
 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 146-150

 Published Online October 2021 in IJEAST (http://www.ijeast.com)

146

IMPERCEPTIBLE MALWARE: BYPASSING

MODERN AV - ENGINES BY AI-ASSISTED

CODE
 Aviral Srivastava Dhyan Thakkar Pulkit Verma Preay Patel

 Student Student Student Student

Amity University Jaipur Nirma University Amity University Jaipur Amity University Jaipur

Abstract— In recent times new Antivirus software are using

Machine learning to make their detection even more

sophisticated. Machine learning, reinforcement learning,

and deep learning along with data analysis have made it

possible to implement a dynamic analysis procedure to

detect any malware. So in this paper, we will be introducing

an algorithm by which we will not only be able to bypass

signature-based detection by ‘rephrasing the code’ using

CLP, along with the behavioral-based analysis, which are

the most prominent methods for the job, but also will be

attempting to go around the real-time monitoring and try to

be undetected during the forensic investigation by clearing

code footprint.

Keywords—Malware, Antivirus, Dynamic and Static

analysis, Behavioral-based detection, Code language

processing, Machine Learning

I. INTRODUCTION

Earlier when the Anti-malware services used the signature-

based detection method the black hat hacker and people with

malicious behavior could easily bypass it using some sort of

wrapping or binding the malware to another file and using

cryptography or steganography. The idea was to change the

signature a little bit so that it wouldn’t be recognized by the AV

engine. But now in the era of AI, we are using neural networks

and machine learning to do things easily which were considered

complicated. One such thing is Dynamic analysis which is like

a behavioral-based detection which we will discuss later in-

depth further in this paper. The main challenge is how to make

malware not behave like malware so that it could bypass the

behavioral-based detection without changing the primary

objective.

Since this technique is still under the research and development

phase, therefore being a Security analyst and researcher there

will not be any better opportunity to find flaws in this system

that can be fixed right now before any person with a wrong

intent gets this. The main questions we will be answering in this

paper are (1) Is it possible to bypass behavioral-based detection

(2) What is CLP (code-language-processing) (3) How do

Machine learning algorithms still need to be worked on to get

ahead of the malicious human-brain.

II. WHY IS THIS PAPER AND WHO IS THIS FOR?

This paper is for the antivirus agencies and the big tech

companies who make anti-malware software and tools. The

motive is to point out the flaws in the system in an ethical way

without performing any real exploit and causing damage. All

the tests were done in an observed and private virtual

environment. Since almost everyone whether it is an individual

or a tech giant or a startup is at risk of cyberattacks and malware

attacks because of which they implement these anti-malware

services to avoid those, therefore this paper will help the

developers to patch the flaws pointed in this paper to make the

system more efficient. Also, this is for malware researchers and

cybersecurity and machine learning students who are willing to

learn about the new technologies and their working and how

you can help to find flaws and help the authorities to patch them

up.

III. EXISTING WORKS

Currently, Anti-malware companies use signature-based

detection which is not that great, and malware/exploit

developers can find a way around it. There are even tools

available that help in doing the same. This is called Static

analysis. To make things better the companies and researchers

are working on finding ways to detect malware based on its

behavior. There are only two profound ways to classify any

object: first is based on its signature and the second is its

behavior or characteristics. Now, this technique needs the code

to run to observe its behavior, therefore this is also called

Dynamic analysis. In Dynamic analysis, we mostly do pattern

recognition to achieve behavioral-based analysis.

A. Static Analysis

Signature-based approach: Signature detection [1] is the

simplest method and is the most widely used for traditional

malware detection. This method constructs a database that

contains signatures of all known malware. When analyzing a

new programming code, it compares the signature of the

analyzed virus with its database, if the matching is found, the

analyzed file is considered as a virus. This approach is fast and

has a high positive rate, however, the database needs to be

updated with new signatures. Although this technique is old, it

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 146-150

 Published Online October 2021 in IJEAST (http://www.ijeast.com)

147

was used in the early days of polymorphic detection when an

investigator/researcher analyzed the virus manually, one by

one, line by line to detect various sequences of programming

codes [2]. As the number of viruses has been increasing so fast,

this technique quickly becomes time-consuming, expensive,

and impractical.

System call analysis: Sung et al. [3] proposed the Static

analyzer for malicious executable (SAVE) to detect malware,

mostly focusing on polymorphic and metamorphic viruses

which run on Windows Operating System. This method works

based on the assumption that all malware variants share a

common core signature - a combination of several features of

the programming code. In their method, two critical steps were

involved: First, the Portable Executable (PE) decompressed and

passed through a parser, this parser produced a list of Windows

API calling sequences. Second, this API sequence will be

compared against the signature database; a similarity measure

was used to conclude the analyzed file. If the similarity is

greater than a certain threshold, the detection is trigged.

Control-flow graph:: Graphs are also used in the static analysis

[4] and [5] where a set of control flow graphs (CFG) were

constructed and reduced (where possible) and used as a

signature database. This method works based on the assumption

that the control flow graph of the malware was not modified in

most of the mutation engines. Detection is carried out by

comparing the sub-GFGs of the malicious file against the

signature database to find if any sub-CFG is matched with the

database. However, this method does not work when analyzing

the metamorphic virus because this virus can change the code

itself for each execution or change the branching structures of

that flow graph.

Model-checking: This method assumes that systems have a

finite state or may be reduced to a finite state by abstraction.

Serge Chaumette et al [6] used context-free grammars as viral

signatures and a process was designed to extract the simple

virus signature. This method was based on two assumptions:

First, most mutating engines generate code belonging to a

language that is low complexity, that is, belonging to either

natural language or context-free language. Second, the mutation

engine has to be embedded inside the self-replicating malware,

hence it is feasible to extract the grammar of the mutation

engine via static analysis. However, this method is very time-

consuming. Another study was presented by Gerald R.

Thompson and Lori A. Flynn [7], they compared the program's

hierarchical structure and mapped this structure to a context-

free grammar, normalized the grammar, and finally, they used

a fast check for homomorphism between the normalized

grammars. This technique is resilient despite polymorphism

that reorders instructions, rewrites instructions, inserts

instructions, or removes instructions. This approach did not

address encrypted files but can be applied after the file is

decrypted if the unencrypted virus is suspected to be

polymorphic.

Data-flow analysis: This method gathers information about the

possible set of values of objects and variables involved in the

specimen. Agrawal, Hira, et al. [8] proposed a Malware

Abstraction Analysis (MAA) method. They used two stages to

derive the semantic signature of a binary instance: First, all

functions were analyzed and abstracting away all unnecessary

control flow artifacts from their flow graphs. Second, all local,

function-level signatures were combined into a single, global

signature while abstracting away all call and return specific

artifacts. This method is resistant to such large-scale, global

transformations.

Machine learning analysis: In recent years, machine learning

has gained popularity in many fields including security. Robert

Moskovitch et. al. [9] proposed a technique that monitors a

small set of features that are sufficient for detecting malware

without sacrificing accuracy. The result of the study showed

that only using 20 features, the mean detection accuracy was

greater than 90 percent, and for specific unknown worms, this

accuracy was over 99 percent, while maintaining a low level of

false-positive rate. The advantage of machine learning

techniques is that they will not only detect a known malware

but also act as a database for detecting new malware. Similar

studies can also be found in other models such as Naive Bayes,

Decision Tree, Neural Network [9]. Although this technique is

practical, it may not replace the standard detection methods,

rather than act as an add-on feature because machine learning

techniques are computational and may not be suitable for end-

users.

B. Dynamic Analysis

Dynamic analysis was mainly developed to counter the

Polymorphic malwares. Trevor Yann and Oleg Petrovsky [10]

proposed architecture to detect polymorphic viruses, this

architecture includes three components: (1) an emulator that

emulates a selected number of instructions of the computer

program, (2) an operational code analyzer that analyzes a

plurality of registers/flags accessed during emulated execution

of the instructions and (3) a heuristic analyzer that determines a

probability that the computer program contains viral code based

on a heuristic analysis of register/flag state information

supplied by the operational code analyzer.

Polychronakis et al. [11] presented a heuristic detection method

that scans network traffic streams for the presence of

polymorphic shellcode. This algorithm relied on a fully-blown

IA-32 CPU emulator that makes the detector immune to

runtime evasion techniques such as self-modifying code. Each

incoming request was executed in a virtual environment. Their

algorithm focused on identifying the decryption process that

takes place during the initial execution steps of a polymorphic

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 146-150

 Published Online October 2021 in IJEAST (http://www.ijeast.com)

148

shellcode. The study result showed that the proposed approach

is more robust to obfuscation techniques like self-

modifications. One limitation of this approach was that it

detected only polymorphic shellcodes that decrypt their body

before executing their actual payload, it did not capture the

shellcode that did not perform any self-modifications.

Antony Rogers [13] proposed an apparatus to detect malicious

code that uses calls to an operating system to damage computer

systems. This method will be creating an artificial memory

region, this region may span one or more components of the

operating system. The malicious file will be executed and the

method will try to detect whether the executable code attempts

to access the artificial memory region. The method may

comprise determining an operating system call that the

emulated code attempted to access, and monitoring the

operating system call to determine whether the code is viral.

Another apparatus was presented by Igor et al. [12] where they

patched additional program instructions into an emulator for

detecting suspect code. During operation, a first emulator

extension was loaded into the emulator then the suspect code

was loaded into an emulator buffer within a data space of a com-

puter system. The suspect code was executed in the first

emulator extension. During this emulation, the system identifies

whether the suspect code is likely to exhibit malicious behavior.

Stepan [14] proposed a method to detect malware by dis-

assembling the malicious code dynamically then compiling this

code to target the CPU host, the execution file will be executed

safely on the host CPU. The code obtained can be used to

compare with the original cost. This method increases the

analysis speed significantly.

IV. METHODOLOGY

The process is divided into 2 parts: First is Code-language

processing or CLP and the second is the execution of the attack

itself and the bash script. As we go along we will also keep a

note of the detection stages that we bypass. The 4 main stages

will be (1) Real-time monitoring (2) SIgnature based detection

(static analysis) (3) Behavioral-based detection (Dynamic

analysis) and (4) Forensics. Keep in mind that we aren’t

proposing or writing a full-fledged exploit or malware to bypass

any of this. We will just be giving a concept based on the tests

which we have performed on a virtual machine. The CLP is

where we will work on the code which will allow us to stay

undetected during the forensics and bypass the Signature-based

detection (Static analysis).

A. Code-Language Processing (CLP)

Code-Language Processing is nothing but “rephrasing code”.

Rephrasing code by hand is easier but can lead to detection with

signature. Using Google Translate to translate text from one

language to another language and back doesn't always mean the

same. but commenting on the code and then using advanced

models like GPT-3 to rewrite the functions from a large

database helps us in bypassing signature detection as the code

is generated with help of AI and thus has a unique signature.

The auto commenting of code can be achieved using various

models. \cite{surveycodecomment}.

As Deep Neural Network-based algorithms have a high recall

and context understanding of comments, these comments can

then be fed to a code GAN like GPT using OpenAI Codex or

any other prevalent algorithms to get AI-generated code with

the same behavior but distorted signature.

B. Uploading malware

Now since we have our morphed malware we will break it into

pieces of code and save each part as a different file and name

them. Now, why do we do this to avoid being detected by any

real-time malware detection service? Since we have broken the

malware, each file will be nothing but simply an insufficient

piece of code. Now if you observe that these small files will not

behave as malware on their own, This will help us to circumvent

our main stage which is Behavioural-based detection. Since the

files won’t be showing any behavior then performing the

behavior-based analysis will not show any “Red Flags”.

This is the key idea and the main stage where we will be

bypassing the Dynamic analysis. Continuing with our process

we will upload the small files on the target network or machine.

During our tests, we used two virtual machines, windows and

Linux and for our test, we simply used a physical flash drive to

upload the malware on the target system or network. We can do

this by any method like SSH, CURL, TELNET, FTP, or by any

Mal Deep

Codex Sam
e

Signat

Malware.py

a.py m.py r.py w.py l.py e.py

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 146-150

 Published Online October 2021 in IJEAST (http://www.ijeast.com)

149

vulnerability found in the network through which we

compromised the network, if nothing works we can always use

social engineering to get our files on the target system or

network. Since we aren’t proposing an exploit so we can figure

this out in-depth while making a full-fledged exploit for this.

Since the files individually won’t be anything harmful therefore

any real-time time monitoring and detection will be bypassed

even if it will scan the files it won’t find anything but just an

insufficient piece of code. To bypass the Signature-Based

Detection we could do it just by simply breaking the complete

malware into pieces but to add a layer of assurance we used the

CLP. Now as the Behavioral-based analysis will be running it

will be observing the behavior of all the files but they won’t

show any sort of abnormal behavior which will help us be out

of the radar. Now since we have our malware on the system

undetected by both Static and Dynamic analysis we can proceed

further, the next step is to compile and run the malware inside

the machine, and for that, we will use a small bash script to do

so.

C. The Bash script

The bash script here is very important as it is the one that will

be responsible for the actual exploit. As mentioned earlier this

is not a full-fledged exploit so, We won’t be sharing the script

but we will have a look at what it would look like and how it

will work with the help of a sample figure shown in Figure 3.

Here we have a sample script which we will be using to run the

malware. Taking the same example of Malware.py, the first

step will be to find all the files I.E. the parts of malware for

example in this case ‘m.py, a.py, l.py, w.py, a.py, r.py and e..py,

‘ Then in the next step, we will Concatenate the content of all

the files into our main file “malware.py” in this case and then

remove all those files. just to cover the tracks because our final

stage is to not get caught during the forensics as well. After that,

we will run the recently made final output file which is

malware.py here, and give it some time to execute completely,

and then after 5 minutes remove it as well. Now even during the

forensics if the logs will be analyzed and they will come to

know about the malware file even then they won’t be able to

find it and even if they did anyhow then also that will not be the

original malware by just a rephrased version of the original one.

By this, we bypassed our final stage which is forensic

investigation.

NOTE:- The bash file can be run over the network via remote

execution or by any other tool out there; this is not a big deal

for any cybersecurity analyst. Also, the bash file here is just an

example to demonstrate how the process can take place.

V. IMPACT

The lethality of this is dependent upon the type of malware

used. This is just an algorithm by which any malware bypasses

the main 4 stages of detection. For example, if the first job of

the malware after being executed is to escalate its privileges or

turn off the security systems or stop and critical service, or even

a simple buffer overflow or ransomware, all these can be

harmful to the target.

VI. SUGGESTED IMPROVEMENTS

No perimeter can be completely secured and no AV engine can

detect all kinds of malware. This algorithm is developed with a

focus on how to bypass the Dynamic analysis and how

malwares can get through the behavioral-based analysis while

also evading signature-based analysis. Some changes which can

be made to counter this kind of attack which have a distributed

nature are:

1) Improving the real-time monitoring to analyze the

compiled processes when we used the bash script to compile the

malware

2) To make the behavioral analysis faster so that it can

observe the malware’s behavior when it is executed but before

it can cause severe damage.

3) To set up a process analyzer which will be helpful in

case if the malware is already executed then this can work along

with the behavioral analysis to monitor the background process

to look for anything harmful.

4) An advanced pattern recognition system

implementation can work in the background to find any

suspicious patterns in the background processes because even

if the behavioral-based analysis is not able to classify the

behavior on the file then this system can find patterns in the

backgrounds for example if there is ransomware then it will

start to encrypt the files so this can be detected in the process

monitoring and analysis because every malware needs to create

a service or at least need to bind with one to fully function.

5) At last, the first section of our CLP can be used to

comment on the code with proper context and read those

comments and send them to the codex API to identify the intent

of the code.

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 146-150

 Published Online October 2021 in IJEAST (http://www.ijeast.com)

150

VII. CONCLUSION

We still cannot depend completely upon the behavioral-based

detection method for our defense against malware attacks.

Dynamic analysis has made it possible to detect different kinds

of malwares like Polymorphic malware or even as advanced as

Metamorphic malware. We also saw how we can use CLP

which is inspired by Natural Language Processing (NLP) to

rephrase the malware which is a new way to bypass the

signature-based detection and also make it difficult to reverse

engineer the source code. The distributed nature of our attack is

still a way to fool both the Static and Dynamic analysis. But

these suggested improvements can surely help us in enhancing

the abilities of the Dynamic analysis used by the modern AV

engines.

VIII. REFERENCES

[1] Griffin, Kent, et al. "Automatic generation of string

signatures for malware detection." International workshop on

recent advances in intrusion detection. Springer, Berlin,

Heidelberg, 2009.

[2] Bondarenko, Yevgeniy, and Pavel Shterlayev.

"Polymorphic virus detection technology." Fond in

http://www.it.lut.fi/kurssit/05-

06/,Ti5318800/assign/Ti5318800_virusdetection.pdf On 5th

April (2006).

[3] Sung, Andrew H., et al. "Static analyzer of vicious

executables (save)." 20th Annual Computer Security

Applications Conference. IEEE, 2004.

[4] Christodorescu, Mihai, and Somesh Jha. Static analysis of

executables to detect malicious patterns. Wisconsin Univ-

Madison Dept of Computer Sciences, 2006.

[5] Bonfante, Guillaume, Matthieu Kaczmarek, and Jean-Yves

Marion. "Control flow graphs as malware signatures."

International workshop on the Theory of Computer Viruses.

2007.

[6] Chaumette, Serge, Olivier Ly, and Renaud Tabary.

"Automated extraction of polymorphic virus signatures using

abstract interpretation." 2011 5th International Conference on

Network and System Security. IEEE, 2011.

[7] Thompson, Gerald R., and Lori A. Flynn. "Polymorphic

malware detection and identification via context-free grammar

homomorphism." Bell Labs Technical Journal 12.3 (2007):

139-147.

[8] Agrawal, Hira, et al. "Detection of global, metamorphic

malware variants using control and data flow analysis."

MILCOM 2012-2012 IEEE Military Communications

Conference. IEEE, 2012.

[9] Moskovitch, Robert, et al. "Unknown malcode detection

using opcode representation." European conference on

intelligence and security informatics. Springer, Berlin,

Heidelberg, 2008..

[10] Yann, Trevor, and Oleg Petrovsky. "Detection of

polymorphic virus code using dataflow analysis." U.S. Patent

No. 7,069,583. 27 Jun. 2006.

[11] Polychronakis, Michalis, Kostas G. Anagnostakis, and

Evangelos P. Markatos. "Network–level polymorphic shellcode

detection using emulation." International Conference on

Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer, Berlin, Heidelberg, 2006.

[12] Muttik, Igor, and Duncan V. Long. "Detecting computer

viruses or malicious software by patching instructions into an

emulator." U.S. Patent No. 6,907,396. 14 Jun. 2005..

[13] Rogers, Antony John, Trevor Yann, and Myles Jordan.

"Detection of viral code using emulation of operating system

functions." U.S. Patent No. 8,341,743. 25 Dec. 2012.

[14] Stepan, Adrian E. "Defeating polymorphism: beyond

emulation." Proceedings of the Virus Bulletin International

Conference. 2005.

http://www.it.lut.fi/kurssit/05-06/
http://www.it.lut.fi/kurssit/05-06/

