
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 141-144
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

141

NAP: IMPROVING THE QUALITY OF SEARCH

BY DEDUPLICATING THE SEARCH RESULTS

Naresh Sharma

Asst. Professor,

Department of CSE,

SRM University, Ghaziabad

 Purvi Garg

Department of CSE,

SRM University, Ghaziabad

Amit Mishra

Department of CSE,

SRM University, Ghaziabad

Abstract— Search Engine Optimization is a very fast

growing and vast area of research and can be achieved by

focusing on different aspects of a search engine like Page

rank, Duplicacy, Redundancy etc. In this paper, we have

proposed a prototype of a search engine called NAP. NAP

will optimize and provide high quality search results by

removing the redundant or duplicate results from the

Search Engine Results Page (SERP). By duplicate results

we mean different links or URLs containing the same

content. This de-duplication of search results is done by

applying a filter between the SERP and the ranked pages

and as a result only the unique pages will be displayed to

the searcher.

Keywords— Redundancy, Duplicacy, SERP, Page Rank,

Indexing, Crawler, Searcher, Deduplicator

I. INTRODUCTION

Accessing the web in search of any information is a common

practice. In fact, “Google” itself has become a verb in this

digital era. The web is composed of interconnected pages

which consists of information which can be accessed by

means of search engines. As stated in [9], the current size of

the web is 49 billion web pages which is growing at an

exponential rate. A large percentage of these web pages are

exact or near duplicates. The searcher faces a lot of difficulties

in dealing with this duplicate data. Search engine giants like

Google, Yahoo and Bing are carrying out a great deal of

research to develop an efficient mechanism to manage this

duplicate data on the web in order to enhance the quality of

search. Many a times it is found that the SERP contains

redundancy, which simply means same content on different

links which annoys the searcher and distracts him/her from

search. The duplicate contents degrade the quality of search

and provide a poor search experience.

The main objective of this paper is to provide an efficient

mechanism to handle these duplicates and provide clean and

good quality search results with only unique results. To attain

the goal, the architecture for a better search engine is proposed

which has a specific module to deal with these duplicates and

eliminate them from the SERP. Section II gives a brief about

the latest research done in the field of search results

deduplication. Section III explains the architecture of NAP,

the proposed search engine. Section IV gives the

implementation details. Section V shows the experimentations

carried out to test the system and the results obtained. Section

VI shows the conclusion and finally Section VII for further

readings and references.

II. RELATED WORK

Although the search engine technology is a pretty mature one,

there is still much scope for improvements. The amount of

data on the web is growing and so is the amount of duplicates.

Nearly 40% data on the web is nearly similar to each other and

hence it becomes a matter of concern to eliminate those

duplicates from the search results on the SERP. Much of the

research has been done in this field in the last decade. An

apparatus and method for producing non-redundant search

results was discovered by Sattler and Gaffga in [1]. Thwel and

Thein presented an improved indexing mechanism for data

deduplication using the properties of B+ tress in [2]. Zhang,

Bhagwat, Litwin, Long and Schwarz presented parallel

binning for improved deduplication in [3]. Another method for

duplicate document detection during web crawling was

developed by Dulitz, Verstak, Ghemawat and Dean in [4].

Mettrop, Nieuwenhuysena and Smuldersb presented in

INSCIT 2006 How Google web search copes with very similar

documents [5]. In [6] Pabitha showed a method to optimize

the search results by elimination of duplicate URLs. Jain,

Dahlin and Tewari presented the use of bloom filters for

refining the web search results in [7]. SpotSigs [8], an

algorithm for detection of duplicates in large web collections

was presented by Theobald, Siddhart and Paepcke.

III. SYSTEM ARCHITECTURE

This section will describe the components of NAP and gives

the details about its working. All the modules are explained in

detailed separately for better understanding. Fig 1 shows the

overall proposed architecture.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 141-144
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

142

Fig 1: Architecture of NAP

A. Crawler-

A crawler is a program which visits a webpage in order to

fetch its data and metadata for the search engine indexer. NAP

uses an open source API Apache crawler4j [10] which have b

configured accordingly to fetch all the details from the web

and store them in the repository and various databases.

Crawler4j has the record of crawling the whole Wikipedia in

10 hours. Crawler4J also follows Robot.txt rule while

crawling the webpages. Multithreaded crawling is provided by

Crawler4j which enables us to run multiple instances of the

crawler for parallel processing. The data fetched by the

crawler contains the docId (a unique number for each

webpage used as an identifier), URL, title, anchor, headings

and sub-headings, text contents, URL’s on the page

(hyperlinks present on the web page) and images &

multimedia content. Since NAP only deals with the textual

content, we are not concerned about the multimedia part for

now.

B. File Repository -

This is the database in which all the information (data/content)

of the crawled webpages is stored. NAP stores the data in the

form of .txt files which contains the text content of the

crawled webpages and are stored in the repository as the with

the file name same as the docId of the web page. These text

files are stored in the local file system in our case. The entire

system of NAP is currently working on a local system and

hence the local file system acts as the file repository. For large

scale application, a separate file server is to be used as the

repository.

C. URL Database -

This is a relational database. It stores the metadata of crawled

web pages. This database will store docId, URL, domain, path,

subdomain, parent URL, anchor, and title of the crawled

pages. Database which we are using here is MySQL database

on WAMP server [13]. WAMP stands for Windows Apache

MySQL PHP. It is an application software which provides the

services of web server and database server.

D. Indexer -

Indexer collects, parses and stores the data to facilitate fast and

accurate information retrieval. NAP uses an open source API

Apache Lucene 3.5 [11] for the indexing purpose. It indexes

file and stores in the form of index and provides an optimal

database for faster access. Lucene use inverted index which is

a data structure which maps the keyword to its location. It

parses the search query entered by the searcher and then

carries out the search process on the indexed database.

E. Indexed database-

This is a database which stores indexed files formed by the

Lucene. NAP uses the local file system of the host computer

as an index database. For large scale applications, a separate

file server can be used as the index database. This index

structure is highly optimized and compressed so as to provide

memory efficiency.

F. Search mechanism-

The search mechanism is NAP is two-step process. First step

is to parse the search query and optimize it so as to find the

actual keywords in the search query which can be searched on

the index database for efficient search. The second step is to

search that keyword on the database. These two steps are

carried out by separate modules which are explained below.

a. Query parser: It is a program that extracts the main

keyword from the query and makes it easy for the search

algorithm to resolve the query. It basically help the search

mechanism to understand what is to be searched. The

query parsing in NAP is done by Lucene. Lucene has a

separate class called “QueryParser.java” for parsing the

search query.

b. Search Algorithm:

Since Lucene uses inverted index and the data structure

used by Lucene is a hash table hence, hashing mechanism

is used for searching the keyword in indexed database.

Searching in Lucene is termed as “scoring”. The Lucene

“Searcher.java” class scores the webpages on the basis of

weight which means frequency of keyword in the indexed

database and gives the list of docIds of files having that

key word. This list is used to fetch the respective URL

and other details from the URL database and show it to

the user.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 141-144
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

143

G. Page Rank-

Page Rank is one of the most important factors for quality

ranking of web pages. Different search engines have different

measures for page rank calculations. NAP uses the frequency

of keywords to calculate the Page Rank of the pages received

as a result of the search mechanism. The pages are arranged in

the order of Page Rank from highest to lowest in order to give

the best results first. The rank calculation in NAP is also done

by Lucene.

H. Deduplicator-

The Deduplicator is the most important component of NAP.

NAP mainly focuses on the elimination of duplicate links i.e.

different links with similar content. To achieve this goal we

have applied a filter between the ranked pages and SERP. This

filter is named as “Deduplicator”. The Deduplicator does

string to string comparison of content of web pages to check

its uniqueness. This comparison is done by matching the bit

stream of the text files which are stored in repository. If two

files are found to have 90% of the data similar, they are

considered as duplicates. To check the originality of these

duplicate pages, we have made an assumption that the

webpages crawled earlier is the original one and hence the

time stamp of the text file from the file repository is checked

to find the original page and discard the duplicates from the

search result. The process of comparison and timestamp

matching is done by using an open source apache API

CommonsIO 2.4 [12].

I. SERP :-

SERP stands for Search Engine Result Page. This is the GUI

on which the final unique results are displayed to the user. It is

a simple HTML page used just to show the results.

IV. IMPLEMENTATION

NAP is implemented in Java SE 1.7 using Eclipse Kepler IDE.

All the APIs stated above have been configured and integrated

together to work as a complete system. Separate modules have

been developed for the Crawler, Indexer and the Search

Mechanism. The Deduplicator has been embedded with the

Search Mechanism so as to filter the search results just before

they are shown to the user.

V. EXPERIMENTATION AND RESULTS

In order to test the system, a virtual web is created on a local

system by downloading the full web structure of around

50,000 websites and hosting them in the local system using

WAMP Server. The tool used for downloading the web

structure is Win HTTrack [14], which is an open source web

crawler and offline browser. Several duplicates were added to

the data set so as to make the total count of websites to

80,000. The system used for testing was a Windows 10

System with Core i5 processor and 4 GB of RAM. The tests

for all the modules were carried out separately on this data set.

Each of those tests are discussed below.

A. Testing the Crawler

To test the crawler, the virtual web described above was

crawled using five instances of the crawler. The index page of

some of the hosted websites was added as the seed URLs and

the crawling process was started. The crawler took nearly 13

hours to crawl 80,000 web pages. The size of the text files

created during the crawling process was 204 MBs. These text

files were stored in the File Repositories, which in our case

was a directory in the local file system of windows.

B. Testing the Indexer

To test the indexer, the path to the file repository was given as

input to the indexing module in eclipse. It took just 1.6

minutes to index the repository containing 80,000 text files.

The index data base created by the indexer was also stored in

another directory of the local file system. The size of the index

of 80,000 pages was found to be 58.25 MBs.

C. Testing the Searcher and Deduplicator

To test the Searcher and Deduplicator, a web based GUI was

developed using HTML and PHP and the “NAP_Searcher.jar”

file which is runnable jar of the searcher module was

embedded in the web application and was hosted on WAMP

Server on the same system. Keeping in mind the configuration

of the host system, the maximum pages to be shown as result

was set to ten and the results was recorded in Table 1 which

shows the query, total number of pages found, number of

unique pages found and the time take to resolve the query.

Query Total

Number of

Pages

Number of

Unique

Pages

Time Taken

(Milliseconds)

SRM 10 9 26

Engineer 6 5 31

BHU 3 2 27

Delhi 10 6 25

Computer 10 8 25

Placement 10 9 25

Table 1: Search results for certain queries in NAP.

VI. CONCLUSION AND FUTURE WORK

NAP is the prototype for an advanced full featured web search

engine which can provide good quality and highly optimized

search results by eliminating the redundancy from the SERP.

The test results have found to be impressive and it can be

assumed that if tested in server environment with high

configuration web servers, it show much better results.

Providing high quality search results is the prime goal of any

search engine and NAP has proven to be fully up to the mark

in providing unique results.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 141-144
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

144

No system is perfect and there is always a scope of

improvement. The prime goal for near future of NAP is to

improve the time complexity and also include image and

multimedia search feature.

V. REFERENCE

[1] Sattler, Juergen, and Joachim Gaffga. "Method and

apparatus for non-redundant search results." U.S. Patent

Application 11/176,122, filed July 6, 2005.

[2] T. T. Thwel and N. L. Thein, "An Efficient Indexing

Mechanism for Data Deduplication," 2009 International

Conference on the Current Trends in Information

Technology (CTIT), Dubai, 2009, pp. 1-5.doi:

10.1109/CTIT.2009.5423123

[3] Z. Zhang, D. Bhagwat, W. Litwin, D. Long and S. J. T.

Schwarz, "Improved deduplication through parallel

Binning," 2012 IEEE 31st International Performance

Computing and Communications Conference (IPCCC),

Austin, TX, 2012, pp. 130-141.doi:

10.1109/PCCC.2012.6407746

[4] Dulitz, Daniel, Alexandre A. Verstak, Sanjay Ghemawat,

and Jeffrey A. Dean. "Duplicate document detection in a

web crawler system." U.S. Patent 7,627,613, issued

December 1, 2009.

[5] Mettrop, Wouter, Paul Nieuwenhuysena, and Hanneke

Smuldersb. "How Google Web Search copes with very

similar documents." (2006).

[6] Pabitha, International Journal of Emerging Research in

Management &Technology ISSN: 2278-9359 (Volume-4,

Issue-1), Search Engine Optimization by Eliminating

Duplicate Links.

http://www.ermt.net/docs/papers/Volume_4/1_January20

15/V3N12-121.pdf

[7] Jain, Navendu, Michael Dahlin, and Renu Tewari. "Using

Bloom Filters to Refine Web Search Results." In WebDB,

pp. 25-30. 2005.

[8] Theobald, Martin, Jonathan Siddharth, and Andreas

Paepcke. "Spotsigs: robust and efficient near duplicate

detection in large web collections." In Proceedings of the

31st annual international ACM SIGIR conference on

Research and development in information retrieval, pp.

563-570. ACM, 2008.

[9] Worldwidewebsize.Com | The Size of the World Wide

Web (The Internet).Worldwidewebsize.com. N.p., 2016.

Web. 17 Apr. 2016.

www.worldwidewebsize.com

[10] Ganjisaffar, Y. "Crawler4j–Open Source Web Crawler

 for Java." (2012).

 https://github.com/yasserg/crawler4j

[11] Zhou, Deng-Peng, and Kang-Lin Xie. "Lucene search

engine." Jisuanji Gongcheng/ Computer Engineering 33,

no. 18 (2007): 95-96.

https://lucene.apache.org/core/

[12] Team, Commons. "Commons IO - Commons IO

Overview". Commons.apache.org. N.p., 2016. Web. 18

Apr. 2016.

https://commons.apache.org/proper/commons-io/

[13] “Wampserver”. WampServer. N.p., 2016. Web. 18 Apr.

2016.

http://www.wampserver.com/en/

[14] Roche, Xavier. "Httrack website copier-offline

browser." Computer Software]. Retrieved Jan 30 (2007):

2011.

https://www.httrack.com/

http://www.worldwidewebsize.com/
https://github.com/yasserg/crawler4j
https://lucene.apache.org/core/
https://commons.apache.org/proper/commons-io/
http://www.wampserver.com/en/
https://www.httrack.com/

