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ASTRACT - Lattice Boltzmann Method have been 

advantageous in simulating complex boundary 

conditions and solving for fluid flow parameters by 

streaming and collision processes.This paper 

includes the study of three different test cases in a 

confined domain using the method of the Lattice 

Boltzmann model. 1. An SRT (Single Relaxation 

Time) approach in the Lattice Boltzmann model is 

used to simulate Lid Driven Cavity flow for 

different Reynolds Number (100, 400 and 1000) 

with a moment-based boundary condition is used 

for more accurate results. 2. A Thermal Lattice 

BGK (Bhatnagar-Gross-Krook) Model is 

developed for the Rayleigh Benard convection for 

both test cases - Horizontal and Vertical 

Temperature difference, considered separately for 

a Boussinesq incompressible fluid with different 

Rayleigh number. 3.The phase change problem 

governed by the heat-conduction equation is 

studied using the enthalpy based Lattice 

Boltzmann Model to provide a better 

understanding of the heat transport 

phenomenon.An approximate velocity scale is 

chosen to ensure that the simulations are within the 

incompressible regime.The simulated results 

demonstrate excellent agreement with the existing 

benchmark solution implicates the viability of this 

method for complex fluid flow problems. 
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I. INTRODUCTION 

 
 For the equations governing the fluid 

mechanics , analytical solution exists for only few 

basic cases.With more complexity in geometry and 

boundary condition numerical methods become an 

absolute necessity.The Lattice Boltzmann Method 

originally derived from the lattice gas cellular 

automaton models has an upper hand due to its robust 

implementation and ease to parallelise.The extensive 
studies of this method including Succi(2001),Wolf-

Gladrow(2000),Rothman and Zaleski(1997),Chen and 

Doolen(1998) laid the mathematical foundation of this 

method.This method has been successful in simulating 

some of the most complex flows including those 

discussed in this paper.The lid driven cavity flow 

studied by Ghia [Ghia et~al.(1982)Ghia, Ghia, and 

Shin] is a classic benchmark problem for assessing the 

accuracy of any algorithm.A moment based boundary 

condition [Bennett(2010)] is implemented on the 

population distribution of LBM.The rayleigh benard 
problem of natural convection has been of great 

interest due its wide range of applications in heat 

transport phenomenon.The bouoyancy driven fluid 

flow with adibatic top and bottom walls representing 

the horizontal temperature difference case of rayleigh 

benard problem has been a topic of extensive study 

Wang et al.(2013),Kao and Yang et al(2007), Guo et 

al.(2002) including the classic benchmark solution of  

deVahlDavis et al(1983).The vertical case has been 

also mentioned in several literatures(ref).The melting 

and solidifiacation process has also be sucessfully 

implemented through the enthalpy based thermal 
lattice boltzmann model Jiaung et al.(2001), 

Chakraborty and Chatterjee et al(2007), Huber et 

al.(2008), Huang and Wu et al(2015), Huo and Rao et 

al(2017), Chatterjee et al(2010)]. 

We investigated the applicability of LBM for 

the three aforementioned cases by comparing the 

calculated governing parameters with the existing 

benchmark solutions.The lid driven cavity flow is 

studied for different Reynolds number and aspect ratio 

of cavity.The rayleigh benard problem is implemented 

with a definite forcing scheme and stability criteria 
and the phase change problem is simulated through the 

enthalphy based model and the resulting temperature 

distribution is compared with the avalaible analytical 

solution Jiaung et al.(2001).  
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II. NUMERICAL METHODOLOGY 

 
 The fundamental idea is that fluids can be 

imagined as consisting of large number of small 

particles moving with random motions.The exchange 

of momentum and energy is achieved through particle 

streaming and collision.This process can be modeled 

by the Boltzmann transport equation which is  

 
𝜕𝑓

𝜕𝑡
+ 𝑢Δ𝑓 = Ω (1) 

where f is the particle distribution , u is the particle 

velocity and Ω is the collision operator given by Ω =

−
𝑓𝑖−𝑓𝑖

𝑒𝑞

𝜏
Δ𝑡.The relaxation time 𝜏 can be derived from 

the governing parameters depending upon the 

macroscopic parameter 𝑓 represents. 

For a two dimensional model the number of 

particle is restricted to stream of 5 or 9 directions 

including one staying at rest at the center giving the 

D2Q5 and D2Q9 model.Each model has its own set of 

distribution functions and weights.For the D2Q9 

model ,each particle on the lattice we associate a 

discrete probability distribution function 𝑓𝑖(𝑥, 𝑡) for 
i=0....8 , which describes the probability of the 

streaming in one particular direction.  

         

 
 

Figure 1:Representation of the model 

D2Q9(left) and D3Q15(right) used in LBM 

 

The macroscopic fluid density is given as the sum of 

this particle distribution functions.  

 

𝜌(𝑥, 𝑡) = Σ𝑛=0
8 𝑓𝑖(𝑥, 𝑡) (2) 

Accordingly the macroscopic velocity u is an average 

of the velocities weighted by the distribution functions 

𝑓𝑖,  

 

𝜌𝑢 = Σ𝑛=0
8 𝑓𝑖(𝑥, 𝑡)𝑒𝑖 (3) 

where 𝑒𝑖 is the discrete velocity of each of the particle 

distribution. The discrete velocity distribution along 

the different directions of a D2Q9 model is given by  

 𝑒𝑖 =

(

(0,0) 𝑖 = 0

𝑐(cos[(𝑖 − 1)
𝜋

2
], sin[(𝑖 − 1)

𝜋

2
]) 𝑖 = 1,2,3,4,

√2𝑐(cos[(2𝑖 − 1)
𝜋

4
], sin[(2𝑖 − 1)

𝜋

4
]) 𝑖 = 5,6,7,8,

(4) 

where 𝑐 =
Δ𝑥

Δ𝑡
 is the lattice speed of the domain.  

   

The key steps in the LBM are the streaming and the 

coliision process which are given by  

𝑓𝑖(𝑥 + 𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓(𝑥, 𝑡) = −
𝑓𝑖(𝑥,𝑡)−𝑓𝑖

𝑒𝑞
(𝑥,𝑡)

𝜏
 (5) 

where 𝜏 is the relaxation time of the distribution and 

𝑓𝑖
𝑒𝑞

 is the equilibrium distribution function.Using the 

Bhatnagar-Gross-Krook(BGK) collision 
approximation the equilibrium distribution function 

for D2Q9 is given by  

𝑓𝑖
𝑒𝑞

(𝑥, 𝑡) = 𝑤𝑖𝜌(1 +
𝑒𝑖𝑢

𝑐𝑠
2 +

(𝑒𝑖𝑢)2

2𝑐𝑠
4 −

𝑢.𝑢

2𝑐𝑠
2) (6) 

and the weights are given by  

 

𝑤𝑖 = (
4/9 i = 0
1/9 i = 1,2,3,4
1/18 i = 5,6,7,8

 (7) 

where 𝑐𝑠  represents the speed of sound in lattice. 

Parameters governing the fluid flow show dependence 

on the lattice units.The test cases discussed in the 

subsequent section has unique boundary condition 

each carefully implemented on the particle 

distribution.  
 

III. THE LID CAVITY PROBLEM 

 

The Lid Driven Cavity flow is a classic 

benchmark problem studied extensively using the 

LGBK approach and proved to provide stable solution 

when compared with the Naiver-Stokes solution of 

Ghia [Ghia et al.(1982)].Researches on the Lid Driven 

Cavity have investigated on the various effects of the 

change in aspect ratio, the influence of the critical 

Reynolds number and effects of its change within the 
two dimensional cavity. The LBM method mentioned 

here focuses on the aspects of the Lid Driven Cavity 
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that have a direct influence with the change in the 

Reynolds Number.We have adopted a SRT approach 

which provided a convincing result with the existing 

solution.The aspect ratio for the cavity is given by 

𝐴𝑅 =
𝑊

𝐻
 where W is the width of the cavity and H is 

the depth.  

3.1  Numerical Methodology:Single Population 

Lattice Bolltzmann SRT Model  

 We have adopted a single population D2Q9 

model for this test case for which the streaming and 

the collision steps is given by eq(5).The fluid 

kinematic viscosity is related to the relaxation time in 

D2Q9 model by 𝜈 =
2𝜏−1

6

(Δ𝑥)2

Δ𝑡
.A simple bounce back 

condition is applied at all the boundaries except the top 

i.e the lid where the velocity is imparted.The simple 

bounce back condition simulate for the rigid 

boundaries of the domain with no penetration and 

velocity.A carefully devised hydrodynamic moment 

based boundary conditions given by Bennett 

[Bennett(2010)] are used for the top boundary  

𝜌𝑢𝑥 = Σ𝑓𝑖𝑒𝑖𝑥 = 𝑓1 − 𝑓3 + 𝑓5 − 𝑓6 − 𝑓7 + 𝑓8 (8) 

𝜌𝑢𝑦 = Σ𝑓𝑖𝑒𝑖𝑦 = 𝑓2 − 𝑓4 + 𝑓5 + 𝑓6 − 𝑓7 − 𝑓8  (9) 

Π𝑥𝑥 = Σ𝑓𝑖𝑒𝑖𝑥
2 = 𝑓1 + 𝑓3 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8  (10) 

Π𝑦𝑦 = Σ𝑓𝑖𝑒𝑖𝑦
2 = 𝑓2 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 (11) 

Π𝑥𝑦 = Σ𝑓𝑖𝑒𝑖𝑥𝑒𝑖𝑦 = 𝑓5 − 𝑓6 + 𝑓7 − 𝑓8  (12) 

We use the first three moments and impose a no slip 
and o flux boundary condition 

𝜌𝑢𝑥 = 𝜌𝑢; 𝜌𝑢𝑥 = 0; Π𝑥𝑥 = 𝜌/3 + 𝜌𝑈2 
where (U,0) is the velocity applied on the top 

boundary. By solving we get the unknown 

distributions at the top boundary  

𝜌 = 𝑓0 + 𝑓1 + 𝑓3 + 2(𝑓2 + 𝑓5 + 𝑓6) 

𝑓4 = 𝑓1 + 𝑓3 + 𝑓2 + 2(𝑓5 + 𝑓6) −
𝜌

3
− 𝜌𝑈2 

𝑓7 =
𝜌

6
+

𝜌𝑈2

2
−

𝜌𝑈

2
− 𝑓3 − 𝑓6  

 𝑓8 =
𝜌

6
+

𝜌𝑈2

2
+

𝜌𝑈

2
− 𝑓1 − 𝑓5  

For the nodes at the corner we have five unknown 

distributions.For this we need all the moments 

together with a condition on the shear stress Π𝑥𝑦 set 

to zero.We get for the north(top)west corner  

 𝑓1 =
2𝜌

3
− 𝑓0 − 𝑓3  

 𝑓4 =
2𝜌

3
− 𝑓0 − 𝑓2  

 𝑓5 =
𝜌

6
− 𝑓2 − 𝑓6  

 𝑓7 =
𝜌

6
− 𝑓3 − 𝑓6  

 𝑓8 = −
2𝜌

6
+ 𝑓0 + 𝑓2 + 𝑓3 + 𝑓6  

 with 𝜌 = 𝑓0 + 2𝑓3 + 4𝑓6 + 2𝑓2 . For the other 

corners the similar approach is taken to determine the 

unknown distribution.  

 

3.2  Results 

 For this simulation a domain of AR=1 is 

adopted with a meshing grid size of Δ𝑥=Δ𝑦=1 with 

Δ𝑡=1. Three different Reynolds Number i.e 100,400 

and 1000 are studied and quantities of interest such as 
the horizontal and vertical velocities at the centre of 

the domain are compared with the benchmark results 

Ghia et al.(1982) given in Fig. 2, Fig. 3 and Fig. 5.The 

contours of horizontal velocity for two cases of 

Re=100 and Re=1000 are given in Fig. 6.With he 

increase in Reynolds number the center of the 

circulation shifts more towards the center.In addition 

we investigated for AR=4 representing the shallow 

cavity case Fig. 4.  

          

                 
 

Figure 2: Plot of Horizontal and Vertical velocity 

with grid points for Re=100 
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Figure  3: Plot of Horizontal and Vertical velocity 

with normalized co-ordinates for Re=400 

    

Figure  4: Plot of Horizontal velocity for 

Re=100 and 400 for cavity with Ar=4 

    

Figure  5: Plot of Horizontal and Vertical velocity 
with normalized co-ordinates for Re=1000 
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For Re=100(left) and 400(right) at Ar=1 

   

          

For Re=100(left) and 400(right) at Ar=4 

Figure  6: Contour of Horizontal Velocity 
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IV. THE RAYLEIGH BENARD PROBLEM 

 
 The Rayleigh Benard system in which the 

fluid is confined between two parallel plates 

maintained with a temperature difference is one of the 

most studied non-equilibrium hydrodynamic 

systems.The geometrical setup for the Rayleigh 

problem involves two parallel plates separated by a 

distance H .One plate is kept at a higher temperature 

than the other.Here we have discussed for both the 

horizontal and vertical test cases Fig. 7 ad Fig. 8.The 

physics of the Rayleigh-Benard convection is 
governed by the Rayleigh Number  

 

𝑅𝑎 =
𝑔𝛽(𝑇ℎ−𝑇𝑐)𝐻3

𝛼𝜈
 (13) 

which is the ratio of the temperature driven buoyancy 

force and viscous friction forces. 𝛼  and 𝜈  are the 

thermal diffusivity and kinematic viscosity of the fluid 

respectively.Prandtl number Pr=
𝜈

𝛼
 also plays an 

important role in this phenomenon. The Boussinesq 

approximation states that the effect of a small density 

change creates a buoyancy force density  

𝐹𝑏 = −𝛽𝜌0(𝑇 − 𝑇0)𝑔 (14) 
in the presence of a gravitational field with 

acceleration g.The advantage of Boussinesq 

approximation is that the temperature effects only 

enters through the body force density.After absorbing 

the force term the thermo-hydrodynamic equation is 

given by  
𝜕𝑢

𝜕𝑡
+ Δ. (𝑢𝑢) = −Δ𝑝 + 𝜈Δ2𝑢 − 𝑔𝛽(𝑇 − 𝑇0) (15) 

  
𝜕𝑇

𝜕𝑡
+ Δ. (𝑢𝑇) = 𝛼Δ2𝑇 (16) 

where u and T denotes the velocity and temperature 

field.The parameters 𝜈  , 𝜅  , 𝛽  are kinematic 

viscosity , thermal diffusivity and thermal expansion 

coefficient.For implementing the lattice boltzmann 

method eq(15) and eq(16) are taken into 
consederation.  

4.1  Numerical Methodology:Two Polpulation 

Thermal Lattice Boltzmann Model 

 The Thermal Lattice Boltzmann model 

involves two steps- streaming and collision of two 

distribution functions.We have taken ′𝑓′ as the mass 

density distribution and ′𝑔′  as the temperature 

distribution with D2Q9 and D2Q5 model 

respectively.The two distributions obey their 

respective lattice boltzmann transport equation with 
SRT BGK approximation.The streaming and collision 

of each of the distribution function is given by  

𝑓𝑖(𝑥 + 𝑒𝑖Δ𝑡 + 𝑡 + Δ𝑡) − 𝑓𝑖(𝑥, 𝑡) =
Δ𝑡

𝜏𝑓
[𝑓𝑖

𝑒𝑞
(𝑥, 𝑡) −

𝑓𝑖(𝑥, 𝑡)] + 𝐹𝑖 (17) 

  

𝑔𝑖(𝑥 + 𝑒𝑖Δ𝑡 + 𝑡 + Δ𝑡) − 𝑔𝑖(𝑥, 𝑡) =
Δ𝑡

𝜏𝑔
[𝑔𝑖

𝑒𝑞
(𝑥, 𝑡) −

𝑔𝑖(𝑥, 𝑡)] (18) 

where 𝐹𝑖  is the force due to Boussinesq 

approximation.The relaxation times of both the 

distributions are given by the relations 𝜈 = 𝑐𝑠
2(𝜏𝑓 −

1/2) and 𝛼 = 𝑐𝑠
2(𝜏𝑔 − 1/2) where 𝑐𝑠  is the lattice 

speed of sound.For each of the distributions the 

equilibrium distribution are given by  

𝑓𝑖
𝑒𝑞

(𝑥, 𝑡) = 𝑤𝑖𝜌(1 + 3
𝑒𝑖𝑢

𝑐
+

(𝑒𝑖𝑢)2

𝑐2 −
𝑢.𝑢

𝑐2 ) (19) 

  

 

     𝑔𝑖
𝑒𝑞

= 𝑤𝑔𝑇(1 + 3
𝑒𝑖𝑢

𝑐
) (20) 

The introduction of force 𝐹𝑖  in eq(17) is given by 

𝐹𝑖(𝑥, 𝑡) = 3𝑤𝑖𝑔𝛽[𝑇(𝑥, 𝑡) − 𝑇0]𝜌(𝑥, 𝑡)𝑒𝑖𝑦  following 

the forcing scheme with Boussinesq 

approximation.The flow macroscopic properties are 

defined by 𝜌 = Σ𝑖𝑓𝑖 ,𝜌𝑢 = Σ𝑖𝑓𝑖𝑒𝑖  and 𝑇 = Σ𝑖𝑔𝑖  for 

density,moment flux and temperature 

respectively.The characteristic velocity scale 𝑉 ≡

√𝛽𝑔𝑦Δ𝑇𝐻  is equal to 𝑀𝑎𝑐𝑠 .The subsequent 

parameters are calculated by  

 𝜈2 =
𝑉2𝑙2𝑃𝑟

𝑅𝑎
 

 𝛼 =
𝜈

𝑃𝑟
 

The average Nusselt Number of the flow is given by  

𝑁𝑢 =
𝑙

Δ𝑇

1

𝐿𝐻
∬

𝑆
𝑞(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (21) 

where 𝑞(𝑥, 𝑦) = 𝑢𝑇 − 𝛼
𝜕𝑇

𝜕𝑥
 is the local flux and L and 

H are the length and height of the domain.The 𝑙 
denotes of the length scale specific to the problem.  

4.2  CASE:Temperature difference across the 

Horizontal Boundary 

 The geometric setup of the first test case is 

given in the Fig. 7.A temperature difference, Δ𝑇 =
𝑇ℎ − 𝑇𝑐 is applied across the horizontal walls of the 

domain.The gravity is acting in the vertical direction 

with adiabatic walls on the top and bottom.  

               Figure  7                               
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Table  1: The value of the N ̅u for different grid domain with the benchmark solution         

 

In the simulation, the 2D cavity is mapped with square 

lattice in which Δ𝑥 = Δ𝑦  with Δ𝑡 =1.Grid 

independence study is performed for 

Ra= 103, 104, 105  and 106  with Pr = 0.71.The 

average Nusselt number given in eq.(21) is calculated 
for each of the cases and compared with the existing 

benchmark solution of DeVahl Davis deVahlDavis et 

al (1983)] to check for correctness of the method. For 

a greater level of grid convergence the steady state 

criteria used is given by  

 

max
𝑖,𝑗

|
𝑇𝑛−𝑇𝑛−1

𝑇𝑛−1
| ≤ 10−7 (22) 

 

is imposed. Considering the thermal domain, the left 

and right boundary are provided with a fixed 

temperature with the left at 𝑇ℎ higher than the right 

𝑇𝑐 .For the temperature fixed boundaries , Dirichlet 

BCs are employed gived by  

 

𝑔1 = 𝑇ℎ − 𝑔0 − 𝑔2 − 𝑔3 − 𝑔4: 𝑙𝑒𝑓𝑡𝑜𝑢𝑑𝑎𝑟𝑦 

𝑔3 = 𝑇𝑐 − 𝑔0 − 𝑔1 − 𝑔2 − 𝑔4: 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

 

 For the top and bottom walls adiabatic conditions are 

employed through second order finite difference given  

by  

 3𝑇𝑛 − 4𝑇𝑛−1 + 𝑇𝑛−2 = 0 (23) 

 −𝑇1+2 + 4𝑇1+1 − 3𝑇1 = 0 (24) 

 

 

The temperature at the boundary nodes calculated  

 

from eq(24) is used to calculate for the distribution 𝑔𝑖. 

The problem can also be investigated through constant 

flux at the boundaries using Neuman BCs but we have 

limited our discussions to Dirichlet BCs only.  

 

4.2.1 Results 

 
 The tabulated data Table.1 is obtained after 

the stability criteria of is statisfied.In addition we 

investigated the isotherms and streamlines given in 

Fig. 9 to get a overall idea of the randomness of the 

system with the increase in Rayleigh Number. 
  

  

 

  

    

 

 

                                 

 

 

 
 

 

 

 

 

Rayleigh Number   Grid   Benchmark(DeVahl Davis)   LBM   Error  

 1000     1.118      

  181 × 181     1.218   0.33%  

  250 × 250     1.1197   0.15%  

  300 × 300     1.1186   0.05%  

10000    2.243      

  181 × 181     2.2248   0.81%  

  250 × 250     2.235   0.35%  

  300 × 300     2.25   0.312%  

100000    4.519      

  181 × 181     4.4603   1.81%  

  250 × 250     4.4735   1.0%  

  300 × 300     4.48   0.86%  

1000000    8.825      

  181 × 181     8.335   5.5%  

  250 × 250     8.71   1.3%  

  300 × 300     8.78   0.59%  
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            Figure 9: Isotherms and Streamlines for Ra=103,104,105 and106 (Top to bottom)
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4.3 CASE: Temperature difference across the Vertical 

Boundary 

 

 The geometric setup of the second test case is  

given in the Fig. 8.The same temperature 

difference,Δ𝑇 = 𝑇ℎ − 𝑇𝑐 is applied across the vertical  

walls of the domain opposite to the direction in 

which gravity is acting.In the simulation the 2D cavity 

is mapped with rectangular lattice with a aspect ratio 

of 2 in which Δ𝑥=Δ𝑦 with Δ𝑡=1.Analysis are done 

for Ra=2000,10000 and 50000 with Pr=0.71.The  

average Nusselt number is calculated for Pr=0.71 and 

7 of the cases and compared with the MRT LBM 

simulations of Wang [Wang et~al.(2013)Wang, 
Wang, Lallemand, and Luo].The stability criteria of 

the previous case succeeds in giving convincing 

results for this case also.For the fixed temperature 

vertical boundary conditions the same Dirichilet 

scheme is applied and the other two walls are provided 

with a periodic BCs.  

 
4.3.1  Results 

We calculated the value of the 𝑁𝑢  to have a 

comparative study with the LBM (MRT) model of 

Wang et al.(2013).The isotherms for the different 

Rayleigh number is given in Fig.11.  

 
 

Pr=0.71 𝑅𝑎 = 104  

  

  

     

Pr=7 𝑅𝑎 = 104  

  

 

  

    

           

 
Figure  11: Isotherms of Ra=2000,10000 and 50000 

     

 

   

 

 

 

 

 

 

 

Grid   LBM(SRT)   LBM(MRT)  

 82 × 42   2.5925  2.6621  

162 × 82  2.6571   2.656 

 

Grid   LBM(SRT)   LBM(MRT)  

 82 × 42   2.6228  2.6117  

162 × 82   2.716   2.6115 
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V. STEFAN PROBLEM OF PHASE 

TRANSITION 

 
 An extended lattice boltzamnn method was 

developed for the simulation of the phase change 

problem governed by the heat conduction equation 

incorporated with the enthalpy formulation [Jiaung et 

al.(2001).In the enthalpy formulation approach the 

governing equation for the heat conduction problem 

expressed in terms of enthalpy is given by  

 
𝜕(𝜌𝐻)

𝜕𝑡
= Δ. (𝜆Δ𝑇) (25) 

where total enthalpy, 𝐻  is divided into sensible 

enthalpy and latent heat for the phase change.  

𝐻 = 𝐶𝑇 + 𝑓𝑙𝐿 

where 𝐶  and 𝐿  represents teh constant pressure 

specific heat and latent heat for the phase change and 

𝑓𝑙  is the volume fraction of liquid. Substituting in 
eq(25) we get  

 
𝜕(𝜌𝐶𝑇)

𝜕𝑡
= Δ. (𝜆Δ𝑇) − 𝐿

𝜕𝜌𝑓𝑙

𝜕𝑡
 (26) 

where 𝜆 is the thermal conductivity.The latent heat L 

appears in the source term.In dimensionless form  

 
𝜕𝜃

𝜕𝑡
= Δ2𝜃 −

1

𝑆𝑡

𝜕𝑓𝑙

𝜕𝑡
 (27) 

where 𝑆𝑡  is the stefan number and 𝜃  is the non 

dimensional temperature. The enthalpy 𝐻 is used to 

calculate for the liquid fraction given by  

𝑓𝑙 =
𝐻−𝐻𝑠

𝐻𝑙−𝐻𝑠
 (28) 

 

Where 𝐻𝑠  and 𝐻𝑙  are the enthalpy values for the 

soild and liquid phase.The effective thermal 
difussivity can be represented as  

𝛼 =
(1 − 𝑓𝑙)𝜆𝑠 + 𝑓𝑙𝜆𝑙

(1 − 𝑓𝑙)(𝜌𝐶)𝑠 + 𝑓𝑙(𝜌𝐶)𝑙

 

where 𝜆 is the thermal conductivity. 

The momentum equation is given by  
𝜕𝑢

𝜕𝑡
+ Δ. (𝑢𝑢) = −Δ𝑝 + 𝜈Δ2𝑢 + 𝐹 (29) 

where the force 𝐹  is considered to be zero for 

conduction case.  

 

5.1  Numerical Methodology:Enthalpy based 

Lattice Boltzmann model with Phase change 

 We adopted two different model for 

temperature ad mass density distributions for the give 

problem.Density field is simulated through the D2Q9 

model with 9 discrete directional distributions.For this 

the Lattice Boltzmann equation for streaming and 

collision is given by eq(5). For the temperature field 

D2Q5 model with 5 discrete directional distribution is 

taken into consideration.  

 

𝑔𝑖(𝑥 + 𝑐𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑔(𝑥, 𝑡) = −
𝑔𝑖(𝑥,𝑡)−𝑔𝑖

𝑒𝑞
(𝑥,𝑡)

𝜏𝑔
+

Δ𝑡Φ (30) 

where Φ corresponds to the source term introduced 

due to the phase change. The equilibrium distribution 

for D2Q5 model is  

 

𝑔𝑖
𝑒𝑞

= 𝑤𝑔𝑇(1 + 3
𝑒𝑖𝑢

𝑐
) (31) 

The relaxation times of both the distributions are given 

by the relations 𝜈 = 𝑐𝑠
2(𝜏𝑓 − 1/2) and 𝛼 = 𝑐𝑠

2(𝜏𝑔 −

1/2) where 𝑐𝑠  is the lattice speed of sound.For the 

solidification and melting process the latent heat 

required for the phase change at the interface act as a 

source term.For the present LBM model we have 

considered the source term explicitly in the collision 
process given by  

𝑔𝑖(𝑥 + 𝑐𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑔(𝑥, 𝑡) = −
𝑔𝑖(𝑥,𝑡)−𝑔𝑖

𝑒𝑞
(𝑥,𝑡)

𝜏𝑔
−

𝑤𝑔𝑖Δ𝑡Ψ (32) 

where Ψ =
𝐿

𝐶

𝜕𝑓𝑙

𝜕𝑡
.The same enthalpy based approach is 

applied to both solidification and melting process with 

different initial parameters.During the marching time 

step the iterative procedure is given by 

1.The collision term at the new time level 𝑡 +
Δ𝑡 is given by  

𝑔𝑖
(𝑛+1)

(𝑥 + 𝑐𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑔𝑖
𝑛(𝑥, 𝑡) +

𝑔𝑖
𝑛(𝑥,𝑡)−𝑔𝑖

𝑒𝑞
(𝑥,𝑡)

𝜏𝑔
− Δ𝑡𝑤𝑔𝑖

𝐿

𝐶

𝑓𝑙
𝑛(𝑡)−𝑓𝑙

𝑛−1(𝑡−Δ𝑡)

Δ𝑡
 (33) 

 where n+1,n and n-1 are three consecutive time steps. 

2.Then temperature is calculated by 𝑇𝑛+1 =
Σ𝑖𝑔. 

3.The total enthalpy is updated by 𝐻𝑛+1 =
𝐶𝑇𝑛+1 + 𝑓𝑙

𝑛𝐿  where 𝐶 = (1 − 𝑓𝑙
𝑛)𝐶𝑠 + 𝑓𝑙𝐶𝑙  is the 

equivalent specific heat. 

4.The liquid fraction of then updated  

𝑓𝑙
𝑛+1 = (

0 𝐻𝑛+1 < 𝐻𝑠

𝐻𝑛+1−𝐻𝑠

𝐻𝑙−𝐻𝑠
𝐻𝑠 ≤ 𝐻𝑛+1 ≥ 𝐻𝑙

1 𝐻𝑛+1 > 𝐻𝑙

 (34) 

 The steps are iterated at each time step.  

 

5.2  CASE: One Region Melting Process 

 The problem is defined as a one region 

melting problem subjected to a prescribed 

temperature.Initially the system is full solid at phase 

change temperature, 𝑇𝑚 .At t=0 ,the temperature at 

x=0 i.e left boundary is raised to 𝑇ℎ > 𝑇𝑚  and 

maintained at that temperature for all times 𝑡 > 0 
shown in Fig. 12.The problem is one region because 

the solid phase is at a constant temperature throughout 

and only unknown in the liquid phase.For the 

prescribed temperature case ,the solution was 

determined analytically given by  
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𝑇(𝑥, 𝑡) =

(
𝑇ℎ − (𝑇ℎ − 𝑇𝑚)

𝑒𝑟𝑓(𝑥/2√𝛼𝑡)

𝑒𝑟𝑓(𝜆)
𝑥 < 𝑋(𝑡)

𝑇𝑚 𝑥 > 𝑋(𝑡)
 (35) 

where 𝑋(𝑡) = 2𝜆√𝛼𝑙𝑡  is the position of the solid 

liquid interface. The parameter 𝜆 is the solution of the 

transcendental equation given by  

 

𝜆𝑒𝜆2
𝑒𝑟𝑓𝑐(𝜆) =

𝑆𝑡

√𝜋
 (36) 

where St= 𝜌𝐶𝑠
(𝑇ℎ−𝑇𝑚)

𝐿
 is the Stefan number.The 

equivalent thermal diffusivity is given by the 

expression  

 

𝛼𝑚 =
(1−𝑓𝑙)𝜆𝑠+𝑓𝑙𝜆𝑙

(1−𝑓𝑙)𝜌𝐶𝑆+𝑓𝑙𝜌𝐶𝑙
 (37) 

  

         

 

Figure 12: Schematic and Simulation representation 

of the one region melting problem 

    

5.2.1  Results 

 The Stefan number is fixed at 0.125 with ratio 

of thermal conductivity 
𝜆𝑙

𝜆𝑠
=0.25 and ratio of specific 

heat 
𝐶𝑙

𝐶𝑠
=4.The analytical solution is plotted with the 

simulated results for each time for validation with the 

theoretical approach given in Fig. 13. 

 

Figure  13: Plot of non-dimensional 

temperature(
𝑇−𝑇𝑚

𝑇ℎ−𝑇𝑚
) at 2000s,6000s and 11000s.The 

solid line represents the analytical solution 
 

5.3  CASE: Two Region Melting Process 

 Initially , t=0 the whole domain is in solid 

phase at temperature 𝑇0 lower than the phase change 

temperature 𝑇𝑚.The temperature at the left boundary 

is suddenly raised to 𝑇ℎ > with 𝑇ℎ > 𝑇𝑚 > 𝑇0  and 

maintained at all times 𝑡 > 0.Melting begins at the 

surface at x=0 and proceed into the material.Fig. 14 

represents the schematic representation of the 

problem.The temperature distribution can be solved 

analytically given by  

𝑇(𝑥, 𝑡) =

(
𝑇ℎ − (𝑇ℎ − 𝑇𝑚)

𝑒𝑟𝑓(𝑥/2√𝛼𝑡)

𝑒𝑟𝑓(𝜆)
𝑥 ≤ 𝑋(𝑡)

𝑇0 + (𝑇𝑚 − 𝑇0)
𝑒𝑟𝑓𝑐(𝑥/2√𝛼𝑠𝑡)

𝑒𝑟𝑓𝑐(𝜆√𝛼𝑠/𝛼𝑙
𝑥 > 𝑋(𝑡)

 (38) 

where 𝛼𝑠 =
𝜆𝑠

𝜌𝐶𝑠
 and 𝛼𝑙 =

𝜆𝑙

𝜌𝐶𝑙
 are the thermal 

diffusivity of solid and liquid phase.The constant 𝜆 is 

the solution of the analytical solution  
𝐶𝑙(𝑇ℎ−𝑇𝑚)

𝑒𝜆2
𝑒𝑟𝑓(𝜆)𝐿

−
𝐶𝑠(𝑇𝑚−𝑇0)√𝛼𝑠/𝛼𝑙

𝑒𝜆2𝛼𝑙/𝛼𝑠𝑒𝑟𝑓𝑐(𝜆/√𝛼𝑠/𝛼𝑠)𝐿
= 𝜆√𝜋 (39) 

The location of the interface of phase chage is given 

by 𝑋(𝑡) = 2𝜆√𝛼𝑙𝑡.  

          

 

 

Figure  14: Schematic and Simulation representation 

of the two region melting problem 

    

5.3.1  Results 

 The Stefan number is fixed at 0.25 with ratio 

of thermal conductivity 
𝜆𝑙

𝜆𝑠
=0.25 and ratio of specific 

heat 
𝐶𝑙

𝐶𝑠
=2..The analytical solution is plotted with the 

simulated results for each time for validation with the 

theoretical approach given in Fig. 15.There is change 

in the profile for two different phase seperated by the 

interface at melting temperature.  
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Figure 15: Plot of non-dimensional 

temperature(
𝑇−𝑇𝑚

𝑇ℎ−𝑇𝑚
) at 2000s,6000s and 11000s.The 

solid line represents the analytical solution.The dotted 

line represent the melting point 

 

5.4  CASE: Melting Process by convection 

 Initially the substance is uniformly solid at 

melting temperature 𝑇𝑚 .At t=0 , the temperature at 

left boundary is raised to a temperature 𝑇ℎ > 𝑇𝑚 

while the other boundaries are assumed to be 
adiabatic.The simulation is carried out with following 

assumptions:(1)the fluid in the domain is 

incompressilble(2)Boussinesq approximation is 

applicable for the fluid.The problem is dependent of 

the following on-dimensional parameters : 𝑅𝑎 =
𝑔𝛽Δ𝑇𝐻3

𝜈𝛼
, 𝑃𝑟 =

𝜈

𝛼
, 𝑆𝑡 = 𝐶𝑝

Δ𝑇

𝐿
 where Δ𝑇  is the 

temperature difference and the parameters are 

Rayleigh number,Prandtl number and Stefan number 

respectively.We focused on calculating Nusselt 

number at the left boundary for three different 𝑅𝑎 =
2.5 × 103, 2.5 × 104 and 2.5 × 105.  

 

𝑁𝑢ℎ = −
𝐿

Δ𝑇
∫

𝐻

0

𝜕𝑇

𝜕𝑥
𝑑𝑦 (40) 

where L is the length scale along the temperature 

difference.With the increase in Fourier number the 

Nusselt number is attaining a steady value given in 

Fig. 17. 

 

 

 

 

Figure  16: Isotherms for convection melting for 

consecutive time steps 

    

 

Figure  17: Nusselt numer at the left boundary with 
fourier number(Fo) 

 

VI. CONCLUSION 

 

 The lattice boltzmann model provides an 

efficient and effective way to simulate fluid flow 

problem with complex boundary conditions.In this 

study we investigated three different cases - the lid 

driven cavity flow,the rayleigh benard problem and 

the stefan problem of solidification and melting for 

different dimensionless parameters like reynolds 
number, rayleigh number, prandtl number,stefan 

number and provided excellent results in accordance 

to the existing benchmark solution.All the cases 

simulated are within the incompressible limit 

(Ma<0.3) with appropriate velocity scale. 
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NOMENCLATURE  

𝑓𝑖  Population 

distribution  

Ω  Collision operator  

𝑢, 𝑈  Velocity  

𝜌  Density  (m/s) 

𝜈  kinematic viscosity  (kg/𝑚3) 

𝑅𝑒  Reynolds number  (𝑚2/𝑠) 

𝑅𝑎  Rayleigh number  

𝑇ℎ , 𝑇𝑐  Temperature  

𝛽  Thermal Expansion 

Coefficient  

(K) 

𝛼  Thermal Diffusivity  (𝑇−1) 

𝑔𝑖  Temperature 

population 

distribution  

(𝑚2/𝑠) 

𝑔  Gravity  

𝑁𝑢  Nusselt Number  

𝑞(𝑥, 𝑦)  Heat flux  (𝑚/𝑠2) 

𝐻  Enthalpy  

𝐶  Specific Heat  ( 𝑊/
𝑚2) 

𝑓𝑙  Liquid phase 

fraction  

(J) 

𝐿  Latent heat  (J/(K.kg

)) 

𝜃  Non dimensional 

Temperature 

𝜆  Thermal 

conductivity  

(J/kg) 

𝑆𝑡  Stefan number 


