

International Journal of Engineering Applied Sciences and Technology, 2016

Vol. 1, Issue 5, ISSN No. 2455-2143, Pages 149-151
Published Online March – April 2016 in IJEAST (http://www.ijeast.com)

149

PARALLELISM OF GRAPH TRAVERSING

ALGORITHM USING OPENMP

Shailendra W. Shende, Abhijit N. Pimple, Bhushan Gajbhiye, Sheetal R. Radke

Department of Information Technology,

Yeshwantrao Chavan College of Engineering,

Nagpur, India.

Abstract—Graph traversing is generally complex and time

consuming process. There is an ever increasing need of

graph algorithm that requires less amount of time for

computation as these graph traversing algorithms are used

in computational sciences, and social network. Because of

irregular and memory intensive nature, graph applications

are specifically known for their low performance on

parallel computer systems. We often want to solve problem

that are expressible in terms of traversal or search over a

graph. The goal of graph traversal, generally, is to find all

nodes reachable from a given set of root nodes. In this

paper, we are trying to implement parallel versions of

breadth first search (BFS) and depth first search (DFS)

algorithm using OpenMP and featuring with (i) To find

the speed up of proposed algorithm, (ii) to increase the

efficiency of graph algorithm, (iii) to reduce the amount of

time that the graph algorithm usually take, (iv) to increase

the resource utilization.

Keywords—OpenMP, Breadth First Search (BFS), Depth

First Search (DFS).

I. INTRODUCTION

IJEAST A group of major software and hardware vendors

jointly defines OpenMP as an Application Programming

Interface (API). For developers of shared memory parallel

application, OpenMP provides a portable, scalable model. The

API supports C/C++ and FORTRAN on a wide variety of

architectures. It comprised of three primary API components:

compiler directives, runtime library routines, environment

variables. The goals of OpenMP are standardization, lean and

mean, ease of use, and portability. Multi-platform shared

memory multiprocessing programming is supported by

OpenMP. The main aim of parallel programming system is

that OpenMP should be powerful and easy to use, and on the

same time it allowing the programmer to write high

performance programs. At the beginning the focus was only

on numerical application which involve loops written in

FORTRAN or C/C++, also it includes construct necessary to

deal with more kinds of parallel algorithm. It consists of

compiler directives, library routines and environment

variables.

The rest of the paper is divided as follows. Section 2 describes

the parallel computing and which types of algorithm

parallelism supports. Section 3 shows implemented algorithms

and where is the parallel execution. Section 4 compares

platforms on which test were performed. Section 5 deals with

the measured execution times.

II. PARALLEL COMPUTING DESCRIPTION

To solve a computational problem like: a problem is broken

into discrete parts that can be solved at the same time; parallel

computing is used with multiple computer resources. Each

part is further divided into a series of instructions. The overall

control mechanism is employed only after the instructions

from each part execute on different processors. Parallel

computing can be done on a single computer having multiple

cores or processor. High performance is achieved due to

parallel computing so that time complexity will reduce.

The computer resources in parallel computing are typically: A

single computer with multiple processor or cores, Random

number of such computers connected through a network. For

modeling, simulating and understanding complex, real world

phenomena parallel computing is much better suited than

serial computing.

III. ALGORITHMS PARALLELIZATION

1. for all v € V do

2. D[v] ← ∞

3.d[s] ←0, level←0, f←Ф,N← Ф

4.#pragma omp parallel

5. for 0<k<m(edge) do{

6. send fk← Ф x //shared message

7. receive fk← Ф //mpi communication }

8. #pragma omp while

9. while f≠ Ф do {

10. #pragma omp for

International Journal of Engineering Applied Sciences and Technology, 2016

Vol. 1, Issue 5, ISSN No. 2455-2143, Pages 149-151
Published Online March – April 2016 in IJEAST (http://www.ijeast.com)

150

11. for inspect all neighbours{

12. if(node not visited) {

13. mark d[v] ←1

14. que[F,N]

 }

15. else {

16. exit_node←true

 }

 17. #pragma omp barrier

18. #pragma omp single

19. F.nodev ← N.node++

20. N.node ← Null

}}}

In the above algorithm, we have increased the speed of

algorithm execution, for making speedy algorithm we convert

the serial algorithm into parallel algorithm using openMp. In

this algorithm we try to cover the maximum drawback in

serial BFS algorithm and had fixed it using openMp drawback

such as completeness, accuracy, perfectness and mainly focus

on the speed of algorithm.

In serial BFS algorithm, execution starts from the root node

and then visit to next level by level while visiting the node

before travel to next level, it visit the adjacent node.

Therefore, BFS algorithms require large queue and memory to

stored node in it. All execution takes place serially. Therefore

it require more time for execution.

Therefore, we design new algorithm i.e. parallel BFS, we have

divide the all level and parallelize the process and send it to

different processors for compilation and execute it parallelly,

then combine all processes to form a single complete result.

In BFS algorithm, in line number [4] we use directive of

openMp that make algorithm parallel. In line number[5] it

send all process to different processor in line number[5] it

receive the all process threads from processor then carry out

the further execution.in line number[7] we used directive for

parallelise while loop and similarly we used for loop also then

all execution take palce parallelly. Each thread execute

parallelly on different processor then the executed threads are

send back to root thread.

There may arise situation of overlapping and overloading of

process, for overcoming this situation, in line[16] we used

directive pragma barrier which synchronizes the thread as they

execute and in line[17] we make use of pragma directive to

transfer the executed threads in the same order as they are

received from the root node.

1. For all v € V do

2. d[v]=∞

3. d[s]=0,level=1,F=Ф,dN= Ф,d[v]=1

4. #pragma omp parallel

5. For 0<k<m (edge) do

{

6. Send fk=Ф //shared message

7. Receive fk= Ф // mpi communication

}

8. #pragma omp while

{

9. While f= Ф do

{

10. #pragma omp for

11. For n>j>1(vertices) inspect all depth node

{

12. If(node not visited [k]≠0)

{

13. Mark d[v]=1

14. Stk[d[v],dN]

15. d[v]++;

}

16. else

{

17. exit_node=true

}

18. #pragma omp barrier

19. #pragma omp single

20. F.node=d.node++

21. d.node=Null

}}}

In the above algorithm, we have increased the speed of

algorithm execution, for making speedy algorithm we convert

the serial algorithm into parallel algorithm using openMp. In

this algorithm we try to cover the maximum drawback in

serial DFS algorithm and had fixed it using openMp drawback

such as completeness, accuracy, perfectness and mainly focus

on the speed of algorithm.

In serial DFS algorithm, it starts the execution of the algorithm

from the root node and then visit to next level by level while

visiting the node before it visit the adjacent node, it visits the

depth node first till the last node. Therefore, DFS algorithms

require large stack and memory to store nodes in it. All

execution takes place serially, therefore it require more time

for execution and increase the completion.

Therefore, we design new algorithm i.e. parallel DFS, we have

divided the program into different modules and parallelize the

modules and pass it to different processor for compilation and

execute it parallely, then combine all processes to form a

single complete result accurately and having less execution

time.

In DFS algorithm, on line number [3] we used directive of

openMp that make the algorithm parallel. In line number[5] it

send all process to different processor, in line number[6] it

receives all the process threads from processors then carry

out the further execution, in line number[7] we used directive

for parallelise while loop and similarly we used directives for

International Journal of Engineering Applied Sciences and Technology, 2016

Vol. 1, Issue 5, ISSN No. 2455-2143, Pages 149-151
Published Online March – April 2016 in IJEAST (http://www.ijeast.com)

151

the for loop also then all executions takes palce parallelly.

Each thread executes parallelly on different processor then the

executed threads are send back to root thread.

There may arise situation of overlapping and overloading of

process, for overcoming this situation, in line [16] we used

directive pragma barrier which synchronizes the thread as they

execute and in line [17] we make use of pragma directive to

transfer the executed threads in the same order as they were

received from the root node.

IV. MEASURED PERFORMANCE

Number

of nodes

 BFS

 DFS

Serial

Execution

Time(TS)

ms

Parallel

Execution

Time(PS)ms

Speed

Up(TS/TP)

Serial

Execution

Time(TS)ms

Parallel

Execution

Time(PS)ms

Speed Up(TS/TP)

4 19.939 16.657 1.1970 12.8589 8.6871 1.4802

8 47.819 31.578 1.5143 23.0582 17.8416 1.2923

16 103.373 57.409 1.8006 42.3237 39.9951 1.0582

32 256.491 111.735 2.2955 327.1127 117.4268 2.7856

V. CONCLUSION

In this paper, we had parallelized the two graph traversing

algorithm namely Breadth First Search and Depth First Search

using OpenMP. OpenMP is used to distribute the work among

different processor. As we had used different processor for a

single task, the time for required to complete a single will

drastically reduce as compared to serial program. Also we

calculated speed ups for distinct number of nodes.

VI. REFERENCE

 [1] OpenMP specifications [online].

<http://www.openmp.org/specs/>.

[2] Blaise Barney, Lawrence Livermore National

Laboratory[online].

<https://computing.llnl.gov/tutorials/openMP/>

[3] Roman Mego and Tomas Fryza, “Performance of Parallel

Algorithms Using OpenMP” IEEE Radioelektronika

(RADIOELEKTRONIKA), 2013 23rd International

Conference., pp. 236 – 239 16-17 April 2013.

[4] V. Agarwal, F. Petrini, D. Pasetto, And D>A. Bader,

“Scalable graph exploration on multicore processors”,. In

Proc. ACM/IEEE Conference on Supercomputing (SC10),

November 2010.

