International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

PUBG WINNER PLACEMENT PREDICTION
USING ARTIFICIAL NEURAL NETWORK

Madhurya Manjunath Mamulpet
Faculty of Engineering, Environment and Computing, Coventry University
MSc. Data Science and Computational Intelligence (ECT104) Stage 1
Coventry, United Kingdom

Abstract: The main objective is to predict the
placement ranking of the player in PUBG
(Players unknown battlegrounds) using the
player’s position and stats of data. PUBG is a
game that has turned out to be famous in recent
years. For this diversion, the last position is the
most essential marker of the player's capacity.
This task centres on anticipating the last position
and finding ideal techniques of the diversion.
With information from PUBG, we apply a few
Artificial Neural Network techniques including
Deep Learning, light GBM model, and MLP
regression model to make the winner predictions.

Keyword: Deep learning, LGBM, MLP.

I. INTRODUCTION

Player Unknown Battle Grounds is a multiplayer
online battle game i.e. developed by the PUBG
Corporation. This is a game where 100 players fight
or play in battle with each other. Players can choose
to fight alone, with a group of 2 or 4. Although, the
size of the team can be modifiable through featured
engineering. The winner of the game will be the
player that survived or stays alive till the end of the
game. This can be through various strategies such as
killing an opponent using a weapon or surviving by
healing or hiding. There are many tools in a game
that helps the player to kill his enemies like armour,
weapons, healing Kkits, vehicles and many other
resources. The dataset contains five million records
out of which there are 28 features(1). The main
objective is to predict the player winning percentage
based on various aspects such as the number of kills
obtained, survival rates, number of players alive and
many more variables. This is done using an algorithm
the players win percentage will be ranged between 0-
1. These problems are solved through analysing data
and feature extraction technique upon which the
winning percentage depends on.

The techniques used on the player records to analyse
and extract are neural network MLP Regression,
Light GBM, Deep Learning, Tensor flow etc. The

107

accuracy of the model is validated and the result
obtained reached the desired requirement.
This paper is presented in the following order.
o Related work that is researched on the same data
as well as a similar game prediction.
e The methodology used for placement prediction
o Data description with the explanation of their
features
o EDA data analysis
e Experimental Setup the process explanation to
perform validation on data
o Results obtained by the applied methods
e The conclusion of the overall research.
e Ethical, legal and Social Issues
o Bibliography

Il. RELATED WORK

The researchers have used the same data set to
predict the final rank(2). They trained the model on
various techniques such as regression and tree models
which also provided optimal strategy. The model
trained used the linear regression, ridge regression
and LGBM technique the models were tuned and the
5-fold cross was applied to validate the data. LGBM
aggregates the GBDT with GOSS algorithm and
EFB. Mathematically represented as

Vi) = i (d) ni(d)

Equation 1: LGBM Computation formula

1 ((Ex,ﬁ,\, 9+ L_Tn z:.eb, 9!)2 = (E;,e,l, g9+ 1% Er.sﬂr g‘)z)

In particular, there is also a semi-supervised
combination of Gaussian method wused with
generalized k-mean clustering to aggregate informal
information.

The results Obtained with an MAE of 0.0204 which
was ranked 57 in the leader board of the competition.
That also concludes that the LGBM using a learning
rate of 0.05 was faster, lighter and best fit model.

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

MAE on 20% validation set
Raw features
Raw + mean
Raw + mean + sum + max - min
Everything above + match mean + size
Everything above + eross validation

Table 1: Results Obtained

l Linear Regression ‘ Ridge Regression
0.09000 0.08989
0.03736 0.05736
0.04845 0.04845
0.04825 0.04825
0.04812 0.04810

Tight GBI
005654
0.04158
002596
00275
0.0204

Similarly, Researchers have been trying to predict the
winner of the game of football with many data
science and mathematical techniques. This paper (3)
predicts the winning team in the NFL American
football team using neural network deep learning
techniques. According to the game, the team of two
will have a ball that must be put to either side of the
net which is assigned to each of the time the goal is
to predict which team can do it first. They also used
probability technique to see the ranking of each
player with their strength. In this case, they were able
to correctly classify the data with 98% using many to
one method. Also used an LSTM technique
architecture. The data consists of 13 datasets with
130 features in the game. Using the following
methods the researcher has trained and validated the
dataset. The ANN output predicts the instance of
training there can be a classification wrongly
predicted to minimize that a cross entropy is used by
doing this we can apply the back propagation
method. For this model RNN i.e. recurrent Neural
Network with a t-1 output this is helpful for
predicting the NFL-game that helps in knowing
which team often wins. Many to one classification
are used to predict a binary classification. LSTM is
used for dependencies of the long term that is better
than RNN they include batch size, time, features as
components for input format for example time of
steps is determined by the data passed RNN uses k-
folds of 10 to train the data set both RNN and LSTM
use a 4 layer model. All the testing for deep learning
was trained for a 4 layer architecture in deep learning
with a Relu activation function parameter and if
optimizer which has a better performance. The results
obtained from all the models do not have much
difference, However, they have concluded that
LSTM is the best fit compared to any other model
with an accuracy of 63.31% this model is robust and
can outperform for predicting.

Model Optimal parameter
ANN Structure: (2,2,2)
Activation: tanh
Structure: (5,3,5)
Batch size: 1790
Activation: tanh
RNN Structure: (25,25,25)

Batch size: 1790
| Activation: tanh

Accuracy (%) 95% confidence interval
61.73 [0.56, 0.68]

LSTM 6331 [T0.61, 0.66]

| 62.05 [1057, 0.67)

Figure 1: Results obtained

108

I11. METHODOLOGY

i) Light GBM (Gradient Boost Machine)

It’s fast and high-speed Gradient framework with a
new algorithm which is subsided from decision tree
algorithms that divides the data depth or widthwise
instead of leaf wise(4). The LGBM can decrease the
level order by using the same leaf wise algorithm and
results are more effective and improvised that can
boost the current existing algorithm.

0.1

Learning Rate

MN__Estimators 50,250

MNumber of leaf 200

Boosting Tyvpe Ghdt, dart, goss, rf

Table 2: LGBM Parameters

When the model is trained through the deep learning
data is optimised using the Adams learning rate
which is 0.01
The benefits of using this model are
e It is fast in training data and uses less
memory
e Provides better compatibility with large data
e It has improvised the accuracy by using the
gradient boosting algorithm

According to our model, the main objective is to
reduce the function loss which means the MSE i.e.
The mean squared error. Gradient boosting model
helps in minimizing the loss and to find the predicted
value it takes alpha as the learning rate. The best
parameters used for this model is learning rate at 0.3
N estimator with a best of 250 iterations and there is
200 leaf node.

ii) Deep Learning

The neural system is made out of three layers, to be
specific information layer, concealed layer and the
yielding layer. The actuation work is utilized to
locate the weighted contribution of each unit in the
layers. Hyperparameter tuning is done to accomplish
demonstrate enhancement. Utilised Keras library to
enable us to prepare the best model for our
information(5). Deep learning is a neural network
comprising of progressive layers in which each layer
later changes the data into more unique
representation. In deep learning adapting more layers,
means higher learning levels of the model. The
output layer consolidates all the highlights and makes
an assumption. Thus it contrasts from Neural
Network. While straightforward Neural Network
utilizes just a single concealed layer which isn't
reasonable for learning complex highlights, deep

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

learning utilizes various concealed layers to become
familiar with these intricate highlights which may
hazard overfitting. To keep away from this, we use
batch normalization which standardizes and scales
the yield of the enactment at each layer to keep away
from esteems heading off to the limits. This enables
each layer to gain uniquely in contrast to different
layers, and thus abstains from overfitting. It also has
the impact of diminishing the preparation time. We
moreover use dropout at each concealed layer to
abstain from overfitting by overlooking a set measure
of neurons yield at each layer. Thus, deep learning
can be extravagant and requires huge dataset to
prepare itself on.

Layer (type) Output Shape Param #
dense 5 (Densz) (Mone, 512) 22528
batch_normalization 4 (Batch (Mone, 512) 2048
dropout_4 (Dropout) (Mone, 512) a
dense_6 (Dense) (Mone, 256) 131328
batch_normalization 5 (Batch (Mone, 256) 10924
drapout_5 (Dropout) (Mone, 256)]
dense_7 (Dense) (Mone, 128) 32396
batch_normalization 6 (Batch (Mone, 128) 512
dropout_& (Dropout) (Mone, 128) a
dense_B (Dense) (Mone, 1) 129

Total params: 198,465
Trainable params: 188,673
Hon-trainable params: 1,792

Figure 2: Deep learning Model Architecture.

To specify the parameters used in deep learning
model architecture depicted in the above figure. We
set the epoch to 20 i.e. the number of time the data
cycle runs. The higher the number of times the better
improvement in the model and there are 4 hidden
layers on the normalisation of which the optimizer
uses a learning rate of 0.01 and epsilon is used to
reduce the error that prevents from diving by zero,
and decay is the weight used for the optimisation

f(x) = max (0, x)
Equation 2: Deep Learning
Relu Rectified linear unit function that permits the
activation function used for network design in the
hidden layer to input is derived from its domain and
the sigmoidal function for its output.

iii) MLP Regression

Multilayer Perceptron Regression model is similar to
Logistic regression in which the inputs are changed

by a non-linear function(6). MLP is a supervised
learning method which is known as back-propagation
for dataset training through multiple layers and
utilises the nonlinear transformation which differs
from linear perceptron. The data cannot be linearly
separable. The primary objective of non-direct
relapse is to give an estimation of the genuine
parameter on account of perceptions ((x1, y1), -- -,
(in, in)). This model is used for predicting the inputs
when real-value quantity is predicted this should be
possible by limiting the MSE work. The file type is
csv text data for input. According to math in MLP
they are able to approximate an XOR operator with
other non-linear function. Here there is also a
boundary error rate where the data execution
continues no longer than this. This stat is called
convergence.

n
Y= cp(z w;z; + b) = p(wix + b)
i=1
W: weights of vector
X: vector inputs

B: Bias; phi non —linear activation function

Equation 3: MLP Function

IV. DATA DESCRIPTION

Attribute Definition
Player ID Identification number given to each player
Group ID Identification number given to each group

Boosts Total boost items used

Headshot Kills Number of enemies killed by a direct headshot

Kill Assist/Assist Enemy players knocked out that were killed by teammates

Damage Dealt Total damage dealt by the player

o Nfo|u|s|wN|e-

DBNO Total enemies knocked out
Heals no Total healing items used
9 | Kill place ranking Player ranking based on total enemies killed
10 | Kill points Kill based overall ranking of player
11 | Kill streak Total enemies killed by player in a short amount of time
12 | Kills Number of enemy players killed in a game

13 | Longest kill Longest distance between player and enemy killed

14 | Num groups Total groups in a match

15 | Match duration Time duration of a match in seconds

16 | Match Id Identification number given to a match

17 | Match type Type of match (solo,duo,squad,arcade, etc..)

18 | Max place The maximum rank a team player got in the match
19 | Rank points Elo like ranking of player

20 | Revives Number of times a player revives his team mates
21 | Ride distance Total distance covered by riding/driving vehicles
22 | Road-kills Number of enemies killed while driving

23 | Swim distance Total distance covered by swimming

24 | Team kills Total number of teammates killed

25 | Vehicle destroys Total number of vehicles destroyed

26 | Walk distance Total distance covered by walking or running

27 | Weapons acquired | Total number of weapons acquired

28 | Win points Score based on overall ranking of player

29 | Win place perc The winning percentage/probability of the player

Table 3: Data Description

V. DATA ANALYSIS & FEATURE
ENGINEERING

The data analysis pattern can be determined by
knowing the feature usages, this leads us to apply

109

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

EDA Exploratory Data Analysis alludes to the basic
procedure of performing introductory examinations
on data to find patterns, to spot anomalies, to test
speculation and to check presumptions with the
assistance of synopsis measurements and graphical
presentation(7). By analyzing the data we could
generate a new set of a feature from the existing one
that could help in improvising our model. So we find
the total number of players by their match id and
group id, we can find the total distance by combining
the ride distance, swim distance, walking distance
and many more(8). Shown below that contribute to
evaluating the prediction efficiently.

totalPlayers Total Players in the match

Total team memberin a
team

teamSize

Match type like solo,
duo,quad etc.

normMatchType

totalDistance Swim+Ride+Walk Distance

maxPossibleKills Total kills by team

itemsUsed boost+heals+weapon

Figure 3: Feature Engineering

When we look into the data distribution pattern there
are some players who score exactly 0 or 1, the rest
are in between the range. We shall assume that on an
average the winning percentage per match is 0.5
(mean) but this cannot be same for all the matches
which depict on a lower average this happens due to
players quitting the game before it ends. The
correlation that we found between these attributes is
as follows.

10
winPlacePerc
walkDistance 054 040 043 037 041 033
boosts 041 052 054 050 042 041

weaponsAcquired JULN 035 031 03¢ 028 028

damageDealt ossnou LLLN o056 [070 0.6

031

heals

Kills 100 GELH 080

03¢
028 | 056 026 | 060 ESULN 052

028 070N o027 BLEUN 052 EREL] 0
0.2

019 010

longestkill

killstreaks

rideDistance 028 014 030 o1

winPlacePerc
walkDistance
boosts
weaponsAcquired
damageDealt
heals

kills

longestkill
killstreaks
rideDistance

Figure 4: Correlation Matrix
VI. EXPERIMENTAL SETUP

The data is taken from kaggle PUBG prediction
placement competition with nearly five million
datasets out of which 1.3 million datasets are trained
and tested with 29 attributes present the training and
testing validation is split in the ratio of 7:3(9).

110

Jupyter Notebook is used for coding with libraries
such as sci-kit learn, numpy and Keras Tensor flow
Backend is used for hierarchical deep learning
models. Performed on a windows 8 computer. Tensor
flow is used to control structure and it is an open
source by Google. The data frame is iterated through
all the columns of a data frame and the datatype is
altered to reduce the memory usage. The dataset is
loaded from a CSV file. Once this is done we try to
find the Data Distribution pattern and correlation by
plotting appropriate graphs.

Histogram of winning percentiles

wanPlacePercentl e

Figure 5: Winning percentile chart

The data set must be filtered i.e. done by dropping
the columns or records which are 0 or no value which
helps in preventing the error and reduces memory
usage. Now feature engineering is done by assessing
the numeric value for generated correlated new
features which was previously discussed in the
Feature engineering section. This new match consists
of features like solo, duo and squad which depicts the
size of the team.
Plotting different plots
and gaining insights
from the data

Normalising, removing
NA and Infinity values,
and handling
categorical data

Fitting the test dataset
on the best model and
reporting Final MAE

Reporting Best
Model's Test
MAE

Model

Exploratory Data S
/ Selection

Analysis

N Feature

P e Preprocessing

Comparing different

Adding relevant new
features to boost
model accuracy

Regression models
and calculating their
MAE

Figure 6: Process flow

We construct the model LGBM Regression. A
regression model is used than classification as there
are independent variables that are correlated to
dependent data this method is used to find the
relation between the data. Deep reinforcement
learning methods were not easy to use as that requires
high computational power and consumed a lot of
time. Hence using these methods to compensate and
reduce memory consumption and compilation time.

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

The initialisation of the simple MLP takes places by
imparting training and validating the data with
appropriate parameters than by facing a loss the next
model i.e. the deep learning technique uses batch
normalisation to handle the loss of data by using
more layers and an activation function which then
iterates at its best of 200 with a 20 epoch and early
stop set to 10. Lastly, the LGBM model is initialized
first experimented with a grid search that took
endless run time then switched to this technique that
took 222 seconds of run time with best parameters
and a learning rate of 0.05

VII. RESULTS

The accuracy of all the models trained and tested are
shown as below:

Deep

Model LGBM - MLP
Learning

MAE 0.0539 0.05947 0.08525

R? 93.6% 90.61% 85.4%

Table 4: Result

The obtained result shows a 5% improvisation
between the MLP and deep learning model. Here
MLPs learning rate is Adaptive. The first time the
improvement of the model was stagnant as the model
stopped running after 2 continuous epochs which
mean the loss of the data which stopped at best 14
iterations. The Mae was better obtained.

8

0.0 2.5 5.0 7.5 10.0 12.5

Figure 7: Loss Curve MLP

When the model was trained on deep learning we
used the previous loss of data results to compare with
the new value the kernel initialization was normal
and used relu activation and sigmoid activation
function after batch normalization of data to remove
the unwanted data. Here epsilon is le-4 used to
prevent from 0 division errors. The model tested on
deep learning gave a satisfying result.

111

Mean Abosulte Error

Q0670 — g

Test \ Iu\
00665 L} f \\
00660 \ [\
00655 - \

00650 \

00645 \ / \

Mean absolute error
P =
//’
—
”/,/

00640 \
00635

00630 \‘

Epoch

Figure 8: MAE v/s Epoch

This above graph compares the data error rate and
iteration rate the green line is the tested data and blue
for trained data.

LBGM model that satisfied all the conditions with
the best fit for data, among all the other models this
model used less memory, it was fast for a large
dataset and the best iterations done was 250 with a
random state that no other model could do with the
training of data. With a speed of 222 seconds which
is instantaneous, it predicts the winning percentage of
a player in pubg game.

The graph states the parameters used with n
estimators of 250 between the mean absolute error
which is set to early stop rounds of 10 which means
that before it reaches the max value it's self its stops
with a leaf node of 200. The overall conclusion states
the validation applied to the dataset this model gave
the highest MAE with 0.0539.

0.000 Evolution of MAE over training iterations

0.025
0.050

0.075

olute Error

20100 |
f

0 20 40 60 80 100
n_estimators

Figure 9: LGBM MAE estimators
VIIl. CONCLUSION

The results obtained from the research are
significantly strong to support the strategies in which
a player can play in the battlefield with various
attributes that contribute towards obtaining the
winning percentile. The various comparison
attributes to consider for the winning players is
depicted in the graph as follows

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

Vehicle Destroys/ Win Ratio

Win Percentle

Mumber of Yehicle Destroys

Figure 10: Winning percentile based on No of Kills

Kills/ Win Ratio

Win Percentile

Figure 11: Winning percentile based on No of Vehicles
destroyed

We have also discovered that the size of the team
matters for predicting the winning percentile and in
fewer cases the accuracy of the prediction goes high
in which the case is where the player would have
ended the game before it would have reached the end
that gives us a wrong assumption. Further when we
test the data records of the players or users playing
the game worldwide its more than millions of people
we used their records to predict the winner by using
few methodologies out if which we have succeeded
with all the three models that were successfully
implemented with a better run time. LGBM model
outstands with better improvement in the model,
reduction in memory usage and faster run time with a
large amount of dataset with an accuracy of 93% best
fit model. Next, with a very less difference deep
learning method in neural networks was trained and
tested on the data using batch normalization helped in
recovering the data loss which had occurred in MLP
with a Lower accuracy of 85% and fewer iterations.
Further, we can also conclude that a player can also
win by hiding in the safe zones in the game(10).

IX. ETHICAL, LEGAL AND SOCIAL ISSUES

The technology information for this particular area
consists various ethical(11), legal and social issues
many user playing on PC or Xbox have been reduced
drastically as they have identified software developed
bugs in the PUBG Road map and quality of life issue
with the game for example player holding a weapon
while moving close to rock under water that must be
fixed. The game is poorly optimized on a powerful

112

computation. As far as the legal issue concerns (12)
there was a complain file against a pubg corporation
that specifies about the copyrights of a similar game
known as fortunate.

X. REFERENCE

1. Hodge V, Devlin S, Sephton N, Block F,
Drachen A, Cowling P. Win Prediction in
Esports: Mixed-Rank Match Prediction in
Multi-player Online Battle Arena Games.
2017 Nov 17 [cited 2019 Mar 30]; Available
from: http://arxiv.org/abs/1711.06498

2. Wei W, Lu X, Li Y. PUBG: A Guide to Free
Chicken Dinner [Internet]. 2018 [cited 2019
Mar 30]. Available from:
http://cs229.stanford.edu/proj2018/report/127
pdf

3. Bosch P, Bhulai S. Predicting the winner of
NFL-games using Machine and Deep
Learning [Internet]. 2018 [cited 2019 Mar
30]. Available from:
https://beta.vu.nl/nl/Images/werkstuk-
bosch_tcm235-888637.pdf

4, What is LightGBM, How to implement it?
How to fine-tune the parameters? [Internet].
[cited 2019 Mar 30]. Available from:
https://medium.com/@pushkarmandot/https-
medium-com-pushkarmandot-what-is-
lightgbm-how-to-implement-it-how-to-fine-
tune-the-parameters-60347819b7fc

5. Lets Play—A “PUBG” Dataset step by step
tutorial — Towards Data Science [Internet].
[cited 2019 Mar 30]. Available from:
https://towardsdatascience.com/lets-play-a-
pubg-step-by-step-tutorial-1c0b38b322e8

6. Adler J. On using Artificial Neural Network
models to predict game outcomes in Dota 2
VIKTOR WIDIN [Internet]. DEGREE
PROJECT TECHNOLOGY. 2017 [cited
2019 Mar 30]. Available from:
https://pdfs.semanticscholar.org/796¢/8a7a65
5f5bdeab7084baca2faOb9a4f6a0le.pdf

7. Data Analysis of PlayerUnknown’s
Battlegrounds (PUBG)—Introduction &
Data Preparation [Internet]. [cited 2019 Mar
30]. Available from:
https://medium.com/@aliciali_7397/data-
analysis-of-playerunknowns-battlegrounds-
pubg-introduction-data-preparation-
94da7h64614e

8. RPubs - PUBG Placement Prediction EDA
[Internet]. [cited 2019 Mar 30]. Available
from: https://rpubs.com/tianyi/pubgeda

9. PUBG Finish Placement Prediction (Kernels
Only) | Kaggle [Internet]. [cited 2019 Mar

10.

11.

12.

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

30]. Available from:
https://www.kaggle.com/c/pubg-finish-
placement-prediction/data

PUBG Data Analysis — Exploring
PLAYERUNKNOWN’S
BATTLEGROUNDS Statistics through Data
Science [Internet]. [cited 2019 Mar 30].
Auvailable from:
https://pubganalysis.wordpress.com/

The first rule of Playerunknown’s
Battlegrounds says a lot: stop the racial
harassment - The Verge [Internet]. [cited
2019 Mar 31]. Available from:
https://www.theverge.com/2017/8/3/1609319
0/playerunkown-battlegrounds-harassment
What We Know And What We Don’t About
PUBG’s Legal Fight With ‘Fortnite’ In Korea
[Internet]. [cited 2019 Mar 31]. Available
from:
https://www.forbes.com/sites/thomasbaker/20
18/06/05/what-we-know-and-what-we-dont-
about-pubgs-legal-fight-with-fortnite-in-
korea/#31c9d7b23901

113

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

Appendix

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt
import gc

sns.set(style = "whitegrid™)

from google.colab import files
from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split
mpip install lightgbm

from sklearn.metrics import mean_absolute error, r2_score
from lightgbm import LGBMRegressor

import datetime

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import cross_val score, KrFold

from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.neighbors import KNeighborsRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.svm import SVR

from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor

from keras import models

from keras import layers

from keras import Sequential

from keras import optimizers

from keras.layers import Dense, Dropout, Input, BatchNormalization

[[lwget https://raw.githubusercontent.com/zahlii/colab-tf-utils/master/utils.py
import utils

import os

import keras

from keras.callbacks import ModelCheckpoint

from utils import GDrivesync

from keras.models import load_ model

mpip install wordcloud

from wordcloud import WordCloud

Figure 12:Import Libraries

from sklearn.model_selection import GridSearchcv
import lightgbm as 1lgb

Requirement already satisfied: lightgbm in /usr/local/lib/python3.6/dist-packages (2.2.2)

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (©.1
9.2)

Using TensorFlow backend.

Figure 13: use of tensor flow

In [@]: train.drop(['match_mean', 'match_median'], axis=1)
data.drop('match_median')
train.columns

Out[@]: Index(['Id', 'groupIld', 'matchIld', 'assists', 'boosts', 'damageDealt', 'DBNOs',
"headshotKills', 'heals', 'killPlace', 'killPoints', 'kills’,
'killStreaks', 'longestKill', 'matchDuration', 'matchType', 'maxPlace’,
'numGroups’, 'rankPoints', 'revives', 'rideDistance', 'roadKills',
'swimDistance', 'teamKills', 'vehicleDestroys', 'walkDistance’,
'weaponsAcquired', 'winPoints', 'winPlacePerc', 'match_mean’',
‘match_median'],

dtype="object"')

Figure 14: Dropping 0 value data

114

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

In [@]: #Read training data from csv and remove records with NA values
train = pd.read_csv('train_V2.csv', header=0, sep=',', quotechar=""")
train.dropna(inplace=True)
print(len(train))
pd.options.display.max_columns = 2000
train.head()
4446965
Out[e]: id groupld matchid assists | boosts | damageDealt | DBNOs | headshotKills | heals | killPla
0| 7f96b2f878858a |4d4b580de459be |a10357fd1a4a91 |0 o 0.00 (o] o o 60
1 | eef90569b9d03c | 684d5656442f9%e |aeb375fc57110c |0 [¢] 91.47 o} o o 57
2| 1eaf90ac73de72 |6ad4a42c3245a74 | 110163d8bb9%4ae | 1 o] 68.00 o (o] [e] 47
3|4616d365dd2853 | a930a9c79cd721 |fifif4ef412d7e o (o] 32.90 (o] o] o 75
4| 315c96c26c9aac | de04010b3458dd | 6dc8ff871e21e6 |0 (o] 100.00 [¢] o o 45
<4 >
In [@]: | #Read test data from csv and remove records with NA values
test = pd.read_csv('test_V2.csv’, header=8, sep=',', quotechar=""")
test.dropna(inplace=True)
print(len(test))
test.head()
1934174
Outle]: Id groupld matchid assists | boosts | damageDealt | DBNOs | headshotKills | heals | killPlz
0 (9329eb41e215eb | 676b23c24e70d6 | 45b576ab7daa7f (O o 51.46 o o o 73
1| 639bd0dcd7bda8 | 430933124148dd | 42a9a0b306c928 | O 4 179.10 o o 2 11
2 | 63d5c8ef8dfe91 Ob45f5db20ba99 | 87e7e4477a048e (1 o 23.40 o o] 4 49
3 [cf5b81422591d1 | b7497dbdc77f4a | 1b9ag94f1af67f1 o o 65.52 o o o 54
4 (ee6a295187ba21 | 6604ce20a1d230 | 40754a93016066 (O 4 330.20 1 2 . 7
< >
Figure 15: Training and testing data
LightGBM
In [@]: def calculate_error{(cl,name):

print(name)
print(Mean Absolute Error is {:.S5f}"
print('R2 score is {:.2%} ' .format(r2_score(y_val,

.format(mean_absolute_error(y_val,
cl.predict(X_val))))

cl.predict(X_val))))

In [@]: | # Create parameters to search

gridParams = {
*learning rate’:
*n_estimators': [5©.,250].
*num_leaves [6.10©.16,200],
"boosting_type" "gbdt", ‘dart’, "goss","
“objective® : [‘mae’]1,

¥

[e.©5,8.1,0.3,0.002],

1,

mdl = LGBMRegressor(boosting type= ‘gbdt’,
objective = 'mae’,

n_estimators=25@,

learning rate=0.3,

num_leaves=200,

n_jobs = 3, # Updated from

silent = True,

max_depth = -1,

wverbose=2,

random_state=212)

‘nthread”

To view the default model params:
mdl.get_params().keys()

Creagte the grid

grid = GridSearchCV(mdl, gridParams,
verbose=2,
n_jobs=2)

Run the grid

grid.fit(X_train, y_train)
Print the best parameters
print(grid.best_params_)
print(grid.best_score_)

found

NameError Traceback (most recent call last)
<ipython-input-2@-ba31e49l1le78a> in <module>()
2s

Create the grid

---> 27 grid = GridSearchCV(mdl, gridParams,
28 verbose=2,
29 n_jobs=2)

“Figure 16: LGBM

115

In [@]:

In [©]1:

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

mlp = MLPRegressor(activation = ‘relu”,
max_iter=1000@, learning_rate="adaptive”’,
tol=0.0,warm_start=True,solver="adam’, verbose=True)

mlp.fit(X_train,y_train)
calculate_error{mlp, "MLP")

fusr/local/lib/python3.6/dist-packages/numpy/core/ _methods.py:32: RuntimeWarning: overflow encountered in r

educe
return umr_sum(a, axis, dtype, out, keepdims)
Iteration 1, loss = 22.39872526
Iteration 2, loss = 3.385580©4@
Iteration 3, loss = 2.06050984

Iteration 4, loss = ©.61622816
Iteration 5, loss ©.62046392
Iteration 6, loss ©.40559269
Iteration 7, loss 1.28667318
Iteration 8, loss ©.34655277
Iteration 9, loss @.22156778
Iteration 10, loss @.e377063e
Iteration 11, loss 2.82120452
Iteration 12, loss ©.52963382
Iteration 13, loss = ©.44018969
Iteration 14, loss = ©.©3515462
Training loss did not improve more than tol=8.00000@ for two consecutive epochs. Stopping.
MLP

Mean Absolute Error is ©.88622
R2 score is -121.94%

Figure 17: MLP

RANDOM_STATE=212

#train_weights = (1/X train.teamsize)

#validation weights = (1/X_test.teamsSize)

TARGET = “winplaceperc’

TRAIN_SIZE = ©.9

EARLY_STOP_ROUNDS = 1@

time_© = datetime.datetime.now()

1gbm = LGBMRegressor(objective='maes’, n_estimators

learning _rate=©.3, num_leaves—200,
n_jobs=-1, random_state=RANDOM_STATE, verbose=1)

lgbm.fit(X_train, y_train,
eval_set=[(X_val, y_wval)l.
eval metric='mas’, =arly_ stopping_rounds=EARLY_STOP_ROUNDS,
verbose=1)

time_1 = datetime.datetime.now()
print(Training took {} seconds. Best iteration is {3} '.format((time_1 - time_©).seconds, lgbm.best_iterati
on_))

[l wvalid_©°'s 11: ©.19286
Training until validation scores don’'t improve for 10 rounds.

23 valid @'s 11: ©.144©91

3] wvalid ©'s 11: ©.112807

4] wvalid_©'s 11: ©.0921878

s] valid ©'s 11: ©.0795694

6] valid_@©'s 11: ©.0716605

Z7] valid _©'s 11: ©.0662104

8] wvalid_©'s 11: ©.062826

o] valid_©'s 11: ©.06039746

1o valid ©'s 11: ©.059703S

i1 valid ©'s 11: ©.05888e3

12 valid ©'s 11: ©.05829e7

13 valid ©°'s 11: ©.857764

14 valid ©'s 11: ©.857©726

is valid ©'s 11: ©.85638547

16 wvalid ©'s 11: ©.05661e2

17 s 11: ©.9563797

is s 11: ©.0562149

2GS s 11: ©.05603829

2o s 11: ©.0560049

21 s 11: ©.2558181

22 s 11: ©.855729S

23 s 11: ©.8555972

24a s 11: ©.05552e6

e s 11: ©.©0554388

26 s 11: ©.9553767

27 s 11: ©.8553458

28 s 11: ©.©553195

29 s 11: ©.e5526e7

3e s 11: ©.2552483

31 s 11: ©.8551807

32 s 11: ©.0551564

S s 11: ©.9551277

34 s 11: ©.©551011

B s 11: ©.0550945

36 s 11: ©.055037

Figure 18: Random state iteration goes on till 250

=214 valid _©°'s 11: ©.0S41S34
2a1s valid_© s 11 o.osa1a472
216 valid_o© s 11 ©.os5a14903
227 walid o= 121 ©.054126S
2as8 valid o= 1a 2. 95412s52>
za19 valid o's 11 o.esa4122
220 valid e°'s 11 o.oes5a1219
223 valid_o© s 11 e.o541179
222 valid_o© s 11 o.os31077
223 valid_o©°'= 11 o . 0531066
22a vealid o'= 11 e.osare=s
22s valid o= 11 e .osaooos
226 valid o°'s 11 o.osa0s 72
227 wvalid _e©'s 11 o.os5a0788

22s valid_e©°'s 11 ©.osa30s5ss
229 valid_o©° s 12 ©.osaos3
230 vealid_o-" 13 o . osa0ac
232 valid o= 13 o.osacaxs
232 valid o'= 11 o.osa0296
233 valid o s i3 o.osa0207

234 valid_ o s i 2. 0540146
23s valid_o©°*s 11 ©o.osac14a
236 valid_o©°"'s 11: ©o.osSaolr142
237 valid_o©'= 11: ©.053011S
238 valid o'= 11

239 valid o©'s 1131

zao valid ©°'s 12

2a2 valid _o©°'s 11

zaz2 valid_e©°'s 11

2a3 valid_o "= 11

zaa valid o= 121

2as valid o©'s 11: ©.0S39S63

zas valid o 's b & B3 2. s53954>

=247 valid o s AxsT 2. 053954

2as valid_o©°'s 11: ©.05S39S32

za9 valid_@©°'s 11: ©.0S39427

2so valid_o©°'= 11: o.0S39a42
Did mot meet early z=topping . Be=zt iteration i=:
[valid ©'s 11: ©.0S3942
Training took 222 seconds. Best iteration is 2sSo

Figure 19: Validation of LGBM

116

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

Deep Learning

In [@]: filepath="weights-improvement-{epoch:02d}-{val_loss:.2f}.hdfs"
checkpoint = ModelCheckpoint(filepath, monitor=‘val_loss', verbose=1, save_best_only=True, mode="min")

def compare(best, new):
return best.losses['val_loss'] > new.losses['val_loss']

def path(new):
if new.losses[‘val_loss'] < @.1:
return ‘pubg ¥s.h5" % new.losses["val_loss']

cb =
checkpoint,
utils.GDriveCheckpointer(compare,path),
keras.callbacks.TensorBoard(log dir-os.path.join(utils.LOG_DIR, ‘PUBG"))
1
--2018-12-02 20:25:38-- https://raw.githubusercontent.com/Zahlii/colab-tf-utils/master/utils.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.1©1.©.133, 151.1©1.64.133, 151.101.1
28.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.181.©.133|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 6935 (6.8K) [text/plain]
Saving to: ‘utils.py.1’

utils.py.1 1e0%[===>] 6.77K --.-KB/s in os

2018-12-02 20:25:38 (85.6 MB/s) - ‘utils.py.l1’ saved [6935/6935]

In [@]: def build_model():
model = Sequential()
model.add(Dense(512, kernel_initializer=‘he normal®, input_dim=X_train.shape[1], activation="relu))
model.add(BatchNormalization())
model.add(Dropout(@.1))
model.add(Dense(256, kernel_initializer='he_normal’, activation='relu’))
model.add(BatchNormalization())
model.add(Dropout(@.1))
model.add(Dense (128, kernel_initializer='he normal®, activation=‘relu’))
model.add(BatchNormalization())
model.add(Dropout(®.1))
model.add(Dense(1, kernel_initializer='normal’, activation=‘sigmoid®))
optim = optimizers.Adam(lr=0.@1, epsilon=le-8, decay=le-4, amsgrad=False)
model.compile(optimizer-optim, loss='mse’, metrics=['mae’])
#model . summary
#history = model.fit(X_ train, y train, epochs=78,batch_size=100000)
return model

In [@]: | downloader=GDriveSync()
filename="pubg_ ©.807626801999386263.h5"
drive_file path=downloader.find_items(filename)[©]
downloader.download_file_to_folder(drive file_path,filename)

Downloading file pubg ©.007696821999386263.h5 to pubg ©.0076296821999306263.h5: 1% | IININEEE| 102.2/102
[e@:00<00:00, 317.21it/s]

Figure 20: Deep Learning

117

International Journal of Engineering Applied Sciences and Technology, 2019
Vol. 3, Issue 12, ISSN No. 2455-2143, Pages 107-118
Published Online April 2019 in IJEAST (http://www.ijeast.com)

In [@]: deep.summary()

Layer (type) Output Shape Param #
;;;;e_s (Pense) (None, 512) 22528
batch_normalization_4 (Batch (None, 512) 2048
dropout_4 (Dropout) (None, 512) e
dense_6 (Dense) (None, 256) 131328
batch_normalization_5 (Batch (None, 256) 1024
dropout_5 (Dropout) (None, 256) =]
dense_7 (Dense) (None, 123) 32896
batch_normalization_6 (Batch (None, 1238) 512
dropout_6 (Dropout) (None, 128) =}
dense_8 (Dense) (None, 1) 129

Total params: 198,465
Trainable params: 188,673
Non-trainable params: 1,792

In [@]: deep.load weights("weights-improvement-86-08.01.hdf5")

In [@]: history = deep.fit(X_train, y_train,
validation_data=(X_val, y_wval),
initial_epoch=2@,
epochs=3@,
callbacks=cb,
verbose=1)

calculate_error(deep, "Deep™)

Train on 3112875 samples, validate on 1334090 samples

Epoch 21/3@

3112875/3112875 [===] - 15@@s 482us/step - loss: ©.8075 - mean_absolute_error:
©.8636 - val_loss: ©.€085 - val_mean_absolute_error: ©.0657

Epoch @@021: val_loss did not improve from ©.20811

No improvement.

Epoch 22/30

3112875/3112875 [===] - 1441s 463us/step - loss: ©.8075 - mean_absolute_error:
©.2635 - val_ loss: ©.€883 - val_mean_absolute_error: ©.0654

Epoch @2022: val_loss did not improve from ©.20811
No improvement.

Figure 21: Deep Learning Architecture

118

