

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 4, ISSN No. 2455-2143, Pages 114-116
 Published Online February-March 2017 in IJEAST (http://www.ijeast.com)

114

DEGRADATION OF PROCEDURAL

LANGUAGES – A REVIEW

 Supriya Kumari Amir Shaikh Shaikh Mustufa

Department of Computer Engg. Department of Marine Engg. Department of Marine Engg.
G.V.I.E.T , Banur, Punjab, India G.V.I.E.T , Banur, Punjab, India G.V.I.E.T , Banur, Punjab, India

Abstract - Now a day’s C programmers are hard to find.

Students and learners are avoiding C programming over

C++ and other programming languages. In this research

we tried to find out the reasons why programmers are

losing interest towards C programmers. We have read

many articles of well-known programmers while

researching, programming but still they prefer other

languages. We too cannot deny that C++ is more developed

programming language than C.

Keywords - Lexical, Recursion, Polymorphism, Procedural,

Paradigm, Pernicious, Semantics

I. INTRODUCTION

C has withstood the test of time. It’s been in use for over 4

decades .C is a general-

purpose, imperative computer programming language,
supporting structured programming, lexica variable

scope and recursion, while a static type system prevents many

unintended operations. By design, C provides constructs that

map efficiently to typical machine instructions, and therefore

it has found lasting use in applications that had formerly been

coded in assembly language, including operating systems, as

well as various application software for computers ranging

from supercomputers to embedded systems. As it is the basic

language so all the other language are based on this language.

The origin of C is closely tied to the development of

the UNIX operating system, originally implemented
in assembly language on a PDP-7 by Dennis Ritchie and Ken

Thompson, incorporating several ideas from colleagues.

Eventually, they decided to port the operating system to

a PDP-11. The original PDP-11 version of UNIX was

developed in assembly language. The developers were

considering rewriting the system using the B language,

Thompson's simplified version of BCPL. However B's

inability to take advantage of some of the PDP-11's features,

notably byte addressability, led to C. The name of C was

chosen simply as the next after B.

The development of C started in 1972 on the PDP-11 UNIX

system and first appeared in Version 2 UNIX. The language

was not initially designed with portability in mind, but soon

ran on different platforms as well: a compiler for

the Honeywell 6000 was written within the first year of C's
history, while an IBM System/370 port followed soon.

Also in 1972, a large part of UNIX was rewritten in C. By

1973, with the addition of structure types, the C language had

become powerful enough that most of the UNIX kernel was

now in C.

UNIX was one of the first operating system kernels
implemented in a language other than assembly. Earlier

instances include the Multiple system which was written

in PL/I), and Master Control Program (MCP) for

the Burroughs B5000 written in ALGOL in 1961. In around

1977, Ritchie and Stephen C. Johnson made further changes to

the language to facilitate portability of the UNIX operating

system. Johnson's Portable C Compiler served as the basis for

several implementations of C on new platforms like-

1 Early developments

2 K&R C

3 ANSI C and ISO C

4 C99
5 C11

6 Embedded C

II. OVERVIEW

Communicating with a computer involves speaking the

language the computer understands, which immediately rules

out English as the language of communication with the

computer. However, there is a closed analogy between

learning English language and learning C language. Learning

C is similar and easier. Instead of straight-away learning how

to write programs, we must first know what alphabet, numbers
and special symbols are used in C, then how using them,

constants, variables and keywords are constructed, and finally,

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 4, ISSN No. 2455-2143, Pages 114-116
 Published Online February-March 2017 in IJEAST (http://www.ijeast.com)

115

how are these combine to form an instruction. Studies of
programming can be generally divided into two main

categories, those with a software engineering perspective, and

those with a psychological/educational perspective. Our

review is based on the experience professional programmers,

software developers and experts of C. The C programming

language developed at AT & T’s Bell laboratories of USA in

1972. It was designed and written by a man named Dennis

Ritchie.

The C programming language, Kernighan, Brian W; Ritchie,

Dennis M.(February 1987) in NJ : Prentice Hall was regarded

by many to be the authoritative reference of C. He concluded

C is simple and basic language. Johnson, S. C.; Ritchie, D. M.
(1978) showed the portability of C programs and the UNIX

System. He said that it is popular and major part of an

operating system and C language is portable. From the review

paper on C programming language by NUI GALWAY (14

January 2009), we studied about different data types which are

used in C programming language.

III. DATA TYPES

Programming uses different types of data type. Data types are

used to identify the type of data and associated operations of

handling it. Data types in C are of two types-

 Primary Data Types – Integer , float, double
character , void

 Secondary Data Types- Array , pointer, structure,

union , Enum

IV. C IS NOT AN OBJECT ORIENTED

PROGRAMMING LANGUAGE

First we need a proper definition of object – oriented

programming. A few things that C does not have: It doesn’t

have any concept of inheritance. While we can embed

function pointers in C structs, they aren’t proper classes in the

OO sense, and such embedded functions pointers don’t
represent methods. C doesn’t have operator or function

overloading, which is also a pretty fundamental part of OO

method: Polymorphism.

V. WHY PROGRAMMERS CHOOSE C++

OVER C

C is the basic language. The historical relationship between C

and C++ has created this problem. C and C++ have now

sufficiently diverged that they really ought to be taught as

distinct languages, not as “C++ is an improved version of C,

and so you can code C in C++”. For people who have
embraced C++ as the superior language, the persistence of C

is irritating - largely because they needlessly conflate the

languages.

Unfortunately, in order for an object oriented language to have

been widely and quickly adopted, the historical relationship is

necessary. At the time C++ was being proposed, C had

become a very popular language (especially for people who

would never learn structured, high level, compiled language.)

Getting THOSE people to advance into object oriented

programming required pandering to their affection for C. (And

frankly, a hell of a lot of languages STILL look like C - Java,

and Perl in particular.) C had a pernicious way of closing the
minds of people to alternative languages - and that tendency

seems to continue with C++.

VI. DIFFICULTIES A C PROGRAMMER

FACES.

 C is Procedural Language.

 No virtual Functions are present in C

 In C, Polymorphism is not possible.

 Operator overloading is not possible in C.

 Top down approach is used in Program Design.

 No namespace Feature is present in C Language.

 Multiple Declarations of global variables are allowed.

 In C

o scanf() Function used for Input.

o printf() Function used for output.

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 4, ISSN No. 2455-2143, Pages 114-116
 Published Online February-March 2017 in IJEAST (http://www.ijeast.com)

116

 Mapping between Data and Function is difficult and
complicated.

 In C, we can call main() Function through other

Functions

 C requires all the variables to be defined at the

starting of a scope.

 No inheritance is possible in C.

 In C, malloc() and calloc() Functions are used for

Memory Allocation and free() function for memory

Deal locating.

 It supports built-in and primitive data types.

 In C, Exception Handling is not present.

VII. THE TASK

Learning to program is not easy. C is simple and basic

language but the coding of C is too difficult. C language is a

computer oriented language. In a good overview what is

involved Verilog HDL (2010), describes the importance and

difficulties of C language. He believed that nobody can learn

C++ or JAVA directly. This is because while learning these

languages we have things like classes, objects, inheritance,

polymorphism, templates, exception handling, references etc.
do deal with apart from knowing the actual language elements.

Nick Parlance describes that C's type system and error checks

exist only at compile-time. The compiled code runs in a

Stripped down run-time model with no safety checks for bad

type casts, bad array indices, or bad pointers. There is no

garbage collector to manage memory. Instead the programmer

manages heap memory manually. All this makes C fast but

fragile.

VIII. ANALYSIS – WHERE C FITS

Because of the above features, C is hard for beginners. This

feature can work fine in one

Context but crash in another. The programmer needs to

understand how the features work and use them correctly. On

the other hand, the number of features is pretty small. Like

most programmers, I have had some moments of real loathing

for the C language. It can be irritatingly obedient -- you type

something incorrectly, and it has a way of compiling fine and

just doing something you don't expect at run-time. However,

as I have become a more experienced C programmer, I have

grown to appreciate C's straight-to-the point style. I have

learned not to fall into its little traps, and I appreciate its

simplicity. Perhaps the best advice is just to be careful. Don't
type things in you don't understand. Debugging takes too

much time. Have a mental picture (or a real drawing) of how

your C code is using memory. That's good advice in any

language, but in C it's critical. Perl and Java are more

"portable" than C (you can run them on different computers

without a recompile). Java and C++ are more structured than
C. Structure is useful for large projects. C works best for small

projects where performance is important and the programmers

have the time and skill to make it work in C. In any case, C is

a very popular and influential language. This is mainly

because of C's clean (if minimal) style, it's lack of annoying or

regrettable constructs, and the relative ease of writing a C

compiler.

IX. RESOLUTION

In older times the efficiency, and predictability of

performance, were paramount. C was a simple language that

was suited for a system programming e.g., it can be used to

write an operating system, a driver, or just anything. C
language has a procedural approach which makes it a vast and

long while C++ is OOPs which makes it easier to understand

and the functions present in it are classified into objects which

is a real life entity. C is widely criticized as it is also used to

argue that C is not good teaching language C aficionados love

this aspect of c language because it means that C does not try

to protect themselves when they know what they are doing ,

even if it’s risky or obscure they can do it . This is the

aspect of language which it’s fairly pointless to complaint

about.

X. REFERENCE

1) Kernighan, Brian W.; Ritchie, Dennis M. (February

1987). The C Programming Language (1st ed.).

Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-

110163-3. Regarded by many to be the authoritative

reference on C.

2) Ritchie (1993): “Thompson had made a brief attempt

to produce a system coded in an early version of C-

before structures – in1972, but gave up the effort.

3) Ritchie (1993): “The scheme of type composition

adopted by C owes considerable dept. to Algol 68,

although it did not, perhaps, emerge in a form that
Algol’s adherent would approve of.”

4) “Verilog HDL (and C). The Research School of

Computer Science at the Australian National

University. 2010-06-03. Retrieved 2013-08-19.

“1980s: ; Verilog first introduced ; Verilog inspired

by the C programming language”

5) “Programming Language Popularity”. 2009.

Retrieved 16th January, 2009.

6) Johnson, S. C.; Ritchie, D.M. (1978). “Portability of

C Programs and the UNIX System”.

7) Review on C language – NUI GALWAY, research
paper , 14 January 2009, page – 14, 17.

8) Essential C , Nick Parlante (1996-2003) , page – 2 , 3

9) Book Let us C – Yashavant Kanetkar

