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I.  INTRODUCTION 

In mathematics, dihedral groups denoted by Dn are the groups 

of symmetries of a regular polygon, which consist of rotations 

and reflections (Cameron, 2013). Dihedral groups are good 

examples of finite permutation groups and have series of 

applications especially in sciences and engineering.  

Conventionally, we write 

Dn =  〈𝑟, 𝑓 | 𝑟𝑛 = 𝑓2 = 1, 𝑓𝑟 = 𝑟𝑛−1𝑓 =  𝑟−1𝑓〉 
And we say that Dn is the group generated by the elements  r 

and  f  subject to the conditions 

𝑟𝑛  = 𝑓2 = 1;  𝑓𝑟 = 𝑟𝑛−1𝑓 =  𝑟−1𝑓, 
and the 2n distinct elements of Dn are  

1, r, 𝑟2,…, 𝑟𝑛−1 , f, r f , 𝑟2f,…, 𝑟𝑛−1f. 
Here r is a rotation about the centre of the polygon through 

angle 2𝜋/𝑛 and f is a reflection about an axis of symmetry of 
the polygon.  

When a group 𝐺 acts on a set Ω, a typical point 𝛼 is moved 

by elements of 𝐺 to various other points. The set of these 

images is called the orbit of 𝛼 under 𝐺, and we denote it by 

𝛼𝐺 ≔ { 𝛼𝑔| 𝑔 ∈ 𝐺 }. A group 𝐺 acting on a set Ω is said to 

be transitive on Ω if it has one orbit and so 𝛼𝐺 = Ω for all α 

∈ Ω. Equivalently, 𝐺 is transitive if for every pair of point 𝛼,
𝛽 ∈  Ω there exists 𝑔 ∈ 𝐺 such that 𝛼𝑔 = 𝛽. A group which 

is not transitive is called intransitive.  

A permutation group 𝐺 acting on a non empty set Ω is called 

primitive if 𝐺 acts transitively on Ω and 𝐺 preserves no non 

trivial partition of Ω. Where non-trivial partition means a 

partition that is not a partition into singleton set or partition 

into one set Ω. In other words, a group 𝐺 is said to be 

primitive on a set Ω if the only sets of imprimitivity are the 

trivial ones otherwise 𝐺 is imprimitive on Ω. Transitive and 

Primitive finite permutation groups can be thought of as the 

building blocks of finite permutation  groups, and questions 

about finite permutation groups can often be reduced to the 

primitive case (Fawcett, 2009). 

According to (Cameron, 2013) a group is said to 

soluble/solvable if it has a normal series 

𝐺 = 𝐺0 ≥ 𝐺1 ≥ 𝐺2 ≥ ⋯ ≥ 𝐺𝑛 = {𝑒} … … … . (1) 

such that each of its factor group 
𝐺𝑖

𝐺𝑖+1

, 0 ≤ 𝑖 ≤ 𝑛 

is an abelian group. 

The above series (1) then is referred to as a solvable series of 

G. 

Transitive, primitive and soluble permutation groups of 

special degrees have received much attention in the academic 

research space. Transitive and primitive p-subgroups of 

dihedral groups of degree pq, where p, q are any two distinct 
odd prime numbers were considered by Hamma and  Haruna 

(2009), while more recently, Audu and Hamma (2010) 

discussed the transitivity and primitivity of all the p-subgroups 

of dihedral groups of degree at most p2 using the concept of  

p-groups. They used the standard program – The Groups, 

Algorithms and Programming (GAP) to validate their results 

while Hamma and Aliyu, (2010) worked “On transitive and 

primitive dihedral groups of degree 𝑎𝑡 𝑚𝑜𝑠𝑡 2𝑟  (𝑟 ≥ 2)". 

Also, Hamma and Mohammed (2012) discussed the 

transitivity and primitivity of all the p-subgroups of dihedral 

groups of degree at most p3. They proved theorems and 
validate them using the Groups, Algorithms and Programming 

(GAP). Cai and Zhang, (2015) presented “A Note on Primitive 

Permutation Groups of Prime Power Degree”. Fengler, (2018) 

in his published work explored on “Transitive Permutation 

Groups of Prime Degree” Studies concerning solubility 

include: Thanos (2006)  who proved that If |𝐺| = 𝑝𝑘  where p 
is a prime number then G is solvable. In other words every p-

group where p is a prime number is solvable; Bello et al. 

(2017) used the concept of p-groups to construct locally  

solvable groups using two permutation groups by Wreath 

products. Gandi and Hamma, (2019) who investigated 

solvable and Nilpotent concepts on Dihedral Groups of an 
even degree regular polygon. 
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In this paper, we intend to obtain more detailed descriptions of 

the unique structure of dihedral groups of degree 3p that are 

not p-groups and discuss their primitivity and solubility using 

numerical approach. 

In Section 2 we give some basic definitions, concepts and 

results which are required here. The main result of this paper 

covering all the dihedral groups of degree 3p where p is an 

odd prime number are stated in Section 3. 

 

II. PRELIMINARIES 

 

The following preliminary definitions and results will be 

required. 

 

2.1         p-Group   

A finite group 𝐺 is said to be a 𝑝-group if its order is a power 

of 𝑝, where 𝑝 is prime.  

2.2 p-Subgroups 

Let 𝐺 be a group. Let H be a subgroup of  𝐺. if H is a 𝑝-group, 

then H is a p-subgroup of 𝐺. 

 

2.3       Sylow Theorems (Sylow, 1872)  

Let G be a finite group of order n. 

1.   If p is a prime such that pk is a divisor of |G| for 

some k ≥ 0, then G contains a subgroup of order 

pk. 

2. All Sylow p-subgroups of G are conjugate, and 

any p-subgroup of G is contained in a Sylow p-
subgroup. 

3. Let n = mpk, with (m, p) = 1, and let np be the 

number of Sylow p-subgroups of G. 

Then np | m and np ≡ 1 (mod p). 

2.4       Sylow 𝐩-Subgroup (Sylow, 1872) 

Let 𝐺 be a group. 

1. If 𝑇 ≤ 𝐺 and |𝑇| = 𝑝𝑟, for some 𝑟 ≥ 0, then 𝑇 is 

called a 𝑝-subgroup of 𝐺. 

2. If 𝐺 is finite and |𝐺| = 𝑝𝑟𝑚, 𝑟 ≥ 1 where 𝑝 and 𝑚 

are co-prime and 𝐻 ≤ 𝐺 such that |𝐻| = 𝑝𝑟, we say 

that 𝐻 is a Sylow 𝑝-subgroup of 𝐺. 

Clearly, a Sylow 𝑝-subgroup is maximal among all 𝑝-

subgroups of 𝐺.  

According to Sylow theorem, if 𝑛 divides |𝐺|, then 𝐺 has a 

subgroup of order 𝑛 provided that 𝑛 is a prime power. 

This result is a sufficient condition for a subgroup to exist and 
is one of the basic tools in modern finite group theory. 

2.5 Transitivity 

A group 𝐺 is transitive if for every pair of point α, 𝛽 ∈  Ω 

there exists 𝑔 ∈ 𝐺 such that 𝛼𝑔 ∈ 𝛽. A group which is not 

transitive is called intransitive.  

If |Ω| ≥ 2, we say that the action of 𝐺 on Ω is doubly 

transitive iff for any 𝛼1, 𝛼2 ∈ Ω such that 𝛼1 ≠ 𝛼2 and 

𝛽1, 𝛽2 ∈ Ω such that 𝛽1 , ≠ 𝛽2 there exist 𝑔 ∈ 𝐺 such that 𝛼1
𝑔

=

𝛽1, 𝛼2
𝑔

= 𝛽2. 

The group 𝐺 is said to be k-transitive (or k-fold transitive) on 

Ω if for any sequences 𝛼1, 𝛼2, … , 𝛼𝑘 such that 𝛼𝑖 ≠ 𝛼𝑗  when 

𝑖 ≠ 𝑗 and 𝛽1 , 𝛽2, … , 𝛽𝑘 such that 𝛽𝑖 ≠ 𝛽𝑗  when 𝑖 ≠ 𝑗 of 𝑘 

element on Ω, there exists 𝑔 ∈ 𝐺 such that  𝛼𝑖
𝑔

= 𝛽𝑖   for  1 ≤
𝑖 ≤ 𝑘. 

Examples:  

(i)  𝐴4 ={(1), (2 4 3), (2 3 4), (1 4 3), (1 4)(2 3), (1 4 2), (1 3 
4), (1 3 2), (1 3)(2 4), (1 2 4), (1 2)(3 4), (1 2 3)}  is transitive.  

 

(ii)   K = {(1), (12), (34), (12) (34)} is intransitive. 

 

(iii) The Group D6 is doubly transitive as, if 𝛼1 = 2, 𝛼2 = 3, 

𝛽1 = 1 and 𝛽2 = 3 then routine   calculation shows that there 

exist 𝑔 ∈ D6 such that 𝛼1
𝑔

= 𝛽1 and 𝛼2
𝑔

= 𝛽2  

 

2.6  Lemma (Passman, 1968) 

 Let G be a dihedral group of any order, then G is transitive. 

Proof  

For given αi, αj as any two vertices of the regular polygon with 

i < j, we readily see that (α1α2 … αi … αj … αn)j-i is the 

rotation about the centre of the polygon through angle 2πc/n, 

(where n is the number of edges of the polygon) which takes α 

to αj . As such G is transitive 

 

2.7 Some Results On Transitive Groups  

Let G be a permutation group on Ω, where Ω is a finite set.   

1. We say that G is 
1

2
 – transitive if all the orbits have 

the same size. 

2. Suppose that G has just one orbit Ω. then for all 

r 𝜖 Ω,    𝑟𝐺 =
Ω and as such for any α, 𝛽 𝜖 Ω there exists 𝑔 𝜖 𝐺  
such that α𝑔 =  𝛽, and 𝐺 is said to be transitive 

(or that 𝐺 acts transitively) on Ω 

3. The group G is said to be k-fold transitive (or, simply 

k-transitive) on Ω if, for any sequences 

α1, α2,…., α𝑘 such that α𝑖 ≠ α𝑗  when 𝑖 ≠

𝑗; 𝛽1, 𝛽2, … . , 𝛽𝑘  such that 𝛽1 ≠ 𝛽𝑗 when 𝑖 ≠

𝑗 𝑜𝑓 𝑘 elements of Ω, there exists 𝑔 ϵ G such that 

 α𝑖
𝑔

= 𝛽𝑖  for 1 ≤ 𝑖 ≤ 𝑘. 

Thus for k = 2 we have that for 𝛼1, 𝛼2, 𝛽1, 𝛽2 in Ω 

with 𝛼1 ≠  𝛼2, 𝛽1 ≠  𝛽2  there exists  𝑔  ∈  G  such 

that;  

α1
𝑔

= 𝛽1,  α2
𝑔

= 𝛽2 

and we say that G is doubly transitive.  

If 𝑘 ≥ 2 then 𝑘 −  transitivity implies (𝑘 − 1)
− transitively. 

4.   Let G act on itself  by right multiplication. Then, Ω =
𝐺.   If 𝛼 = 𝑥, 𝛽 = 𝑦 in Ω and we take 𝑔 = 𝑥−1𝑦;    then 

𝛼𝑔 = x (x-1y) = y = 𝛽. 
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and so G is transitive. 

Let H ≤ G  and let G act on right cosets of H in G.   

Then G is transitive on  Ω :=  (G : H).   For  if 𝛼, 𝛽 𝜖 Ω,  

then 𝛼 = H,𝛽 = 𝐻𝑦 for some 𝑥, 𝑦 ∈ 𝐺, and if we take 𝑔 ∶

= 𝑥−1𝑦 then we have 

𝛼𝑔 = (𝐻𝑥)𝑥−1𝑦 = 𝐻𝑦 = 𝛽 

 

2.8 Primitivity 

A permutation group 𝐺 is said to be primitive on a set Ω if the 

only sets of imprimitivity are the trivial ones otherwise 𝐺 is 

imprimitive on Ω. For example the group,  

S3 = {(1), (12), (13), (23), (123), (132)} is primitive as 

{1,2}(1 2 3) = {2,3} implying that  ∆𝑔≠ ∆ and  ∆𝑔 ∩ ∆ ≠ ∅ for  

∆ = {1,2}  ∈ Ω.. ∆ of Ω is said to be a set of imprimitivity for 

the action of 𝐺 on Ω, if for each 𝑔 ∈ 𝐺, either ∆𝑔= ∆ or ∆𝑔 

and ∆ are disjoint. In particular, Ω itself, the 1-element subsets 

of Ω and the empty set are obviously sets of imprimitivity 

which are called trivial set of imprimitivity.                                                                                                                                                                                                          

The group of symmetry 𝐷4= {(1), (1234), (13)(24), 
(1432),(13), (24), (12)(34), (14)(23)} of the square with 

vertices 1,2,3,4 is imprimitive. For take  𝐺1 = {(1), (24)}. 

Let 𝐻 = {(1), (13), (24), (13)(24)} which is a normal 

subgroup of 𝐺. Then H is a group greater than 𝐺1 , but not 

equal to 𝐺. 

 

2.9 Theorem 

Let G be a transitive permutation group of prime degree on Ω. 

Then G is primitive 

Proof 
Now since G is transitive, it permutes the sets of imprimitivity 

bodily and all the sets have the same size. But Ω =∪
|Ω𝑖 |, Ω𝑖 being the sets of imprimitivity. As |Ω| is prime we 

have that either each |Ω𝑖| = 1 𝑜𝑟 Ω or the only sets of 

imprimitivity. So, G is primitive.  

 

2.10 Theorem (Passman, 1968). 

Let G be a non-trivial transitive permutation group on  Ω. 

Then G is primitive if and only if 𝐺𝛼 , 𝛼 ∈ Ω is a maximal 
subgroup of G or equivalently G is imprimitive if and only if 

there is a subgroup H of G properly lying between 𝐺𝛼(𝛼 ∈ Ω) 

and G. 

Proof  

Suppose G is imprimitive and Ψ a non-trivial subset of 

imprimitivity of G. 

Let 𝐻 = ⟨𝑔 ∈ 𝐺|Ψ𝑔 = Ψ⟩ 
Clearly H is a subgroup of G and a proper subgroup of G 

because Ψ ⊂ Ω and G is transitive.  

Now choose 𝛼 ∈ Ψ. If 𝑔 ∈ 𝐺 then 𝛼 ∈ Ψ ∩ Ψ𝑔 and so Ψ =
Ψ𝑔. 

Hence 𝐺𝛼  ≤  𝐻 ≤  𝐺 

Since |Ψ| ≠ 1, choose 𝛽 ∈ Ψ such that 𝛽 ≠ 𝛼. By transitivity 

of G, there exists some ℎ ∈ 𝐺 with 𝛼ℎ = 𝛽 so that ℎ ∈ 𝐺𝛼. 

Now 𝛽 ∈ Ψ ∩ Ψℎ, so Ψ = Ψℎ and ℎ ∈ 𝐻 − 𝐺𝛼 . Thus 𝐻 ≠ 𝐺𝛼  

Conversely, suppose that 𝐺𝛼 < 𝐻 < 𝐺 for some subgroup H.  

Let Ψ = 𝛼𝐻 . Since 𝐻 > 𝐺𝛼|Ψ| ≠ 1 

Now if Ψ = Ω, then H is transitive on Ω and hence |Ω| =
|𝐻: 𝐺𝛼| showing that H = G, a contradiction.  

Hence, Ψ ≠ Ω 

Now we shall show that Ψ is a subset of imprimitivity of G. 

Let 𝑔 ∈ 𝐺 and 𝛽 ∈ Ψ ∩ Ψ𝑔 then 𝛽 = 𝛼ℎ = 𝛼ℎ 𝑔 for some 

ℎ, ℎ ∈ 𝐻. 

Hence 𝛼ℎ 𝑔ℎ−1
= 𝛼.  so ℎ 𝑔ℎ−1 ∈ 𝐺𝛼 < 𝐻 

This shows that 𝑔 ∈ 𝐻 

Thus Ψ = Ψ𝑔 . Hence Ψ is a non-trivial subset of imprimitivity  
So G is imprimitive. 

 

2.11 Theorem  

A group G is solvable if and only if it has a solvable series.  

Proof  

Suppose G is solvable. Then by the definition of “solvable,” in 

the derived series of commutator subgroups we have G(n) = 

(1), for some n ∈ N. In the series G > G(1) > G(2) >... > G(n) = 

(1), we have that G(i+1) is normal in G(i) and G(i)/G(i+1)) is 

abelian. So the series is subnormal (because each subgroup is 

normal in each previous subgroup) and is also solvable (since 
the quotient groups are abelian).  

Now suppose G = G0  >  Gl > ... >  Gn = (l) is s solvable series. 

Then Gi/Gi+1 is abelian (by definition of solvable series) for 0 

≤ i ≤ n - l. Gi+l > (Gi)’ for 0 ≤ i ≤ n - 1. Since in the derived 

series of commutator subgroups we have G > G(1) > G(2) >... > 

G(n), then  

G1 > G0’ = G’ = G(1) 

G2 > G1’ = (G(1))’ = G(2) 

G3 > G2’ = (G(2))’ = G(3) 

Gi+1 > G’i = (G(i))’ = G(i+1)  
Gn > G’n+1 = (G(n-1))' = G(n) 

But Gn = (1) so it must be that G(n) = (1) and G is solvable.  

 

 

2.12 Corollary  

Let 𝐺 be a finite group and 𝐻 a Sylow p-subgroup of 𝐺. Then 

𝐻 is the only Sylow p-subgroup of 𝐺 if and only if 𝐻 is 

normal in 𝐺. 

Proof: 

By Sylow theorem, the Sylow p-subgroups of 𝐺 are the 

elements of the sets {𝑔−1𝐻𝑔 | 𝑔 ∈ 𝐺} and this reduces to a 

singleton set if and only if 𝑔−1𝐻𝑔 = 𝐻 for all 𝑔 ∈ 𝐺; that is 

precisely when 𝐻 is normal in 𝐺. 

 

2.13 Corollary (Thonas, 2006) 

If H ⊴ G and |
G

H
| = p or p2 then 

G

H
 is abelian 

 

2.14 Proposition (Thonas, 2006) 

Let G be solvable and H ≤ G. Then  

1. H is solvable.  

2. If H  ⊲ G, then G/ H is solvable.  

Proof  
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Start from a series with abelian slices. G: G0 ⊳ Gl ⊳ ...  ⊳  Gn 

= (l) Then H = H ∩ G0 ⊳ H ∩ G1 ⊳…⊳ 𝐻 ∩ Gn = {1}. When 

H is normal, we use the canonical projection 𝜋: G → G/ H to 

get G/ H = 𝜋(G0) ⊳…𝜋(Gn) = {1} ; the quotients are abelian 

as well, so G / H is still solvable. 

 
III. RESULTS 

 

3.1       Theorem  

Let Ω = { 1,2,3, … . . ,3p} where p is an odd prime number. 

The following occurs: 

 

3.1.1 The dihedral group 𝑫𝟑𝒑 of degree 3p, p = 3 is (i) 

imprimitive and (ii) soluble. 

Proof: 

Now 𝐷9 is the dihedral group of order 2 × n  =  18 and Ω =
{ 1,2,3,4,5,6,7,8,9 } is the set of points of 𝐷9. We readily see 

that 𝐷9 is transitive as the orbit  α𝐷9 = Ω  ∀ α ∈ Ω. 
The elements of the dihedral group of degree 9 are:  

D9 = {(1), (2,9)(3,8)(4,7)(5,6), (1,2)(3,9)(4,8)(5,7), (1,2, 3,4, 

5,6,7,8,9), (1,3)(4,9)(5,8)(6,7), (1,3,5,7,9,2,4,6,8), (1,4)(2,3) 

(5,9)(6,8), (1,4,7)(2,5,8)(3,6,9), (1,5)(2,4)(6,9)(7,8),  (1,5,9,4, 
8,3,7,2,6), (1,6)(2,5)(3,4)(7,9),   (1,6,2,7,3,8,4,9,5), (1,7) (2,6) 

(3,5)(8,9), (1,7,4)(2,8,5)(3,9,6), (1,8)(2,7)(3,6)(4,5), (1,8,6,4, 

2,9,7,5,3),  (1,9,8,7,6,5,4,3,2), (1,9)(2,8)(3,7)(4,6)} 

The stabilizer of the point 1 in 𝐷9  is given by  𝐷9{1}
=

{(1), (2,9)(3,8)(4,7)(5,6)} which is obviously a non-identity 

proper subgroup of  𝐷9. We readily see from the group 

elements that the group 𝐷9 has a subgroup H = {(1),
(1,4,7)(2,5,8)(3,6,9), (2,9)(3,8)(4,7)(5,6)} properly lying 

between 𝐷9{1}
 and 𝐷9 that is,  𝐷9{1}

  <  H  <   𝐷9. Thus by 

virtue of Theorem 2.10, G is imprimitive, proving (1).  

 

(ii)    Now, |𝐷9| = 2 × 9 =  18 = 2 ×  32.  
Let H2 = Syl2(D9) and H3 = Syl3(D9) be the Sylow 2-subgroups 

and Sylow 3-subgroups of D9 respectively. Routine calculation 
shows that  D9 has:  

H2 = {(1), (2,9)(3,8)(4,7)(5,6)} ≤  D9  with |Syl2(D9)|  =  2  and 

H3 = {(1), (1,2,3,4,5,6,7,8,9), 

(1,3,5,7,9,2,4,6,8),(1,4,7)(2,5,8)(3,6,9), (1,5,9,4, 8,3,7, 2,6), 

(1,6,2,7,3,8,4,9,5), (1,7,4)(2,8,5)(3,9,6), (1,8,6,4,2,9,7,5,3), 

(1,9,8,7,6,5,4,3,2)} ≤  D9 with |Syl3(D9)|  =  9 

Going by theorem 2.3, the number of Sylow 2-subgroups of 

D9 denoted n2 is given by  n2  =  1  +  2k  ≡ 1 (mod 2) and  n2 | 

9 (where k = {0, 1, 2, ….}). Therefore n2  =  1  or  3 or 9 

implying that n2 is not unique and hence not normal in D9. 

Similarly  the number of Sylow 3-subgroups of D9 denoted 

n3is given by n3  =  1  +  3k  ≡ 1 (mod 3) and  n3 | 2 (where k = 

{0, 1, 2, …}). 

It follows from the constraints that n3  =  1 implying  it is 

unique and its normal in D9 therefore, D9 has a normal series  

D9  ⊳  H3  ⊳  (1) 

with factor groups D9/H3 and H3/(1) = 2 and 32 respectively 

which are  either abelian or cyclic by theorems 2.17. D9/H3 

and H3/(1) are solvable by theorems  2.14. It follow that D9  is 

solvable by theorem 2.11.  

 

3.1.2 The dihedral group 𝑫𝟑𝒑 of degree 3p, p = 5 is (i) 

imprimitive and (ii) soluble. 

Proof: 

Now 𝐷15 is the dihedral group of order 2 × n  =  30 and Ω =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} is the set of points of 

𝐷15. We readily see that 𝐷15 is transitive as the orbit  α𝐷9 =
Ω  ∀ α ∈ Ω. 

The elements of the dihedral group of degree 15 are:  

D15 = {(1), (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (1,2) (3, 

15) (4,14)(5,13) (6,12) (7,11) (8,10),(1,2,3,4,5,6, 7,8,9,10, 
11,12,13,14,15),(1,3)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10),(1,3, 

5,7, 9,11,13,15,2,4,6,8,10,12,14),(1,4)(2,3)(5,15)(6,14)(7,13) 

(8,12)(9,11),(1,4,7,10,13)(2,5,8,11,14 )(3,6,9,12,15),(1,5) (2,4) 

(6,15)(7,14)(8,13)(9,12)(10,11),(1,5,9,13,2,6,10,14,3,7,11,15,4

,8, 12), (1,6)(2,5)(3,4)(7,15)(8,14)(9,13)(10,12),(1,6,11) (2,7, 

12) (3,8,13)(4,9,14)(5,10,15),(1,7) (2,6) (3,5) (8, 15)(9,14) 

(10,13)(11,12), (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12), (1,8) 

(2,7)(3,6) (4,5) (9,15) (10, 14)(11,13), (1,8,15,7,14,6,13,5, 

12,4,11,3,10,2,9),(1,9)(2,8)(3,7)(4,6)(10,15) (11,14) (12,13), 

(1,9, 2,10,3,11,4,12,5,13,6,14,7,15,8),(1,10)(2,9)(3,8)(4,7) (5, 

6) (11,15)(12,14), (1,10, 4,13,7) (2,11, 5, 14,8)(3,12,6,15,9), 

(1,11)(2,10)(3,9)(4,8)(5,7)(12,15)(13,14), (1,11,6)(2,12,7) (3, 
13,8) (4,14,9) (5,15,10),(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13, 

15), (1,12,8,4,15,11,7,3,14,10, 6,2,13,9,5), (1,13) (2,12) (3,11) 

(4,10)(5,9)(6,8)(14,15), (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9, 

6), (1,14)(2,13) (3,12) (4,11)(5,10)(6,9)(7,8), (1,14,12,10,8, 

6,4,2,15, 13,11,9,7,5,3), (1,15,14,13, 12,11, 10,9, 8, 7, 6,5,4, 

3,2), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)} 

The stabilizer of the point 1 in 𝐷15  is given by                              

𝐷15{1}
= { (1), (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)} 

which is obviously a non-identity proper subgroup of  𝐷15.   

We readily see from the group elements that the group 𝐷15 has 

a subgroup H = {(1),
(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15),
(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)} properly lying 

between 𝐷15{1}
 and 𝐷15 that is,  𝐷15{1}

  <  H  <   𝐷15. Thus by 

virtue of Theorem 2.10, 𝐷15 is imprimitive, proving (1).  

 

(ii)    Now, |𝐷15| = 2 × 15 =  18 = 2 × 3 ×  5.  

Let H2 = Syl2(D15), H3 = Syl3(D15) and H5 = Syl3(D15) be the 

Sylow 2-subgroups,  Sylow 3-subgroups and Sylow 5-

subgroups of D15  respectively. Routine calculation shows that  

D15 has:  
H2 = {(1), (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)} ≤  D15  

with |Syl2(D15)|  =  2, 

H3 = {(1), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (1,11, 6) 

(2,12,7)(3,13,8)(4,14,9)(5,15,10)} ≤  D15 with |Syl3(D15)|  =  3 

and  H5 = {(1), (1,4,7,10,13)(2,5,8,11,14) (3, 6,9,12,15), (1,7, 

13,4,10) (2, 8,14,5,11)(3,9,15,6,12),(1,10, 4, 13,7) (2,11, 5,14, 

8)(3,12,6,15,9), (1,13,10,7,4)(2,14,11,8,5) (3, 15, 12,9,6)} ≤  

D15 with |Syl3(D15)|  =  5 
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Going by theorem 2.3, the number of Sylow 2-subgroups of 

D15 denoted n2 is given by  n2  =  1  +  2k  ≡ 1 (mod 2) and  n2 | 

15 (where k = {0, 1, 2, ….}). Therefore n2  =  1  or  3 or 5 or 

15 implying that H2 is not unique and hence not normal in D15. 

Also  the number of Sylow 3-subgroups of D15 denoted n3 is 

given by n3  =  1  +  3k  ≡ 1 (mod 3) and  n3 | 10 (where k = 

{0, 1, 2, …}). Therefore n3  =  1  or  10 implying that H3 is not 

unique and hence not normal in D15. Also  the number of 
Sylow 5-subgroups of D15 denoted n5 is given by n5  =  1  +  5k 

 ≡ 1 (mod 5) and  n5 | 6 (where k = {0, 1, 2, …}). n5  =  1  or  

6 thus H5 is not unique and hence not normal in D15 

However the conjugacy classes of D15 shows there are 4NO 

subgroups of order 15. Let H15 be a subgroup of order 15 then, 

D15 has a normal series  

D15  ⊳  H15  ⊳ D5  ⊳  (1) 

with factor groups D15/H15, H15/H5 and  H5/(1) = 2, 3 and 3 

respectively which are  either abelian or cyclic by theorems 

2.13. D15/H15, H15/H5 and  H5/(1) are solvable by theorems  
2.14. It follow that D15  is solvable by theorem 2.11. 

 

The main results obtain from the investigation of dihedral 

groups are as follows: 

 

3.2.1 Proposition (Main Result) 

Let G be a dihedral group of degree 3p, p an old  prime 

number. Then G is (i) imprimitive and (ii) soluble.  

 

Proof  

That G is transitive follows easily from Lemma 2.18. Next, 
name the vertices of G as 1,2,3,…,3p and let l be the line of 

symmetry joining the vertex 1 and the middle of the vertices  

 
3𝑝 +1

2
 𝑎𝑛𝑑 

3𝑝 +3

2
𝑠𝑜 𝑡ℎ𝑎𝑡 𝛼 = (2, 3𝑝)(3, 3𝑝 − 1)(4, 3𝑝 −

2) … … (
3𝑝 +1

2
,

3𝑝 +3

2
) is the reflection in 𝑙 (see figure 1). Then 

𝐺(1) = {(1), 𝛼}  is the stabilizer of the point 1. We readily see 

that 𝐺(1) is a non-identity proper subgroup of G which has  

 

𝐻 =  {(1), (2, 3𝑝), (3, 3𝑝 − 1), (4, 3𝑝 − 2), … , (
3𝑝 +1

2
,

3𝑝 +3

2
) , 𝛼} as a subgroup properly lying between 𝐺(1) and G. 

It follows by virtue of Theorem 2.10 that G is imprimitive, 
proving (i). 

Figure 1 

 

(ii)  Now, the order |G3p| = 2(3p). 
There are two cases here, 

Case 1: p = 3 then, |G3p| = 2(3p) = 18 = 2⋅32 

By corollary 2.3, the number of Sylow 3-subgroups  n3 ≡ 

1(mod3) and n3 divides 2.  

It follows from this constraints that n3(G9)  =  1. 

Hence the Sylow 3-subgroup H  is unique  and is a normal 

subgroup of G9. 

The order of H is 9, a square of a prime number, thus H is 

abelian by Corollary 2.13. 

Also, the order of the quotient group G9 /H is 2, thus G9 /H is 

an abelian (cyclic) group. 
Thus we have the subnormal series 

G9 ▹H▹{e} 

whose factors G3p /H, H/{e} are abelian groups, hence G3p is 

solvable. 

 

Case 2: p > 3 then, |G3p| = 2(3p) = 6p 

By corollary 2.10, the number of Sylow p-subgroups  np ≡ 

1(mod p) and np divides 6.  

This implies  np = 1  +  kp where k = {0, 1, 2, ….} ≡ 1(mod p) 

and np | 6. 
It follows from this constraints that np(G3p)  =  1 or 6( only 

when p = 5). 

Hence the Sylow p-subgroup H is unique  and is a normal 

subgroup of G3p. 

The order of H is p, a prime number, thus H is abelian by 

Corollary 2.13.  

The order of the factor group G3p /H that is, |G3p /H | = 6 and 

there are two groups of order 6 namely Z6 and S3  which are 

solvable groups. We also know that Sylow groups are 

generally solvable. Since G3p /H  is solvable and H is 

solvable, it follows by Theorem 2.11  that G3p is soluble. 
                             

3.2.2     GAP Result - Validation 

┌───────┐   GAP 4.11.1 of 2021-03-02 

│                          GAP   https://www.gap-system.org 
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└───────┘   Architecture: x86_64-pc-cygwin-default64-

kv7 

 Configuration:  gmp 6.2.0, GASMAN, readline 

 Loading the library and packages ... 

gap> 

gap> 

gap> D9 := DihedralGroup(IsGroup, 18); 

Group([ (1,2,3,4,5,6,7,8,9), (2,9)(3,8)(4,7)(5,6) ]) 

gap> Order(D9); 
18 

gap> Elements(D9); 

[ (), (2,9)(3,8)(4,7)(5,6), (1,2)(3,9)(4,8)(5,7), 

(1,2,3,4,5,6,7,8,9), (1,3)(4,9)(5,8)(6,7), 

  (1,3,5,7,9,2,4,6,8), (1,4)(2,3)(5,9)(6,8), (1,4,7)(2,5,8)(3,6,9), 

(1,5)(2,4)(6,9)(7,8), 

  (1,5,9,4,8,3,7,2,6), (1,6)(2,5)(3,4)(7,9), (1,6,2,7,3,8,4,9,5), 

(1,7)(2,6)(3,5)(8,9), 

  (1,7,4)(2,8,5)(3,9,6), (1,8)(2,7)(3,6)(4,5), (1,8,6,4,2,9,7,5,3), 

(1,9,8,7,6,5,4,3,2), 

  (1,9)(2,8)(3,7)(4,6) ] 

gap> IsTransitive(D9); 
true 

gap> IsPrimitive(D9); 

false 

gap> IsSolvable(D9); 

true 

gap> S2 := SylowSubgroup(D9, 2); 

Group([ (2,9)(3,8)(4,7)(5,6) ]) 

gap> Order(S2); 

2 

gap> Elements(S2); 

[ (), (2,9)(3,8)(4,7)(5,6) ] 
gap> S3 := SylowSubgroup(D9, 3); 

Group([ (1,2,3,4,5,6,7,8,9), (1,4,7)(2,5,8)(3,6,9) ]) 

gap> Order(S3); 

9 

gap> Elements(S3); 

[ (), (1,2,3,4,5,6,7,8,9), (1,3,5,7,9,2,4,6,8), 

(1,4,7)(2,5,8)(3,6,9), (1,5,9,4,8,3,7,2,6), 

  (1,6,2,7,3,8,4,9,5), (1,7,4)(2,8,5)(3,9,6), (1,8,6,4,2,9,7,5,3), 

(1,9,8,7,6,5,4,3,2) ] 

gap> 

gap> 
gap> D15 := DihedralGroup(IsGroup, 30); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), 

(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) ]) 

gap> Order(D15); 

30 

gap> Elements(D15); 

[ (), (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), 

(1,2)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10), 

  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), 

(1,3)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10), (1,3,5,7, 

    14), (1,4)(2,3)(5,15)(6,14)(7,13)(8,12)(9,11), 

(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), 

  (1,5)(2,4)(6,15)(7,14)(8,13)(9,12)(10,11), 

(1,5,9,13,2,6,10,14,3,7,11,15,4,8,12), 

  (1,6)(2,5)(3,4)(7,15)(8,14)(9,13)(10,12), 

(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), 

  (1,7)(2,6)(3,5)(8,15)(9,14)(10,13)(11,12), 

(1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12), 

  (1,8)(2,7)(3,6)(4,5)(9,15)(10,14)(11,13), 

(1,8,15,7,14,6,13,5,12,4,11,3,10,2,9), 

  (1,9)(2,8)(3,7)(4,6)(10,15)(11,14)(12,13), 
(1,9,2,10,3,11,4,12,5,13,6,14,7,15,8), 

  (1,10)(2,9)(3,8)(4,7)(5,6)(11,15)(12,14), 

(1,10,4,13,7)(2,11,5,14,8)(3,12,6,15,9), 

  (1,11)(2,10)(3,9)(4,8)(5,7)(12,15)(13,14), 

(1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10), 

  (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15), 

(1,12,8,4,15,11,7,3,14,10,6,2,13,9,5), (1,13)(2,1 

    8)(14,15), (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6), 

(1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7 

  (1,14,12,10,8,6,4,2,15,13,11,9,7,5,3), 

(1,15,14,13,12,11,10,9,8,7,6,5,4,3,2), (1,15)(2,14)( 

    10)(7,9) ] 
gap> IsTransitive(D15); 

true 

gap> IsPrimitive(D15); 

false 

gap> IsSolvable(D15); 

true 

gap> S2 := SylowSubgroup(D15, 2); 

Group([ (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) ]) 

gap> Order(S2); 

2 

gap> Elements(S2); 
[ (), (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) ] 

gap> S3 := SylowSubgroup(D15, 3); 

Group([ (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10) ]) 

gap> Order(S3); 

3 

gap> Elements(S3); 

[ (), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), 

(1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10) ] 

gap> S5 := SylowSubgroup(D15, 5); 

Group([ (1,10,4,13,7)(2,11,5,14,8)(3,12,6,15,9) ]) 

gap> Order(S5); 
5 

gap> Elements(S5); 

[ (), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), 

(1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12), 

  (1,10,4,13,7)(2,11,5,14,8)(3,12,6,15,9), 

(1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6) ] 

gap> CCD15 := ConjugacyClasses(D15); 

[ ()^G, (2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)^G, 

(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 

    15)^G, (1,3,5,7,9,11,13,15,2,4,6,8,10,12,14)^G, 

(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12, 
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    15)^G, (1,5,9,13,2,6,10,14,3,7,11,15,4,8,12)^G, 

(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10, 

    15)^G, (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12)^G, 

(1,8,15,7,14,6,13,5,12,4,11,3,10,2, 

    9)^G ] 

gap> List(CCD15, x -> Order(Representative(x))); 

[ 1, 2, 15, 15, 5, 15, 3, 5, 15 ] 

gap> 

 

IV. CONCLUSION AND RECOMMENDATION 

4.1       Conclusion  

This study showed that Dihedral group of degree 3p where p is 

an odd prime number is (i) imprimitive and (ii) soluble. 

 

4.2    Recommendation  

This study can be extended by considering for further 

research, one or a combination of two or more of other 

theoretic properties such as simplicity, nilpotency, regularity, 

etc of same algebraic structures. 
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