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Abstract— Deep Learning applications are starting to 

pervade every commercial and technological sector. This 

paper surveys deep learning (DL) methods for cyber 

security applications, highlights the security considerations 

when using deep learning networks and presents possible 

malicious uses of such models. Initially, a brief description 

of the architectures studied and presented in this paper is 

provided. In the next section, the security applications are 

indicated for different models including CNNs, RNNs and 

GANs. Lastly, security is-sues are divided into two 

sections: attacks on various deep learning net-works, and 

attacks on a network using Deep Learning models 

themselves. 
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I.  INTRODUCTION 

Since its arrival, Deep Learning has gained popularity for 
use in artificial intelligence applications due to the variety of 
neural networks in different areas of interest. The usefulness 
of Deep Learning comes from its ability to work on both 
labelled and unlabeled data as well as different types of data 
such as numbers, text or images. Particularly, in the field of 
cybersecurity, there is a significant use for AI solutions, e.g. 
anomaly detection, malware identification, intrusion detection 
systems etc. These applications help overcome the need for 
human labor and also act as analyst agents when human 
analysis is not sufficient.  

Deep learning (DL) is a subset of machine learning 
algorithms that are based on artificial neural networks.  These 
networks consist of multiple layers, including input and output 
layers, and each layer has multiple units known as neurons, 
that perform weighted functions. DL consists of various 
architectures for different applications, such as feedforward, 
convolutional and recurrent networks. The usefulness of deep 
learning was recognized recently in the years 2011-2012, 
when a fast GPU implementation of CNNs [1] was achieved 
and it set bench-marks in computer vision contests. CNNs 
gained widespread recognition after the victory in the 
“ImageNet Large Scale Visual Recognition Challenge” by the 
CNN architecture Alexnet [2], which won by a significant 
margin compared to other models. Deep Learning applications 

have also been applied to sequential data analysis, pattern 
recognition and natural language processing (NLP) tasks that 
are relevant for cybersecurity operations.  

Cybersecurity (or information security) is defined by the 
ITU (International Telecommunication Union) as follows: 
“Cybersecurity is the collection of tools, policies, security 
concepts, security safeguards, guidelines, risk management 
approaches, actions, training, best practices, assurance and 
technologies that can be used to protect the cyber environment 
and organization and user’s assets. Organization and user’s 
assets include connected computing devices, personnel, 
infrastructure, applications, services, telecommunications 
systems, and the totality of transmitted and/or stored 
information in the cyber environment.” 

With the increasing number and variety of computing 
devices around the world, the need to protect them as well as 
the ways to exploit them have also in-creased. Along with the 
increasing technology, the uses of Artificial Intelligence have 
also seen a surge. AI has an important role to play when in 
Cyber Security; several security applications have been built 
around AI, many real-world applications use AI which raises 
security concerns and lastly there are several ways that AI can 
be used for unethical cyber activities. 

This paper explores the role of deep learning in 
cybersecurity, presenting use-fulness as well as the malicious 
ways it can be used to cause harm to users and organizations, 
along with the security issues of deep learning applications. 
Sub-sequent sections are described as follows: the second 
section provides a review of the works related to this paper; 
the third section outlines beneficial applications of different 
DL architectures; the next section delves into the misuses of 
AI and shows its dual nature of being beneficial as well as 
potentially destructive.  

The paper aims to bring into light the serious issues that may 

arise in the near-future due to automated cybercrimes while 

also highlighting some helpful methods that the way to 

security procedures can also be automated. The paper focuses 
solely on Deep Learning applications and their uses and 

misuses in the cybersecurity sector and the security issues of 

real-world applications. 
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II. LITERATURE REVIEW 

There have been several papers that highlight the use of 

artificial intelligence and deep learning techniques as security 

measures as well as malicious cyber-weapons. [3] presents the 

different applications of AI, not limited to deep learning, in 

Cyber-security, such as Neural Networks and Intelligent 

Agents. It pro-vides use cases for AI in security applications.  

[4] exclusively looks at deep learning methods that boost 

security measures against cyber-attacks. After providing a 

terminology of different cyber-threats and DL architectures, 

they surveyed different models and presented them in the 
categories of different security applications, such as malware 

detection, spam classification and ransomware. 

[5] describes the malicious applications of AI and ways to 

predict, prevent and mitigate to them. It considers the issues 

and attacks on three different types of security: physical, 

digital and social. The report discusses each security type in 

depth, suggests threats in that domain and provides control 

points and counter-measures that should be considered during 

security analysis. It also gives recommendations to be 

followed when working with AI and a strategic analysis of the 

influence of AI in the future, in relation to security. 
[6] provides an analysis of different machine learning 

techniques, not limited to deep learning, that can be used for 

cyber security applications. The researchers also highlighted 

the vulnerability of the machine learning algorithm to 

adversarial attacks and the need for precise parameter tuning 

and re-training for better results.  

[7] cover the various attacks on machine learning algorithms 

and suggest defenses against them. The paper covers two 

categories of attacks, evasion and poisoning, followed by 

ways to defend against them. These categories are further 

divided into different types, which are described in detail.  

They also cover data privacy under AI applications.  
[8] covers the adversarial attacks on the systems deploying 

deep learning models for the analysis of images. They review 

the designs, analyze the existence, and propose ways to defend 

against such attacks. The paper covers adversarial attacks only 

on networks dealing with Computer Vision such as 

convolutional neural networks and generative networks 

(variational autoencoders and GANs). 

III. DEEP LEARNING ARCHITECTURES 

The presented deep learning architectures are derivations of 

neural networks, a class of machine learning algorithms that 

are modelled from the neural connections in the brain. These 
networks consist of input and output layers and at least one 

hidden layer between them. Layers consists of computation 

units known as neurons, which take input and perform 

mathematical operations known as activation functions and 

pass the output to the next layer or represent it as the final 

output (in the output layer). 

A.  Deep Neural Networks 

A Deep Neural Network is a feed forward neural network 

wherein connections between the nodes do not form a cycle 

[9], and one which contains more than one hidden layer. These 

networks follow a linear flow of data from the input layer to 

the output layer, through one or more hidden layers. 
These networks are able to map complex functions given the 

required number of layers. DNNs are commonly used for 

classification tasks in various sectors such as text 

classification, anomaly detection and financial sales 

prediction. 

 

Fig. 1. Deep Neural Network 

B. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a class of deep 

learning systems that process data in groups using functions 

known as kernels. Using these kernels, they are able to extract 

features from the data over a region, as opposed to neural 

networks where only single data points are analyzed. CNNs 

are most commonly used for Computer Vision tasks such as 

object classification using ImageNet Dataset [10], that has 

resulted in architectures such as Microsoft’s ResNet[11] and 
Google’s InceptionV3[12] 

. 

 

Fig. 2. Convolutional Neural Network 

 

A typical CNN architecture, as shown in Fig 2, consists of 

three types of layers: convolutional, pooling, and the fully 

connected layer. The kernel function is performed in the 

convolutional layer. The kernel weights are learnt by the 

model during training phase, such that each kernel represents 
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certain features of the data. Pooling layers are added in 

between convolution layers to compute an average and reduce 

size of the input. The fully connected layer, flattens out the 

output of the convolutional layer and performs classification 

on the features provided. It generally consists of a DNN but 

may also use RNNs (recurrent neural networks) to obtain 

hybrid deep learning architectures. 

C. Recurrent Neural Networks 

Recurrent Neural Networks or RNNs are deep learning models 

that, unlike standard DNNs, include the output of a previous 

input as part of the next input. Consequently, these networks 

are able to analyze sequential data and are used in tasks that 

involve sequential analysis, such as speech recognition, 

handwriting recognition and semantic analysis. 

RNNs suffer from the vanishing gradient problem, wherein, 

during the backpropagation/learning phase, the collective 
product of small partial derivatives results in an exceedingly 

small value of the gradient, that causes the change in weights 

to halt or become negligible. To resolve this, LSTM (Long 

short-term memory) networks are used. These networks have a 

component known as a “forget gate”, that decides the 

importance of previous information collectively, replacing the 

product in case of RNNs with a single value. 

 

 

Fig. 3. RNN unit vs LSTM unit 

D. Generative Adversarial Networks 

GANs are generative neural networks developed by 

Goodfellow et al (2014) [13]. They comprise of two models 

trained simultaneously, a generator and a discriminator. The 

generator attempts to generate the desired output based on the 

given input, and the discriminator analyzes this output and 

determines how closely it resembles actual output’s 

characteristics. Both models are trained using log loss 

functions and backpropagation. 

GANs have become very popular since their inception, with 

the creation of several variants including CycleGAN [14], 
contextual GAN [15] and VAE-GAN [16]. Their applications 

are most apparent in Computer Vision and include image 

generation, image style transfer and 3D object generation. 

 

 

Fig. 4. GAN architecture 

E. Autoencoders 

An autoencoder is a neural network that aims to recreate the 

input at the output layer, with multiple hidden layers in 

between. The aim of an autoencoder is to learn a 

representation (encoding) for a set of data. It does so by 

isolating a hidden layer in the network and using it for 

representation of data. When the size of this layer is less than 

the input, the autoencoder effectively reduces the dimension of 

the data. 

Autoencoders are used for creating encodings of data and for 

data compression. They can also be used for removing noise 
from input, and when used so are known as denoising 

autoencoders. Applications of autoencoders also include 

feature extraction, image classification and image generation 

[16]. 

 

 
 

Fig. 5. Autoencoder architecture 

IV. DL TECHNIQUES FOR PROTECTION 

A. Deep (Feedforward) Neural Networks 

The feedforward neural network is the simplest type of 

artificial neural network. Despite being the simplest of neural 

network architectures, DNNs are quite useful for performing 

classification and regression tasks due to their property to 

estimate complex functions, given enough layers. [17] In the 
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domain of cybersecurity, DNNs have proven to perform well 

in the detection of malwares, threats and misuses of 

technology.  
Cannady proposed the using neural networks for misuse 

detection in [18], due to their adaptive nature to learn new 

patterns and ability to output probabilities instead of a 

definitive response. He trained a model neural network which 

gave a high accuracy of above 90 per cent for the selective test 

classes, indicating their potential for real applications. 

Wu (2009) [19] used a hybrid method rule-based and neural 

network method for e-mail spam classification. Their model 

analyzed the more consistent factor in spam e-mails, intrinsic 

spamming behaviors, instead of keywords present in the 

content. The model outperformed several other contemporary 

networks such as NaiveBayes, ADTrees and Bayesian 
Networks, achieving an accuracy of 99.60%. 

Salvador et al. (2009) [20] suggested a novel approach for 

detecting Zombie PCs using neural networks. Their approach 

was to analyze the network traffic using a neural network that 

is trained on synthetic data. The model achieved good results 

for various traffic scenarios, with a minimum accuracy of 

87.34%. 

Tuor et al. (2017) [21] used a novel architecture comprising of 

DNNs and RNNs, for the task of insider threat detection. 

Experiments showed that their models were able to 

outperform standard anomaly detection techniques including 
Principal Component Analysis and Support Vector Machines. 

The DNN was able to place all malicious events above 50th 

percentile anomaly and most above 95th percentile. 

DNNs have also been deployed in intrusion detection systems 

(IDS). Bitter et al (2010) [22] studied the usage of DNNs in 

IDS. The performance of DNNs was compared with state-of-

the-art for IDS, DoS attacks and Spam detection. DNNs used 

for IDS were able to achieve average accuracies of 83.14%. 

They concluded that these networks performed well, and were 

viable for building robust IDS in non-idealistic environments.  

[23] used DNNs to identify Spectre attacks by detecting cache 

side-channel at-tacks. Side-channel attacks observe the 
changes made in the environment of a computer system to 

extrapolate its inner workings and exploit them. The authors 

analyzed the characteristics of the Hardware Performance 

Counters (HPCs) to observe the CPUs cache activity using 

neural networks, and classify cache accesses as malicious or 

benign. The authors were able to achieve an accuracy of 

99.23%. 

Finally, Vinayakumar et al. (2018) [24] applied DNNs to 

multiple security ap-plications. They used three different 

datasets, for the three applications, APKs from Opera Mobile 

store for malware classification, UniteCloud UTM for inci-
dent detection and unified, anonymized data using HCRUD 

for fraud detection. The DNN models were compared to and 

outperformed XGBoost in all use cases, with a minimum 

classification accuracy of 94%. 

B. CNNs 

Convolutional networks are generally used for image 

processing tasks due to their distinct kernel layers that perform 

the convolutions. In cybersecurity, how-ever, these systems 

can be used for classification tasks by converting input fea-

tures into images and feeding them into the convolutional 

model.  

Yu et al. (2017) [25] proposed a novel technique to detect 

domain names generated by domain generation algorithms 
(DGAs). DGAs are used by botnets to create communication 

links for their command and control servers. The authors 

trained two types of deep networks: CNN and an LSTM, each 

with an embedding layer, and analysed real massive traffic for 

real-time DGA detection. AUC achieved by CNN and LSTM 

were 0.9918 and 0.9896. The authors noted that the CNN 

performed best out of all models at 0.01% FPR. 

Zeng et al. (2017) [26] performed DGA detection using 

multiple models pre-trained on ImageNet including 

AlexNet[2], Inception[12] and ResNet[11]. The models were 

adjusted to work with string inputs, re-trained and then its 

output was fed into a decision tree classifier. They achieved 
the best results with an ac-curacy of 99.56%, 99.86% TPR and 

a 1.128% FPR using the Inception V4 model. 

Hendler et al (2018) [27] addressed the issue of Powershell 

(Microsoft’s command line shell) attacks by detecting 

malicious Powershell commands using NLP, CNN, and LSTM 

based classifiers along with an ensemble. By creating an 

ensemble, they were able to achieve the best results over the 

non-ensemble methods, obtaining TPRs 0.92, 0.89 and 0.72 

for FPRs of 10-2, 10-3 and 10-4.  

Shibahara et al. (2017) [28] proposed an EDCNN architecture 

to detect drive-by download attacks. These attacks inject 
malicious code into the victim’s user when they visit an 

affected website or download affected software. The event de-

noising convolutional neural network (EDCNN) takes URL 

sequences as inputs and outputs whether it is malicious. The 

EDCNN was able to classify the sequences with a low FPR, 

detect malicious redirections and take the least computation 

time.  

Wang et al. (2017) [29] built an intrusion detection algorithm 

using raw net-work traffic data which were then fed into a 

CNN. The classification was achieved in two ways: firstly, 

using a 20-class classifier and 10-class classifier, that output 
either malicious or a type of non-malicious class. Secondly, 

they used binary classification to output either malicious or 

benign. They achieved an ac-curacy of 99.17% with the 20-

class classification and 99.41% with 10-class classification 

while the binary classifier achieved 100% accuracy for the 

involved datasets. 

C. RNNs 

RNNs, esp. LSTMs, have become widely popular for 

sequential analysis of data. Cybersecurity applications for 

LSTMs include intrusion detection and anomaly detection 
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since they are able to detect continuous patterns such as 

anomalous behaviour or malicious attacks.   

Kolosnjaji et al. (2016) [30] used CNN and RNN hybrid to 
identify malware. They converted the call sequences into one-

hot encoding which were then used to train the DL model. The 

model consisted of a CNN and an LSTM with the out-put 

function softmax. It achieved an accuracy of 89.4%, and its 

accuracy, precision and recall were better than those Support 

Vector Machines and Hidden Markov Models. 

Torres et al. (2016) [31] proposed an LSTM with 128 nodes 

for botnet detection. The features were one-hot encoded and 

the model was trained with stratified 10-fold cross validation. 

The data was selected in three ways: oversampling, un-der 

sampling and without sampling. The oversampling method 

provided the best results: 96% accuracy and an average false 
alarm rate of 0.0111. McDermott et al. (2018) [32] trained a 

bidirectional LSTM to detect botnets in IoT devices. The 

LSTM model consisted of a word-embedding layer to create a 

representation of the string data input to the model. The 

authors built their own dataset of Mirai botnet traffic, and 

tested the model on four types of attacks used by Mirai: User 

Datagram Protocol (UDP) flood, Acknowledgment (ACK) 

flood, Domain Name System (DNS), and Synchronize (SYN). 

The bidirectional LSTM achieved accuracies ranging from 

91.95% accuracy to a maximum of 99.999% accuracy based 

on the type of attack.  
There have been several works that have tested the use of 

RNNs for intrusion detection systems. Staudemeyer (2015) 

[33] used LSTMs and Kim and Kim (2015) [34] used RNNs 

on the KDD-1999 datasets, and Kim et al. (2016) [35] used an 

ensemble of LSTM classifiers on the KDD-1999 and 

additional data they generated. The best results were obtained 

by Kim and Kim [34], achieving a 100% detection rate with a 

2.3% false alarm rate.  

Loukas et al. (2017) [36] used LSTMs to detect various attack 

types including DDoS, command injection, and network 

malware. They achieved an accuracy of 86.9%, which was 

better than other algorithms that were tested. The LSTM also 
outperformed other models when tested with unknown data. 

Maniath et al (2017) [37] proposed a method to classify API 

calls as ransom-ware.  They performed dynamic analysis on 

executables’ API calls, which were integer encoded, assigned 

to a ransomware or benign class and then fed into the LSTM 

network. With a dataset of 157 different ransomware samples 

of variable length, they were able to achieve a high accuracy 

of 96.67%.  

There have been several works that propose the use of RNNs 

for authentication in IoT (Internet of Things) applications. 

Ferdowsi et al (2018) [38] proposed a novel algorithm that 
watermarked the signals of an IoT device using an LSTM 

model that uses stochastics features such as the signal’s 

skewness or spectral flatness. They used this watermarked 

signal for secure signal authentication and furthermore detect 

any attack in the system. Kong et al (2019) [39] propose a 

real-time authentication and protection mechanism for Smart 

homes, which they named Fingerpass. It authenticates the user 

by deriving the unique behavioural characteristics of finger 

gestures from channel state information of WiFi signals. The 
LSTM network was used for user authentication during the 

login phase, and achieved an average accuracy of 92.6% and 

average FPR of 3.8%, along with a satisfactory latency of 800-

1200ms. 

D. GANs 

GANs are used to generate images, patterns or any other data 
using their genera-tor-discriminator architecture. This ability 

of data generation has been observed to lead to more 

malicious use-cases than beneficial ones, which will be 

discussed in the next section. However, there have been 

certain positive applications of GANs for security 

applications, as stated below: 

Zenati et al (2018) [40] developed a GAN model for anomaly 

detection. They had modified the GAN model such that it 

created a latent representation using an encoder, apart from 

using a discriminator and a generator. During the training 

phase, this latent representation was learned as well and was 

used by the discriminator alongside generator output.  It was 
then evaluated on both visual (MNIST) and non-visual (KDD-

99) data. Their model performed at par with state-of-the-art, 

achieving 92% precision, 95.82% recall and an F1 score of 

93.72%.  

Chen et al (2019) [41] used a GAN based model with multiple 

intermediate layers for intrusion detection. They modelled 

their architecture on the bidirectional GAN (Bi-GAN) and 

tested it on the KDD-99 dataset. Their model outperformed 

state-of-the-art models with 93.24% precision, 94.73% recall 

and an F1 score of 93.98%. It also reduced the overhead by 

reducing training time by 12% from the state-of-the-art and 
speeding up testing by a factor of 1.357, compared to Bi-

GAN. 

Volkhonskiy et al (2017) [42] proposed the use of GANs for 

the purpose of steganography in images. They used Deep 

Convolutional Generative Adversarial Networks (DCGANs) 

for generating the covers of images. They showed that the 

DCGAN is able to effectively create cover images and that 

their network can also be used for image encryption, with a 

reconstruction quality of almost 1, at a minimum of 98.65%. 

Shi et al (2017) [43] proposed a novel strategy of using GANs 

for performing secure steganography. Their proposed model, 
SSGAN, has one generator and two discriminators. The 

generator G is used to create covers for steganography, 

discriminator D is used to assess image quality and 

discriminator S is used for performing steganalysis on the 

image to judge its suitability. The models were trained using 

the CelebA face dataset [59]. They showed an im-proved 

convergence time over their counterpart, SGAN [42]. Their 

model was found to increase error rate during steganalysis, 

which showed that their model had created a more secure 

cover.  
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Lee et al. (2017) [44] used GANs to train a network that is 

robust to adversarial inputs. They train a generator to create 

adversarial examples and simultaneously train a classifier that 
is able to correctly classify these adversarial examples, in 

addition to the original images. The authors used the CIFAR 

10 and CIFAR 100 datasets, and their classifier showed the 

best results out of all methods (dropout, adversarial training 

and random perturbation). The authors noted that their model 

provided better generalization than the fast gradient method, 

but it was also slower and needed further study for improved 

performance. 

Hayes et al (2017) [45] present an issue with generating 

images using generative models, information leakage, and a 

method to avoid the same. Information leak-age can allow the 

attacker to deduce information about the dataset used to train 
them. The authors propose the use of a GAN model to detect 

overfitting in a generative network, following which they 

compare the differences between the real and synthetic images 

generated, that can be used to determine the data it was trained 

on. For the CIFAR-10 dataset, they were able to achieve 

accuracies of 100% for white-box, 58% with black-box and 

limited knowledge and 37% with black-box attacks and no 

knowledge. These tests show that the creators of these 

generative networks can use the authors’ model for detecting 

overfitting in their networks.  

Yin et al (2018) [46] propose Bot-GAN, an architecture that is 
used to improve the performance of botnet detection models 

by generating fake samples. The Bot-GAN was trained on the 

ICSX botnet dataset, which contained four types of bot-net 

traffic. It generates samples of 122 features which belong to 

one of the four classes mentioned. Experiment results showed 

that the model was able to improve the performance of the 

original detector.  When using 500 mixed samples, their FPR 

dropped from 19.19% to 15.59%. 

E. Autoencoders 

Autoencoders have shown to be able to perform well in 

intrusion detection systems and classification tasks. The 

ability reduce data to lower dimensions allows them to be used 

in hybrid models in conjunction with other DL architectures 

such as RNNs and CNNs. 

Wang and Yiu (2017) [47] performed malware classification 

using RNN-based autoencoders. They used the autoencoders 

to reduce the dimensionality of API call sequences, and then 
passed them onto a RNN for malware classification. They 

achieved 99.1% accuracy using a public malware dataset. 

They also used the model for representation learning of file 

access patterns (FAP) and achieved 98.3% accuracy for FAP 

generation.  

Lotfollahi et al. (2017) [48] used CNN and stacked 

autoencoder (SAE) in a novel architecture called Deep Packet, 

to classify traffic and identify applications. The authors 

achieved an F1 scores of 95% and 92% for application 

identification and traffic characterization respectively. The 

authors concluded that their model can be used to automate 

feature extraction and classification of traffic and upon further 

study, used for classifying Tor traffic.  

Aminanto and Kim (2017) [49] trained a stacked autoencoder 
to detect impersonation attacks. These attacks involve a device 

that pretends to be a legitimate access point and gains access 

to the network to perform malicious activities. They used the 

“CLS” dataset of the AegeanWiFi Intrusion Dataset (AWID) 

[50], in which they considered two classes out of four, benign 

and attack only. The stacked autoencoder consisted of two 

hidden layers, and was used to extract features from the 

dataset. These features were then passed on to a k-means 

clustering algorithm to separate into impersonating and real 

classes. They achieved an accuracy of 94.81%, with a recall of 

92.18% and an 86.15% precision. 

Sun et al (2018) [51] proposed a method for anomaly 
detection using variational autoencoders (VAE) on various 

datasets. They use the KDD-CUP’99 dataset for network 

anomaly detection, the MNIST dataset for image anomaly 

screening and the UCSD Pedestrians dataset for anomaly 

detection in video surveillance. To detect anomalies in the 

input, they trained the network on the dataset and learned to 

map the hidden features onto a latent variable, which was then 

used to reconstruct output for test data. The degree of 

difference between the reconstructed output and test input 

represented the abnormality and was used to classify data as 

anomalous. For the KDD dataset, their model performed better 
than or at par with the best detectors, achieving an AUC of 

95.1% and an F1 score of 81.2%. 

Ma et al. (2018) [52] performed intrusion detection on sensor 

networks, using a novel approach called SCDNN. The 

SCDNN classifier used a combination of spectral clustering 

and deep neural networks to classify intrusion data features 

into five classes: Normal and four malicious classes. SCDNN 

uses spectral clustering (SC) to create k subsets/ clusters 

which are trained using k deep neural networks (DNNs). The 

DNN architecture consists of autoencoder stacked together in 

the hidden layers. The authors tested the model for different 

cluster sizes k, and noticed the best results (most stable) with 
k=2. 

Diro and Chilamkurti [53] performed intrusion detection on 

IoT networks and devices, using a 3-layer autoencoder. They 

aimed to detect DoS (denial of ser-vice) and other types of 

attacks on fog-to-things/edge computing systems by as-

signing parameters to each worker fog node as input and 

updating the former via a master node. The model used for 

training was a stacked autoencoder architecture, trained in an 

unsupervised manner. Using the KDDCUP99 dataset, they 

were able achieve a 99.2% accuracy, compared to a 95.2% 

accuracy from shallow learning algorithms. 
Alam et al (2019) [54], developed a ransomware detection 

system, RATAFIA, using LSTM-based autoencoders trained 

on normal program behaviours. They analysed the hardware 

changes made by an executable, obtained from the Hard-ware 

Performance Counter (HPC) statistics. The detection is 

performed in time windows that are decided by the 
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autoencoders and differ for each processor type. They found 

that their system was able to detect the WannaCry ransomware 

in 5.313 seconds, and whereas other tested ransomwares were 
detected in less than 2 seconds. Also, RATAFIA is able to 

work with any modern processor that sup-ports HPC, without 

any kernel modifications.  

Similar to [39], Shi et al. (2017) [55] used WiFi signals 

generated by IoT de-vices to detect human behavioural and 

physiological features based on their daily activity patterns 

using an autoencoder. The autoencoder uses this channel state 

information (CSI) to create a unique identification 

(“fingerprint”) for each user. The autoencoder consisted of 

three layers for different functions: first layer for separating 

out different activities, second layer for action classification 

and third layer for identification of users based on their 
fingerprint. The architecture also consisted of an SVM layer to 

detect spoofing. The model achieved an authentication 

accuracy of 91%. 

V. SECURITY ISSUES 

Along with useful applications in security, Deep Learning 

models also carry potential threats with them, which must be 

taken into account when implementing them into a security 

system. Also, Deep Learning models also have certain 

properties that allow them to be used for harmful applications, 

as stated in section B. 

A. Attacks on Deep Neural Networks 

Attacks on Deep Learning architectures can be divided into 

two categories: adversarial and poisoning attacks. Adversarial 

attacks are used to deceive machine learning algorithms into 

misclassifying input. It is achieved by adding noise to the 

input that is not perceivable to humans, but greatly changes 

the model’s out-put. Poisoning attacks aim at the training 
phase of the model, wherein they affect the model’s learning 

ability by changing the data so that the model performs bad-ly 

or classifies according to the attacker’s choice.  

Tabacof et al. (2016) [56] explored adversarial attacks on 

variational autoencoders, and proposed a technique to create 

adversarial examples, by distorting input images, that were 

able to fool the autoencoder into misclassification. Their 

methodology aimed to distort the input such that its 

representation by the auto-encoder was similar to the target 

image. The study concluded that there was a linear trade-off 

for such attacks: adversarial examples for autoencoders 
require more than small distortions to make a significant 

impact on output.  

Kos et al. (2018) [57] also explored adversarial attacks on the 

variational autoencoder (VAE) and the VAE-Generative 

Adversarial Networks (VAE-GANs). The authors presented 

three different types of attacks on VAEs and VAEGANs: 

using a classifier for manipulation, exploiting the loss function 

of VAE and targeting latent layers of the generative models. 

The authors tested the attacks on MNIST and SVHN datasets 

and found that the Latent attack gave the best results but was 

also the slowest, whereas the Classifier performed the worst 

but was the fastest. The Loss attack had a comparable time-to-

attack with the Classifier at-tack. The authors stated that their 
work proved that adversarial examples were a general 

phenomenon in generative models and provided a foundation 

for under-standing and building more robust models.  

Rozsa et al. (2019) [58] introduced a novel FFA (fast flipping 

attribute) technique to generate adversarial examples on the 

CelebA dataset [59]. FFA worked by zeroing out input 

attributes that result in the target image at the output, and 

computing and adding perturbations in the input accordingly. 

The FFA algorithm proved to create more robust example 

compared to the fast gradient sign (FGS) method. The paper 

also discussed naturally occurring adversarial examples and 

proposed a novel way to address their misclassification. The 
authors concluded that to make the DNN more robust it should 

be trained with adversarial examples and extreme positives. 

Papernot et al. (2017) [60] demonstrated one of the first 

attacks against the deep neural network classifiers in 

cyberspace in the real-world settings. They performed a black-

box attack on the targets: remotely hosted neural networks by 

MetaMind (an online deep learning API), Amazon and 

Google. They showed that these classifiers had error rates of 

84:24%, 96:19% and 88:94% respectively, for the generated 

adversarial examples. The authors also showed that their 

black-box attack was able to evade gradient masking 
technique, increasing the resilience of adversarial attacks.  

Ilyas et al. (2018) [61] also developed adversarial attacks 

aimed at real-world classifiers that were more restrictive than 

typical black-box models. They developed threat models for 

three real-world settings: query-limited, partial-information 

and label-limited. The attacks were proved to be effective 

under these settings, with successful prediction of the target 

class in 99.2%, 93.6% and 90% test cases respectively. Their 

attacks were also able to deceive the Google Cloud Vision 

API using the partial-information attack. 

Athalye et al. (2017) [62] generated robust adversarial 

examples for 2D as well as 3D object classifiers. They 
demonstrated the existence of robust 3D adversarial objects, 

and introduced the first algorithm for synthesizing examples 

that are adversarial over a chosen distribution of 

transformations. They use the Expectation Over 

Transformation (EOT) algorithm to create adversarial 

examples that remain adversarial after a chosen 

transformation. To develop a 3D adversarial object, they used 

transformation functions that rendered 3d models for given 

textures and applied EOT to generate adversarial textures for 

the real world. They were able to achieve high “adversariality” 

(percentage of samples classified as target class): 96.4% in 2D 
and 83.4% in 3D classifiers.  

Yang et al (2017) [63] test the applicability of the traditional 

direct gradient method to generate poisoned data against 

neural networks. They also propose a generative method 

which uses an autoencoder to generate the poisoned data. The 

autoencoder gets updated by a reward function of the loss, and 
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the target model receives this poisoned data to calculate the 

loss with respect to. the normal data. The authors tested this on 

MNIST and CIFAR datasets. Their results show that the 
generative method can speed up the poisoned data generation 

rate almost by a factor of 240, compared with the direct 

gradient method, at the cost of a slightly lower model accuracy 

in the MNIST dataset. A countermeasure is also designed to 

detect such poisoning attack methods by checking the loss of 

the target model. They also provide a countermeasure to the 

attack, by checking the value of the loss periodically, we can 

detect if the data is poisoned if loss exceeds a certain 

threshold.  

Muñoz-González et al (2017) [64] explore poisoning attack 

methods for multiclass problems. They propose a novel 

approach towards data poisoning, which exploits back-
gradient optimization, wherein they trace the backpropagation 

during gradient ascent and compute the poisoning gradient in 

an incomplete inner optimization cycle. The algorithm has a 

linear complexity dependent on number of iterations, which 

makes it computationally efficient. The authors evaluate its 

effectiveness on multiple applications including spam 

filtering, malware detection, and handwritten digit recognition. 

They noted that neural networks could be compromised by 

even a small number of adversarial points. 

Chen et al (2017) [65] investigated backdoor poisoning 

strategies on deep networks. A backdoor is essentially a 
specific trigger for a software technology that allows the user 

to bypass restrictions or access hidden/restricted features. In 

the context of deep learning, attackers can create backdoor 

keys (unique image attributes) by poisoning the model during 

training, which can be used in the fu-ture to make the network 

misclassify the data as the attacker’s target class. Chen et al 

studied poisoning strategies which could work even under 

strict constraints such as:  the adversary has no knowledge of 

the model and the training set used by the victim system; or, 

the attacker is allowed to inject only a small number of 

poisoning samples. The author’s demonstrated that by 

injecting even just 50 samples, they were able to obtain a 
success rate above 90% in the different strat-egies employed, 

and even 100% in some of them. The authors also 

demonstrated the existence of physical backdoors, wherein a 

physical accessory could act as the backdoor for a visual deep 

network. They were able to achieve 100% success rates with 

20 poisoning samples, and a 0% success rate for wrong keys. 

B. Attacks using Deep Neural Networks 

Due to their potential for misuse, the offensive applications of 

AI have been limited to research-based papers only. However, 

these experiments show the capability of using AI and Deep 

Learning as an offensive tool for causing harm. The following 

paragraphs cover the malicious use of deep learning to affect 

digital security.  

Bahnsen et al (2018) [66] used LSTM networks to bypass 

intrusion detection systems. They analyzed more than a 

million phishing URLs to understand the different strategies 

that threat actors use to create phishing URLs. Using LSTMs 

on these URL strings, they created the so-called DeepPhish, an 

algorithm that learns to create better phishing attacks by 
learning and replicating the inner structure of effective 

malicious URLs. By training the DeepPhish algorithm for two 

different threat actors, they were able to increase their 

effectiveness (per-centage of attacks not blocked by a 

proactive (real-time) phishing detection system) from 0.69% 

to 20.9%, and 4.91% to 36.28%, respectively. 

Hitaj et al (2019) [67] created PassGAN, a generative 

adversarial network used for password guessing. It learns the 

distribution of real passwords from actual password leaks and 

generates high-quality password guesses. They evaluated 

PassGAN on LinkedIn and RockYou password datasets, and 

were able to surpass rule-based and state-of-the-art machine 
learning password guessing tools at accuracies of 34.6% and 

34.2% respectively, when the training and test data pass-words 

were mutually exclusive. PassGAN did not require a-priori 

knowledge on passwords or common password structures, and 

was able to learn intrinsic features autonomously. In addition, 

the authors combined the output of PassGAN with the output 

of HashCat, a state-of-the-art password guessing tool, to 

match 51%-73% more passwords than with HashCat alone. 

Seymour and Tully (2017) [68] demonstrated that a fully 

automated spear phishing system could create tailored tweets 

on the social media platform Twitter based on the individual 
user’s interests, possibly directing the user towards potentially 

malicious links. They developed an RNN named SNAP_R, 

which was trained using a combination of spear phishing pen-

testing data, Reddit submissions and Twitter tweets. The 

model was seeded dynamically to ensure that tweets were 

generated on trending topics that were more likely to be 

clicked. Their tests on 90 users revealed a success rate 

between 30% and 66% which is comparable to largescale 

manual spear phishing efforts.   

Anderson et al. (2017) [69] created a machine learning model, 

DeepDGA, to automatically generate command and control 

domains that are indistinguishable from legitimate domains by 
human and machine observers. They develop a GAN to 

generate domain names that are able to evade DGA detection 

classifier that is also trained by the authors using random 

forest algorithm. The random forest classifiers achieved a 

minimum accuracy of 85% on the previous datasets, which 

dropped to 48% on DeepDGA generated samples. Finally, 

they used DeepDGA to create an augmented dataset with 

adversarial examples, and used this to train the classifier. This 

method improved the average accuracy over different DGA 

families, from 68% to 70%, while the individual accuracies 

improved or were at par with the baseline in all cases but two.  
Side channel attacks exploit the information gained from the 

physical characteristics of a computer, such as timing, power 

consumption, voltage peaks etc., to deduce private information 

from the system. Maghrebi et al (2016) [70] and Yu et al 

(2018) [71] explore the use of deep learning in assisting side 

channel at-tacks. Maghrebi et al compared machine learning 
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and deep learning techniques for the purpose of side channel 

key recovery in template attacks [72]. The authors tested the 

techniques on different implementations of AES encryption 
algorithm and found that deep learning algorithms 

outperformed state-of-the-art techniques. They concluded that 

deep learning techniques provided better features that were 

suitable for key recovery, such as feature extraction in CNNs 

and time dependency in RNN/LSTMs. Yu et al utilized DNNs 

for key recovery in AES implementations that use dynamic 

voltage scaling (DVS). The DNN is trained to estimate power 

dissipation in the AES circuit, by analyzing its previous 

emissions. By correlating the power dissipation with 

encrypted data, and comparing predicted and actual power 

dissipations, the attackers are able to obtain the secret AES 

key. The models attained a correlation of 0.8146 and a 
deviation of 11.63% compared to actual output, on a dataset of 

3x104 samples, which was deemed adequate for effective 

performance by the authors. 

Sivakorn et al (2016) [73] studied reCaptcha, a security 

system used to detect whether a computer user on a website is 

human or a bot. They identify flaws in the system that could 

allow adversaries to bypass the security check and perform 

malicious activities on the network. They designed a novel, 

low-cost attack. Their solution consisted of three modules for 

image annotation, identification of the tag (hint) of the image 

and for referencing previous challenges in case of repeated 
images. The authors used pre-trained and publicly available 

deep learning frameworks for detecting image annotations. 

They achieved an accuracy of 70.78% with image based 

reCaptcha, and required computational time of 19 seconds. 

They also tested the strategy with Facebook captcha, and 

achieved maxi-mum accuracy of 83.5% when using Clarifai 

framework for image annotation. The authors concluded with 

the suggestion to study and improve the current state of 

captchas. 

Spectre (2019) [74] is an exploit of two CPU optimizations: 

branch prediction and speculative execution. Speculative 

execution copies RAM read by the CPU into cache, in case it 
is required in the future. However, the processors are not able 

to determine whether the RAM addresses copied were 

authorized for copying. This flaw can be exploited to trick the 

CPU into caching forbidden memory which can be read by a 

cache side channel timing attack. This attack exploits timing 

differences in how long a CPU takes to fetch values from the 

RAM vs an embedded CPU cache. However, every CPU will 

exhibit different timing behavior. Therefore, a deep learning 

model [75] can be used to learn the cache timings of the CPU. 

The model takes as input the all possible cache timing values 

for a single byte, and outputs the actual byte value, based on 
the output neuron with highest probability. 

VI. CONCLUSION AND FUTURE SCOPE 

In this paper, we first presented the various applications of 

deep learning techniques in the field of cybersecurity. In 

addition, we showed the security issued of using deep 

learning: how their applications can be exploited and how they 

can be used for malicious activities. The paper aimed to 

demonstrate the role deep learning plays in cybersecurity, and 

how deep learning solutions can perform better than, or 

already are, state-of-the-art. We suggest that researchers and 

organizations can consider incorporating deep learning into 

security infrastructures. Moreover, more research needs to be 

done in order to improve the security of neural networks, as 

they are susceptible to adversarial and poisoning attacks. 

Finally, with new arising technologies, it is imperative that we 

create certain standards for the use of AI as stated in [5], in 

order to prevent unethical and illegal use of these algorithms. 

By employing these standards and preparing defenses against 

deep learning attacks, deep learning applications can be 

integrated into many cyber-security areas with great success.  
Future work in this area can focus on the new and rising 

technologies such as 5G, IoT, blockchain, quantum computing 

and edge computing, and their effect on deep learning. These 
new technologies will come with their own security issues. 

Also, new and complex deep learning architectures that will 

be developed in the future would also need to be evaluated. 

We hope that this work motivates further exploration into the 

applications of deep learning in cybersecurity. 
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