximal sets early. The maximal candidate set

is a superset of the maximal patterns, and in general, the
overhead of maintaining it can be very high. GenMax integrates

pruning with mining and returns the exact MFI. This involves a

list of algorithms and optimizations used during the calculation

of MFI. The optimizations of GenMax contain two steps:

Superset checking optimization: The main efficiency of

GenMax stems from the fact that it eliminates branches that are

subsumed by an already mined maximal pattern.

Frequency testing optimization: GenMax uses a vertical

database format, where we have available for each itemset, its

tidset- the set of all transaction tids where it occurs.

GenMax is illustrated with the help of an example, the

transaction database contains itemsets BDUX, DEX, BDUX,
BDEX, BDEUX, DEU and the minimum support (min_sup)

value is taken to be 3. Consider the backtracking algorithm for

mining all frequent patterns as discussed in GenMax. The main

loop tries to extend Il (which is initially empty {}) with every

item x in the current combine set Cl which initially contains

{B,D,E,U,X}.

The first step is to compute Il+1, which is simply Il {}

extended with x{B}. The second step is to extract the new

possible set of extensions, Pl+1,{D,E,U,X} which consists only

of items y in Cl that follow x. The third step is to create a new

combine set for the next pass, consisting of valid extensions.
An extension is valid if the resulting itemset is frequent. The

combine set, Cl+1, {D,U,X}thus consists of those items in the

possible set that produce a frequent itemset when used to

extend Il+1 Any item not in the combine set {E} refers to a

pruned subtree. The final step is to recursively call the

backtrack routine for each extension. So, the prefix tree

obtained is:

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

104

Figure 2.1: Prefix tree generated at minimum support equal to 3

The Figure 2.7 shows the prefix tree where the circled items

represent the infrequent itemsets, which were pruned away from

the tree. It returns the LMFI list as BDUX, BDX, BUX, BX,

DEX, DUX, DX, EX, UX, X which is shown with the crossed

lines, as the largest frequent itemset in every branch of the tree.

The iterations identified while generating the MFI list from

the LMFI list using GenMax Algorithm are:

LMFI={BDUX, BDX, BUX, BX, DEX, DUX, DX, EX, UX, X}

LMFI={BDUX, BDX, BUX, BX, DEX, DUX, DX, EX, UX, X}

LMFI={ BDUX, BUX, BX,DEX, DUX, DX, EX, UX, X}

LMFI={ BDUX, BX, DEX, DUX, DX, EX, UX, X}

LMFI={ BDUX,DEX, DUX, DX, EX, UX, X}

LMFI={ BDUX,DEX, DX, EX, UX, X}

LMFI={ BDUX, DEX, EX,UX, X}

LMFI={ BDUX, DEX, UX, X}

LMFI={ BDUX, DEX, X}

LMFI={ BDUX, DEX }

Hence, MFI = { BDUX, DEX} can be obtained in 10 steps

for the given example.

III. PROPOSED ALGORITHM

This section discusses the proposed algorithm, NewGenMax

that improves the efficiency for mining MFI. The proposed

algorithm tries to overcome the shortcomings of the GenMax

algorithm by introducing the concept of subset checking. With

the increase in the size of LMFI (Local Maximal Frequent

Itemsets) list in GenMax, the time for checking superset

increases and at the same time the size of prefix tree grows
larger. Thus making excess memory utilization and also takes

more steps which is not satisfactory.

3.1 NewGenMax Algorithm

NewGenMax assumes the input dataset to be in the vertical

tidset format. For reducing the number of intermediate steps or

iterations, following steps must be followed:

(i) Sort the LMFI in decreasing order of length of

itemsets.

(ii) For each itemset Ii in LMFI.

(iii) Generate all possible subsets of Ii and store it in S.

(iv) Take the set difference of set LMFI with S and

store it as LMFI.

(v) Return MFI=LMFI

The working of the proposed algorithm is discussed in Figure

3.1 where the input parameter Transaction denotes the dataset of

transactions and min_sup defines the user predefined threshold

support value.

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

105

void NewGenMax (Transaction, min_sup){

for (each transaction){

 string st=read_file() //File read

 sym_list = check_symbol(st)

//let sym_list stores the list of symbols obtained from function

check_symbol

} // for loop closed

LMFI= tree () //returns LMFI list by using symbol list

LMFI = createMFI()

//update LMFI list and return LMFI = MFI

} //main loop closed

Figure 3.1: Algorithm for NewGenMax

In NewGenMax three pointer structures are maintained,

*transaction point towards the transaction list, *fi points to the

frequent item list obtained and *symbol points to the symbol list

obtained from the transaction database. Each structure uses cur,

front and prev to point the current, front and previous position

value of the list.

Initially, the input transaction database file is read where

each line of database represents a distinct transaction.

Transaction is taken in the form of a string and then the function

checksymbol() is called for each transaction string. Figure 3.2
describes function checksymbol() that check for the symbols

occuring in all transactions using function insert_symbol() for

the length of itemlist and results in a sorted symbol list denoted

by sym_list.

check_symbol (char * S){

for (length of itemlist in each transaction){

 insert_symbol (S)

} //for loop closed

} //main loop closed

Figure 3.2: Function check_symbol()

The function insert_symbol () shown in Figure 3.3 sorts the
symbol list which is returned as an output of function

check_symbol().

 insert_symbol (char *s){

for (i= 0 to length of sym_list){

 if s is there in sym_list then break

 else insert s at position i in the sym_list

} //for loop closed

} //main loop closed

Figure 3.3: Function insert_symbol()

The function tree() shown in Figure 3.4 check all the

branches of a tree for all the symbols obtained through

check_symbol().

tree(){

for(i=sym_list){

 for(j= sym_list){

 Check(for each sym_list value from position i ,j)

 //returns LMFI list

} // inner for loop closed

} //outer for loop closed

} //function closed

Figure 3.4: Function tree()

Function Check () takes the input symbol list as shown in

Figure 3.4 and prunes the infrequent subtrees from every branch

of the prefix tree depending upon the min_sup value as defined

in Figure 3.5 and returns the list of local maximal frequent

itemsets list.

int Check(char *string,int val){

 strcpy(symbol_string,each value of sym_list));

{

if((strcmp(string,symbol_string)==0)and(Count(string,val)==1))

then send(string) //adds string to the LMFI list

 else if(Count(string,val)==1){

 for(c=val+1 to length of symbol)

 //traverses for all the subtrees

 strcpy(st,ADD(string,val))

 if(Check(st,c)==1){

 adds the char to sym_list

 } //while closed

 } //for closed

 } //if closed

} //main loop closed

Figure 3.5: Function Check()

Function Count() used in Figure 3.5 returns 1 if the string

passed is frequent else it return 0. The function createMFI()

discussed in Figure 3.6 generates the MFI list from the LMFI

list.

createMFI(){

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

106

t=0; start: for(each i=length of frequent item){

for(each j=1+length of frequent item)

 if(t==i) increment t

if(the itemset at position i contains the itemset at position j)

then delete itemset at position j and goto start

 }}

Figure 3.6: Function createMFI()

3.2 An example to illustrate working of NewGenMax

Algorithm

To illustrate the proposed algorithm, consider an example

database given in Table 3.1. Each transaction is traversed with

the help of function check_symbol() shown in Figure 3.2 that

results in a list containing all the distinct symbols occurred in the

transaction database in a sorted manner.

Table 3.1: Transactional Database

TID Itemsets

1 BDUX

2 DEX

3 BDUX

4 BDEX

TID Itemsets

5 BDEXU

6 DEU

Five different symbols obtained from the given database are

{B, D, E, U, X}. The frequent and maximal frequent itemsets

with their respective itemsize are shown in Table 3.2 at min_sup

value equal to 3.

Table 3.2: Frequent and Maximal Itemset Database

Itemset

Size

Frequent Itemsets min_Sup

= 3

Maximal Itemsets

min_Sup = 3

1 B, D, E, U, X

2 BD, BU, BX, DE, DU, DX,

EX, UX

3 BDU, BDX, BUX, DUX,

DEX

DEX

4 BDUX BDUX

Using the database given in Table 3.1, prefix tree generated

at min_sup equal to 3 is given in Figure 3.7 and at minimum
support equal to 3 is shown in Figure 3.7.

Figure 3.7: Prefix tree generated at mininmum support equal to 3

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

107

In Figure 3.8, circles indicate the maximal frequent

itemsets and the crossed lines shows the infrequent itemsets.

Due to the downward closure property (all subsets of a

frequent itemset must be frequent) the frequent itemsets form

a border (shown by the bold line in Figure 3.8), such that all

frequent itemsets lie above the border, while all infrequent

itemsets lie below it.

The list of local maximal frequent itemsets generated from

the prefix tree contains:

LMFI= {BDUX, BDX, BUX, DEX, DUX, BX, DX, EX, UX,
X}

The proposed algorithm NewGenMax generates less

number of iterations in order to generate MFI from LMFI.

LMFI list is read from left to right. After reading each itemset,

the subsets of the itemset need to be stored in a new list S. Set

difference of list S with the LMFI list results in an updated

LMFI list. The process is repeated till the last itemset of LMFI

is scanned. From the LMFI list given above, the first itemset

identified is BDUX. The subsets list S generated from BDUX

is { {}, B, D, U, X, BD, BU, BX, DU, DX, UX, BDU, BDX,

BUX, DUX, BDUX}. Taking the set difference of LMFI list

with list S, updates the LMFI list to {BDUX, DEX, EX}.

In the similar fashion, the subsets of all the itemsets in the

LMFI list are removed from the LMFI list. This process

continues until the whole LMFI list is scrolled, resulting in

final LMFI list having itemsets {BDUX, DEX}.

Steps generated while converting LMFI list into MFI list

using NewGenMax Algorithm are:

LMFI={BDUX, BDX, BUX, DEX, DUX, BX, DX, EX, UX,

X}

LMFI={BDUX, DEX, EX}

LMFI={BDUX, DEX}

This updated LMFI list is then returned as MFI which can
be obtained in only 3 iterations. Hence, MFI = {BDUX,

DEX}.

IV. PERFORMANCE EVALUATION

In this section, a systematic and realistic set of experiments

were performed to show the performance evaluation of

proposed algorithm over the existing algorithm. Experiments

were performed on an Intel I3 processor with 2GB of memory,

running Ubuntu. Section 4.1 shows the datasets that were used

in the performance evaluation and Section 4.2 refers to the

experiments conducted.

4.1 Datasets Used

Performance of the proposed algorithm has been done with

the existing algorithm on both synthetic and real datasets.

Typically, the real datasets are very dense, i.e. they produce

many long frequent itemsets even for high values of support.

The synthetic datasets were generated using IBM Synthetic

Data Generator. Table 4.1 shows the synthetic datasets

generated along with their nomenclature where T denotes the

approximate number of transactions in the datasets generated,

L denotes average number of items per transaction and N

denotes total number of items in the dataset.

Table 4.1: Datasets taken from IBM Synthetic Data Generator

Dataset Total number

of Transactions

(T)

Average length

of Transactions

(L)

Total number of

distinct Items

(N)

T100L10N10 100 10 10

T100L20N10 100 20 10

T100L30N10 100 30 10

T200L10N10 200 10 10

T200L20N10 200 20 10

T200L30N10 200 30 10

T300L10N10 300 10 10

T300L20N10 300 20 10

T300L30N10 300 30 10

T400L10N10 400 10 10

T400L20N10 400 20 10

T400L30N10 400 30 10

T500L10N10 500 10 10

T500L20N10 500 20 10

T500L30N10 500 30 10

4.2 Results

The performance of the two algorithms, significantly vary

with the two parameters: execution time and the number of

steps identified while generating MFI from LMFI which

further depends upon the dataset characteristics. On the basis

of average length of itemset per transactions, synthetic

datasets were divided into three categories viz. Category A,

Category B and Category C. The average number of items per
transactions in datasets belonging to Category A, Category B

and Category C are 10k, 20k and 30k respectively.

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

108

4.2.1 Synthetic Datasets

Table-4.2, Table-4.3 and Table-4.4 shows the comparison

for the proposed algorithm and existing algorithm on datasets

belonging to Category A, Category B and Category C

respectively. The execution time comprises input file reading

time, time used for the filtering, sorting and recording of
items, time used for sorting of transactions, intersecting time

and output file writing time.

Figure 4.1(a) and Figure 4.1(b) corresponding to Table 4.2,

presents the comparison for execution time and the number of

steps identified while converting LMFI into MFI respectively.

In the similar way, Figure 4.2(a) and Figure 4.2(b) were drawn

for Table 4.3 and Figure 4.3(a) and Figure 4.3(b) were drawn

corresponding to Table 4.4

Table 4.2: Comparison of execution time and number of

iterations required in generating MFI from LMFI for both

NewGenMax and GenMax on datasets belonging to Category A

Category A

Datasets

GenMax NewGenMax

 Execution

Time

No. of

iterations in

generating

MFI from

LMFI

 Execution

Time

No. of

iterations in

generating

MFI from

LMFI

T100L10N10 0.115194 164 0.121289 33

T200L10N10 0.778955 167 0.461328 34

T300L10N10 0.729365 164 0.700329 41

T400L10N10 1.2489 166 0.95662 50

T500L10N10 1.15662 164 1.13839 49

Table 4.3: Comparison of execution time and number of

iterations required in generating MFI from LMFI for both

NewGenMax and GenMax on datasets belonging to Category B

Category B

Datasets

GenMax NewGenMax

 Execution

Time

No. of

iterations in

generating

MFI from

LMFI

 Execution

Time

No. of

iterations in

generating

MFI from

LMFI

T100L20N10 1.13659 1134 0.832613 226

T200L20N10 1.67913 1136 1.66313 227

T300L20N10 2.8432 1124 2.56942 281

T400L20N10 3.76112 1128 3.39873 338

T500L20N10 4.22238 1129 4.2037 339

Table 4.4: Comparison of execution time and number of

iterations required in generating MFI from LMFI for both

NewGenMax and GenMax on datasets belonging to Category C

Category C

Datasets

GenMax NewGenMax

Executio

n Time

No. of iterations

in generating

MFI from

LMFI

 Execution

Time

No. of iterations

in generating

MFI from

LMFI

T100L30N10 1.6092 2358 1.63354 471

T200L30N10 3.7386 2276 3.26916 455

T300L30N10 4.91607 2270 4.84378 567

T400L30N10 6.50973 2278 6.54509 683

T500L30N10 8.20685 2282 8.05916 685

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

109

(a) (b)

Figure 4.1 (a) Execution Time taken by NewGenMax and GenMax on Category A datasets, (b) Number of iterations required in

generating MFI from LMFI by NewGenMax and GenMax on Category A datasets

 (a) (b)

Figure 4.2 (a) Execution Time taken by NewGenMax and GenMax on Category B datasets, (b) Number of iterations required in

generating MFI from LMFI by NewGenMax and GenMax on Category B datasets

0
0.2
0.4
0.6
0.8

1
1.2
1.4

GenMax

NewGenMax

Category A Datasets

E
x
e
c
u
ti
o
n
 T

im
e
 (

in
 s

e
c
.)

Execution time taken by NewGenMax and
GenMax algorithm on Category A datasets

0
20
40
60
80

100
120
140
160
180

GenMax

NewGenMax

Category A Datasets

N
u

m
b

er
 o

f
it

er
at

io
n

s

Comparison of NewGenMax and GenMax algorithm
in terms of number of iterations required in

generating MFI from LMFI on Category A datasets

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

GenMax

NewGenMax

Category B Datasets

E
x
e
c
u
ti
o
n
 T

im
e
 (

in
 s

e
c
.)

Execution time taken by NewGenMax and
GenMax algorithm on Category B datasets

0

200

400

600

800

1000

1200

GenMax

NewGenMax

Category B Datasets

N
u

m
b

er
 o

f
it

er
at

io
n

s

Comparison of NewGenMax and GenMax algorithm
in terms of number of iterations required in

generating MFI from LMFI on Category B datasets

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

110

(a) (b)

Figure 4.3 (a) Execution Time taken by NewGenMax and GenMax on Category C datasets, (b) Number of iterations required in

generating MFI from LMFI by NewGenMax and GenMax on Category C datasets

From these figures, it can be inferred that proposed

algorithm NewGenMax gives better results for all the three

types of synthetic datasets discussed in Table 4.2, Table 4.3

and Table 4.4. From figures, it can also be concluded that
NewGenMax converts LMFI into MFI in less number of

iterations leading to reduced execution time.

4.2.2 Real Datasets

This section gives the performance evaluation of

NewGenMax with GenMax on real datasets. Chess and

mushroom datasets are taken fom the UCI (University of

California, Irvine) Machine Learning Repository, click and

retail datasets are taken from FIMI(Frequent Itemset Mining

Implementation) Repository where the click dataset contains

data related to real time browsing pattern whereas dataset

named retail contains the (anonymized) retail market basket

data from the anonymous Belgian retail store.

Figure 4.4(a) and 4.4(b) corresponding to Table 4.5,

presents the comparison of execution time and the number of
iterations needed to obtain MFI from LMFI respectively.

From these figures, it can be inferred that the proposed

algorithm gives better performance on real datasets than the

existing algorithm.

Table 4.5: Comparison of execution time and number of

iterations required in generating MFI from LMFI for both

NewGenMax and GenMax on Real Datasets

Real

Datasets

GenMax NewGenMax

 Execution

Time

No. of iterations

in generating

MFI from

LMFI

 Execution

Time

No. of iterations

in generating

MFI from

LMFI

Chess 0.0254998 838 0.0144269 168

Click 0.023021 260 0.020721 62

Mushroom 0.016521 758 0.0142591 205

Retail 0.024615 293 0.0173669 88

0
1
2
3
4
5
6
7
8
9

GenMax

NewGenMax

Category C Datasets

E
x
e
c
u
ti
o
n
 T

im
e
 (

in
 s

e
c
.)

Execution time taken by NewGenMax and
GenMax algorithm on Category C datasets

0

500

1000

1500

2000

2500

GenMax

NewGenMax

Category C Datasets
N

u
m

b
er

 o
f

it
er

at
io

n
s

Comparison of NewGenMax and GenMax algorithm
in terms of number of iterations required in

generating MFI from LMFI on Category C datasets

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

111

(a) (b)

Figure 4.4 (a) Execution Time taken by NewGenMax and GenMax on real datasets, (b) Number of iterations required in generating

MFI from LMFI by NewGenMax and GenMax on real datasets

V. APPLICATION AREAS

The proposed frequent itemset mining algorithm can be

applied in the areas of market basket analysis, web log
analysis, cross Marketing, catalog design, product assortment

decisions and intrusion detection System. Section-5.1

discusses Market Basket Analysis in detail.

5.1 Market Basket Analysis (MBA) and Association Rule

mining

MBA is a mathematical modeling technique based upon

the theory that it identifies customers purchasing habits. It
provides insight into the combination of products within a

customer’s 'basket' viz further termed as a transaction. Top

progressive retailers are using the MBA to win margin and

market share that will help them increase their success and

provide them with the edge that they need. As retailing is

becoming a high performance sport, retailers are seeking a

competitive edge through technology. MBA, also known as

affinity analysis, has emerged in the evolution of retail
merchandising and promotion. It allows leading retailers to

quickly and easily look at the size, contents, and value of their

customer’s market basket to understand the patterns in how

products are purchased together and also offers more

advanced capabilities to interact with the transaction data to

discover patterns, affinities and associations. Ultimately, the

purchasing insights provide the potential to create cross sell

propositions:

 Which product combinations are bought like monitor,

central processing unit(CPU), keyboard and mouse

 When they are purchased

Developing this understanding enables businesses to

promote their most profitable products. It can also encourage

customers to buy items that might have otherwise been

overlooked or missed. MBA delivers a list of potentially

interesting products (based on a profile of what other "similar"

customers have ordered). They are seeking to encourage the

purchase of additional items and thereby increase the average
basket value. A major task of talented merchants is to pick the

profit generating items and discard the losing items. This type

of analysis is certainly not the exclusive domain of the

supermarkets. Transaction database in some applications can

be very large. It may be simple enough to sort items by their

profit and make the selection whereas some transaction

database requires sophisticated analysis. For example, Wal-

Mart in Hedberg quoted about 20 million sales transactions

per day.

However, a very important aspect is ignored in market

analysis viz the cross selling effect. There can be items that do
not generate much profit by themselves but they are the

catalysts for the sales of other profitable items. Advanced

implementations of MBA encouraged retailers to drill down

into customer buying patterns over time to precisely target and

0

0.005

0.01

0.015

0.02

0.025

0.03

GenMax

NewGenMax

Real Datasets

E
x
e
c
u
ti
o
n
 T

im
e
 (

in
 s

e
c
.)

Execution time taken by NewGenMax and GenMax
algorithm on real datasets

0
100
200
300
400
500
600
700
800
900

GenMax

NewGenMax

Real Datasets

N
u

m
b

e
r o

f
it

e
ra

ti
o

n
s

Comparison of NewGenMax and GenMax algorithm
in terms of number of iterations required in
generating MFI from LMFI on real datasets

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

112

understand specific combinations of products, departments,

brands, categories and even time of day. A 1% lift in sales or

0.1% improvement in margin, can tip the balance between

success, survival, or failure. But below a retailer’s top line

sales, success requires constant fine tuning of the controls

available to the retail disciplines, such as planning, buying,

advertising, promotions, assortments, site selection, etc.

With an MBA, leading retailers can drive more profitable

advertising and promotions, attract more customers, increase

the value of the market basket, and much more. Leading

practices in the MBA include more profitable advertising and

promotions, more precise targeting of offers, attracting more

traffic into the store, increasing the size and value of the

market basket, testing and learning by using the market place

as a laboratory, determining the magic price point for the

store, matching the inventory to the customer need, etc that

results in the optimized store layout which improves success

across the board.

Usually the transaction dataset format consists of

transaction ID and its corresponding itemsets where the

transaction ID uniquely identifies each transaction and the

item list shows a list of items that were purchased. Most of the

retail shops have a format: Tid < item list >

 In order to convert the market basket format into

NewGenMax input format, consider every product in the

market as an item, each customer’s basket as a transaction and

the set of products within that basket as an itemset. As some

transaction ID is given to each transaction in order to handle

large databases easily , that makes us keeping the transaction

ID instead of transaction name. Similarly, every item name is

replaced with its unique ID like T1 <1, 3, 5> means items with

ID 1, 3 and 5 are contained in transaction 1 that is denoted by

T1. Table 5.1 shows five transactions with their respective

itemsets:

Table 5.1: Format of Retail Shop Database

TID Itemsets

1 1, 3, 5

2 1, 7, 19

3 8, 13, 26, 52

4 2, 5, 13, 16, 28, 40

5 18, 27, 33, 34, 36, 52

VI. CONCLUSIONS

This paper presents a novel algorithm NewGenMax for

finding maximal frequent itemsets. NewGenMax is giving

better performance than the GenMax algorithm. This has been

maded possible by reducing the number of iterations while

converting local maximal frequent itemsets into maximal

frequent itemsets.

In NewGenMax, the procedure of calculating subset for

each itemset in the LMFI list and taking its set difference

results in less number of iterations. Based on our theoretical

and experimental analysis, NewGenMax generates the same

MFI as in GenMax but with the earlier pruning of non-

maximal itemsets, the time for scrolling the whole LMFI list
decreases leading to less memory utilization. Both

NewGenMax and GenMax are implemented and their

performance is evaluated on the basis of execution time and

the number of iterations generated while converting MFI from

LMFI.

VII. REFERENCES

 [1]R. Agrawal, C. Aggarwal, and V. Prasad, “Depth First

Generation of Long Patterns” in ACM SIGKDD

Conference, August 2000.

[2]R. Agrawal, T Imielinski, A Swami, “Mining association

rules between sets of items in large databases” in ACM

SIGMOD Conference, Washington, pp 207–216, 1993.

[3]R. J. Bayardo, “Efficiently mining long patterns from

databases” in ACM SIGMOD Conf., June 1998.

[4]F. Bodon, “Surprising Results of Trie-based FIM

Algorithms” in Proceedings of the IEEE ICDM Workshop

on Frequent Itemset Mining Implementations, FIMI '04 in

Brighton, UK, November 1, 2004, Vol-126.

[5]D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a

maximal frequent itemset algorithm for transactional

databases” in International Conference on Data Engineering,

April, 2001.

[6]B. Chandra, S. Bhaskar, “A Novel Approach for Finding
Frequent Itemsets in Data Stream”, Int. J. Intell. Sys., 28(3),

pp. 217-241, 2013

[7]B. Chandra, S. Bhaskar, “A novel approach for finding

frequent itemmsets in high speed data streams”, FSKD

2011, pp. 40-44

[8] B. Chandra, S. Bhaskar, “Patterned Growth algorithm

using Hub-Averaging without pre-assigned weights”, SMC

2011, pp. 3518-3523

[9]K. Gouda and Mohd. J. Zaki, “Genmax: An Efficient

Algorithm for Mining Maximal Frequent Itemsets”, in IEEE

International Conference on Data Mining and Knowledge

Discovery, vol. 11 Springer Science and Business Media,pp.
1-20,2005.

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113
 Published Online March-April 2017 in IJEAST (http://www.ijeast.com)

113

[10]J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation” in Proceedings of ACM

SIGMOD, pages 1–12, May 2000.

[11]C. Lucchese, S. Orlando and R. Perego, “DCI Closed: A

Fast and Memory Efficient Algorithm to Mine Frequent

Closed Itemsets” in Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementations,

FIMI '04, Vol-126.

[12]G. Grahne, and J. Zhu, “Fast Algorithms for Frequent

Itemset Mining Using FP-Trees” IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, NO. 10, October

2005 1347

[13]G. Grahne and J. Zhu, “Efficiently Using Prefix-trees in

Mining Frequent Itemsets ” in Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining

Implementations, FIMI '03.

[14]W. A. Kosters and W. Pijls, “Apriori, A Depth First

Implementation” in Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementations,

FIMI '03, Vol-90.

[15]C. Sathya and C. Chandrasekar, “Indexed Enhancement

on GenMax Algorithm for Fast and Less Memory Utilized
Pruning of MFI and CFI” in International Journal of

Computer Applications 41(Vol. 16):37-41, New York,

USA, March 2012.

[16]S. B. Bajaj, “ARAS: Efficient generation of Association

Rules Using Antecedent Support, FSKD 2014, pp. 289-294

