
 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

164

A REVIEW ON DEPENDENCE ANALYSIS AND

PARALLELIZATION TECHNIQUES

Vijaya Balpande

Computer Science and Engg.

Priyadarshini J.L. College of Engineering

Pradnya Borkar

 Computer Science and Engg.

 Priyadarshini J.L. College of Engineering

Abstract—With the new era of multicore processors it is

required to improve the execution speed of the program.

Consequently, developing parallel programs is the

primary concern of the multicore era. The main

challenge is to convert the sequential algorithm to

parallel. Conversion of the sequential algorithm to

parallel program without changing the output requires

analyzing the set of constraints called dependency.

Dependency specifies the basis for powerful

transformation systems that enhance the implicit

parallelism present within the program. The

applications that are implemented with data structures

like trees, queues and graphs is the most difficult

problem for parallelization as these data structure deals

with pointer. Graph Isomorphism is a technique of

matching the structure of one graph with another and if

only subpart of a graph is matched it is known as

subgraph isomorphism. Graph and subgraph

Isomorphism is one of the most highly-studied problems

in the various field of computer science. In this paper we

have studied the data dependency, control dependency,

different parallelization techniques and the graph

isomorphism problem.

Keywords—Data dependency, Control dependency,

Graph Isomorphism, Subgraph Isomorphism,

Parallelization

I. INTRODUCTION

With the evolution of parallel computers, the optimization

process becomes too complex. The principal optimization

becomes uncovering the parallelism in a sequential

algorithm and tailoring the parallelism to the target

machine. The basis of this approach is a dependence

analysis. Dependence represents the set of constraints such

as data dependence and control dependence. Data

dependence constraint must ensure that the data is produced

and consumed in correct order. In control dependence the

order of execution of statements must be preserved

depending on the condition specified in the program. For

transformation, dependency analysis is a tool determining

whether it is safe to transform the program that will

preserve the same output of the original program. As

specified in Allen et.al(2002) , a program transformation

that changes the order of execution of statement without

adding or deleting any statement in a program is known as

reordering transformation. Reordering transformation thus

preserve the relative execution order of source and sink of

that dependence. For the two statements S and T, if the

instance of statement T(i) depends

on instance S(i) then S(i) is called source and T(i) is called

sink. For loop transformation, the loop iterations are

needed to be standardized and the process of standardizing

the loop iteration is loop normalization. In loop

normalization, the index space is transform to iteration

space to have unit stride. By loop normalization the non-

uniform index space is transformed to uniform iteration

space. The relation between the source and sink of

dependence in the iteration space can be characterized by

distance and direction vectors .For loop reordering

transformation, direction vector can be used to specify the

relationship between the index vector of the source and

sink of dependence. The direction vector specifies in

which direction the loop iteration are moving and distance

vector specifies that the index variable value is increasing

uniformly. For checking whether the parallelization of

sequential program is possible or not dependence testing is

required. For determining whether two references to the

same variable in a given set of loop access the same

memory location, dependence testing is required.

Techniques for performing dependence testing are GCD

test and Banerjee Inequality test as given in Allen

et.al(2002). Dependence testing is carried out by the

transformation techniques like loop normalization,

constant propagation, and induction-variable. Loop

normalization is performed to have uniform iteration

space. For vectorization the loop interchange and

wavefront method for parallelization are described in the

papers of Lamport L et al.(1974, 1976,1981). Loop

skewing which is the practical way of implementing the

Lamport Wavefront method was introduced by Wolfe M.J

(1986).The performance of parallelized code not only

depend on parallelism found in the code but also on code

being packed as fine grain and coarse grain granularity.

Loop distribution is performed by node splitting which

breaks the data dependency cycle. Loop Fusion is

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

165

performed by merging two loops into a single loop. To

apply loop fusion both loops must have same structure,

loop depth, loop bounds and iteration direction. For

optimization of array, Loop Methods combining loop

distribution and Loop Fusion were discussed in Allen et.

al.(1987).

An application like chemical compounds, geographic

maps, computer networks, software systems architectures,

social networks requires the information to be represented

in the form of graphs. For example, for finding the

relationship of a person in a social network, requires to

process huge database which can be represented in the

form of graph. Comparison between graphs can be

formulated as a graph or subgraph isomorphism

Parallelizing the pointer based data structure requires

analyzing the dependence structure in the sequential

algorithm. Dependency analysis includes data dependence,

control dependence, flow dependence. For exploiting

parallelism of sequential algorithm the loop structure

requires rigorous analysis. Dependence in loop structure

influences the parallelization of sequential algorithm.

For parallelizing the numerical and scientific applications

DOALL and DOACROSS techniques Allen et. al.(2002)

are used for loop parallelization and performs well for on

very regular and analyzable structure that has predictable

array accesses but not suitable for unpredictable data access

pattern.

In this paper section II describes the dependence analysis

and its properties, section III describes the existing

techniques of parallelization, section IV describes graph

isomorphism problem and section V includes the

conclusion.

II. DEPENDENCE AND ITS PROPERTIES

A. Data Dependence:

Data dependence arises due to use of same data in more

than one statement and accesses the same memory location

and at least one of the statement stores data into it.

For following program code 1:

S1: r= 3.0
S2: pi =
3.14
S3: peri = 2 * pi * r

No execution constraint exist between statement S1and S2 as
execution order S1,S2 ,S3 and S2 ,S1 ,S3 will produce the
same result.

B. Control Dependence:

A dependence that arises due to control flow is called
control flow dependence.
For following program code 2:

S1: if (y! = 0) goto
S3 S2: x = x / y
S3: continue

Executing S2 before S1 could cause a divide-by-zero
exception. Therefore S2 cannot be executed before S1 as S2
is conditionally dependent on S1.

C. True Dependence or Flow Dependence:

For following program code 3:

S1: y = a +
b S2: z = x
+ y

The value y computed by S1 is used by S2. Dependence of S2

on S1 is called true dependence or flow dependence

represented

by S1 δ S2. In S1, y is used as an output variable and in S2 ,

y is used as an input variable. Flow dependence is same as

read after write (RAW) hazard.

D. Antidependence:

For following program code 4:

S1: p = y +
b S2: y = x
+ 3

The value y computed by S2 is read by S1.This prevents the

interchange of S1 to S2 .This type of dependence is called

antidependence represented by S1 δ
-1

 S2 and is equivalent

to write after read (WAR) hazard.

E. Output Dependence:

For following program code 5:

S1: y = a +
b S2: y = x
+ z

Both the statements S1 and S2 uses y as an output variable

and stores the value in the same variable. Statements S1

and S2 thus write into the same location. .This type of

dependence is called output dependence represented by S1

δ
o
 S2 and is equivalent to write after write (WAW) hazard.

F. Dependence in Loops:

For following program code 6:

: DO I = 1, n
S1: A (I+1) = A (I)

+B (I) ENDDO

In statement S1, instance A(3) uses the value of
A(computed in the previous iteration any loop iteration
depends on the instance of itself executed in previous
iteration. The iteration vector is denoted as

i = {i1, i2…in}

(1)

where ik, 1≤ k ≤ n, represents the iteration number for the
loop at nesting level k.
For the following program code7:

DO I = 1, 2

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

166

DO J = 1, 2
S1

ENDDO

The set of all possible iteration vectors for a statement S1

is an iteration space. The iteration space of S1 is

{(1,1),(1,2),(2,1) ,(2,2)}.

G. Reordering Transformation

For following program code 7:

S1: r =

3.0 S2: pi

= 3.14

S3: peri = 2 * pi * r

Reordering the statement S1, S2, S3 as S2, S1, S3 will

produce the same result. A transformation is valid if it

preserves all dependences in the program. A reordering

tranformation changes the order of execution of the

statement without adding or deleting any executions of any

statements and preserves the source and sink of

transformation in Allen et. al.(2002).

H. Distance and Direction Vectors

For following program code 8:

L1: do I1 = 10, 100, 3

L2: do I2 = 50, 5, -2

S: X (2I1 - 1, I1 + I2) = Y (I1 + I2)

T: Z (I1 + I2) = X (3I2 + 1, 2I1 + 2)

en

ddo

enddo

By formulating the equation for statement S and T we

get, I1 = i1, I2 = i2 S: X (2i1 - 1, i1 + i2)

I1 = j1 , I2 = j2 T: X (3j2 + 1, 2j1 + 2)

2i1 – 1 = 3j2 + 1

(2)

i1 + i2 = 2j1 + 2

(3)

By rearranging the above equation 2 and 3 we get,

2il – 3j2 = 2

(4)

il – 2jl + i2 = 2

(5)

Constraints on i1, j1, i2, j2 will be

I1 = {10, 13 …100}

I2 = {50, 48 … 6}

In above program segment the index space of I1 and I2 have

an arbitrary stride so to standardize the index space to have

an unit stride so that the index variable to be increase in

sequential order as 0,1,2, … loop normalization is carried

out. Loop normalization is performed by introducing a new

variable called iteration variable and new iteration space

having unit stride is found. Dependence between statement

instances, S(i) an instance of statement S is determined by

an index point i, and T(j) the instance of statement T is

determined by an index point j and the distance from S(i) to

T(j) is written as distance between the source S(i) and sink

T(j) of dependence in the iteration space of the loop nest

containing the statement involved in the dependence. For

loop normalization the distance and direction vector are

needed to be found.

Dependence of T on S for the set of all pairs (S (i), T (j))

that satisfies the condition i < j such that iteration H(j)

dependence on iteration H(i) and the distance vector is d,

direction vector σ and dependence level l is calculated as

stated in equation 7, 8 and 9.For i < j ,the distance vector

d(i ,j) is defined as in Allen et. al.(2002).

d (i, j) = j - i (7)

Since i ≤ j, distance vector must always be
lexicographically non-negative. No legal dependence can
have negative distance because this would indicate that the
source of the dependence was executed before sink. This
means the source and sink are reversed and they are
antidependent.

The direction vector σ(i, j) is defined as

σ (i, j) = sign (d) (8)

It is also specifies as (<, =,>) depending on the relative
values of iteration vectors i and j .The arrow points to the
loop iteration that occurs first pair of iteration vector s for
the source and sink of the dependence.

Direction vectors can be used as a basis for understanding
loop reordering transformations because they summarize
the relationship between the index vectors at the source
and sink.
The dependence level l is specified as

l = lev (d) (9)

Dependence level are determined based on the value of i
and j
.If i=1 and j=1 level is 1,if i=0 and j=1 then level is 2 and if
both i = j =0 then level is 3.At level 3 loops are totally
independent. If S2 depends on S1 at level l for (1 ≤ l ≤ m),
we say that dependence of S2 on S1 is carried by Li.
Computation of distance vector, direction vector and
dependence level for the program code 8 is specified.

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

167

For following program code 9:

L1: DO I = 0, 4, 1
DO J = 0, 4, 1

S1; A (I + 1, J) = B (I, J) + C
(I, J) S2; B (I, J+1) = A (I, J+1) + 1
S3: D (I, J) = B (I,

J+1) -2 ENDDO
ENDDO

For array A dependence between S1 and S2can be specified
as
,at I=2,J=2 the instance S1(2,2) writes A(3,2) and at
I=3,J=1 , the instance of S2(3,1) reads A(3,2).Instance S1(2,
2) write is executed before the instance S2(3,1) read. The
direction vector

  d(2,2)=(1,-1),distance vector σ(2,2)=(1,-1) and dependence

S(i) – T(j) = (j i)
 

 (6)

level l=1. It indicates that S2 is flow dependent on S1 that
is S1
δ S2.

where

i and j are the new iteration points corresponding to

For array B dependence between S1 and S2can be specified
as, at I = 2, J = 2 the instance S1(2,2) reads B(2,2) and at I
= 2, J = 1, index point i and j. Dependences can be
characterized by the S2 (2,1) writes B(2,2).the instance
S2 (2, 1) write is executed before S1(2,2) read. The direction
vector d (2, 1) = (0, 1), distance vector σ = (1, 1) and
dependence level l =2. It indicates that S1 is flow dependent
on S2 that is S2δ S1.

I. Loop Interchange:

For improving the performance of program, loop

interchange is the most useful transformation and helps in

exploiting the parallelism in the loop.

L. Loop Fusion:

Loop fusion for following program code 12:

L1: DO I = 1, N
A (I) = B (I)

+ 1 ENDDO
L2: DO I = 1, N

C (I) = A (I) + C(I-1)
For following program code 10: DO I = 1, N

DO J = I, M
S1; B (I, J+1) = B (I, J) + 1

L3: ENDDO
DO I = 1, N

D (I) = A (I) + 1
ENDDO

END
DO
ENDDO

True dependence is carried by the innermost loop itself. If
loops are interchanged the dependence is carried by outer
loop and inner loop remains dependence free and we
achieve fine- grained parallelism. Rewriting the above
program code

DO J = 1,
M DO I
= I, N

S1; B (I, J+1) = B (I, J)
+ 1 ENDDO

ENDDO
For the coarse-grained parallelization, a parallel loop is
moved to the outer most position to increase granularity and
decrease synchronization overhead in Allen et. al.(2002). In
loop interchange dependency between the statements
changes. For the loop interchange the dependence vector
must remain positive.

J. Node splitting:

Node splitting is the loop transformation technique which
breaks the data dependency cycle and helps to parallelize
the loop.
For following program code 11:

DO I = 1, N
S1; A (I) = B (I+1) + B(I)
S2; B (I+1) = C (I)

+ 5 ENDDO
in the above loop there are two different references to B in
the statement S1 and there exist anti dependence S1 δ

-1
 S2

and recurrence. This is removed by the technique called
node splitting .Node splitting creates a copy of node from
which an anti dependence emanates, if there are no
dependence coming in the node and the recurrence is
broken and the code can be rewritten as

DO I = 1, N
B (I) = B (I+1)

S1; A (I) = B’ (I) + B (I)
S2; B (I+1) = C (I)

+ 5 ENDDO

K. Loop Skewing :

Loop skewing is a transformation that reshapes an iteration

space and expresses the existing parallelism with

conventional parallel loops.

Loops L1 and L3 carry no dependence so they can be merged

together to increase the granularity and the code can be

rewritten as

L1: PARALLEL DO I = 1, N
A (I) = B (I) + 1

L3: D (I) = A (I)
+ 1 ENDDO

L2: DO I = 1, N
C (I) = A (I) + C

(I-1) ENDDO

Loop transformation achieved by merging two loops

together is known as loop fusion.

M. Unimodular transformation:

Loop interchange, loop skewing and loop reversal are

examples of general set of transformation known as

unimodular transformation. Unimodular transformation is

implemented for only perfectly nested loops. It supports

goal directed parallelization strategies.

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

168

III. PARALLEIZATION TECHNIQUES

For extraction of parallelism for running it on multicore

processor to improve the performance of algorithm the
different parallelization techniques are tiling technique
given in Tan et.al. (2007) and Wolf M.E.et.al. (1991),
speculative parallelization explained in Raman Arun
(2012), decoupled software pipelining Cintra et.al R(2005)
and speculative decoupled software pipelining Cintra et.al
R(2003).Tiling technique is used to exploit the parallelism
in loop by analyzing the dependencies. For implementing
the tiling loop skewing, loop transformation techniques are
used. Tiling increases the granularity of computation and
decreases the amount of communication incurred between
the processors. It improves the data locality and data
reusability which result in better utilization of cache
locality. As the data remain in cache for the entire
iteration, moving in and out of data required for
computation is reduced thereby improving the overall
performance. It also improves the register reuse.

Speculative Parallelization is implemented by
analyzing the values of data dependencies between the
different tasks and parallelizing the sequential code.

Decoupled software pipelining exploits the fine grained
level parallelism as compared to DOACROSS parallelism
specified in Allen et. al.(2002). In DOACROSS parallelism
loops consist of dependencies among the iteration of the
loop. DOACROSS parallelism is

characterized by the parallel execution of parts of each loop

iteration across multiple cores. Dependences are handled by
forwarding values from core to core by some way, often

through memory with synchronization. In DSWP, there are
no restrictions like control flow should be simple, to operate

only on arrays and should have regular memory access

pattern that can be seen in DOACROSS.DSWP partition
the loop code and particular piece of code across all

iteration is executed on each core for which the core is

responsible. It results into long communication latencies
between threads.

The problem of dependence recurrence present in
DSWP can be handled by speculative decoupled software
pipelining
Cintra et.al R(2003) .Speculative DSWP combines the
speculation and pipeline parallelism and improves the
significant speedup in the presence of long inter-core
communication latency.

IV. GRAPH ISOMORPHISM

Graph Isomorphism is a technique of matching the

structure of one graph with another and if only subpart of a
graph is matched it is known as subgraph isomorphism.
Graph and subgraph Isomorphism is one of the most
highly-studied problems in the various field of computer
science. Graph is used for representing information in
computer networks, social networking, data mining,
chemical compounds, etc. For enhancing the performance
of sequential algorithm and exploiting the resources of
multicore conversion of sequential program to parallel
program is required. Subgraph Isomorphism is found to be

solved in polynomial time but graph isomorphism is found
not to be NP-complete. Despite of much effort no
polynomial-time algorithm for graph isomorphism has been
found. Several subproblems of graph isomorphism are
known to have polynomial algorithms.

The graph isomorphism is expressed as in Deo Narsingh
et al.(1995) : Given two graphs G=(V1,E1) and H=(V2,E2)
,if there exist one to one mapping function f from v1 to v2
such that (i , j) ∈ E1, if and only if (f(i) ,f(j)) ∈ E2. The
function f is called an isomorphism from G to H. If the two
graphs isomorphic to each other, it is denoted by G ≅ H.

Exact Matching and Inexact Matching are the two ways
for matching the graphs. Exact graph matching is
characterized by mapping between the two nodes of two
graphs if there is an edge between the two nodes in the first
graph, they are mapped to two nodes in the second graph
that are linked by an edge by preserving the edge. The
different form of exact matching is graph isomorphism,
subgraph isomorphism, monomorphism or Automorphism
and Maximum common subgraph (MCS).For exact
matching the different techniques exist like tree search
based algorithms and canonical labeling. Ullmann
Algorithm in Ullmann J. R et. al.(1997) , Messmer B.T.
and Bunke H.(1995) , D.G.Corneil and Gotelib(1970) and
Nauty Algorithm in McKay Brendan D et. al(1981,2004)
and in are the algorithm based on tree search method and
canonical labeling. In McKay Brendan D et. al(1981,2004)
algorithm based on canonical labeling is described.
Canonical labeling is practically available algorithm on site
of the author specified in McKay Brendan D(2004) .

In Qiu et. al(2010) , for testing the runtime input graph
with the model database graph vertex invariant and decision
tree concept is implemented. The vertex invariants are used
to partition the matrix of the graph before graph
isomorphism detection. The vertex invariant property of
graph, the size of decision tree is reduced as compared to
Messmer et.al(1995). The technique is similar to breadth
pruning technique which reduces the size of decision tree
remarkably still the time complexity is almost equivalent.

Decision tree is the most widely used method for
inductive conclusion and simple method for knowledge
representation.

Graph isomorphism problem can be solved by decision
tree method using the vertex invariant. Parallelization of
sequential algorithm of graph isomorphism can be done as
it has wide variety of application.

V. CONCLUSION

With the evolution of parallel computers, the optimization
process becomes too complex. The principal optimization
becomes uncovering the parallelism in a sequential
algorithm and tailoring the parallelism to the target
machine. Mostly today’s algorithms are sequential, which
basically perform operations in a sequential fashion. As the
speed at which multicore processors operate has been
improving at an exponential rate it is necessary to design
an algorithm that specifies multiple operations. In order to
solve a problem efficiently on a parallel machine,
dependence analysis plays an important role in
parallelizing the sequential code. Dependence analysis
helps in implementing parallelization techniques.

VI. REFERENCES

[1] Allen Randy and Kennedy Ken(2002): Optimizing

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 164-169
 Published Online June 2019 in IJEAST (http://www.ijeast.com)

169

Compilers for Modern Architectures- A Dependence –
Based Approach, Morgan Kaufmann Publisher Inc,.

[2] Lamport L(1974).: The parallel Execution of DO
Loops. Coomunication of the ACM ,17(2):83-93.

[3] Lamport L(August 1976,revised October 1981).: The
Co ordinate Method for the practical execution of
iterative DO Loops. Technical Report CA-7608-
0221,SRI,Menlo Park,CA,.

[4] Wolfe M.J(August 1986).: Loop Skewing: The
Wavefront Method revisited.International Journal of
Parallel Programming 15(4): 279- 293,.

[5] Allen R.,Callahan D and .Kenned K(January
1987):.Automatic decomposition of scientific
programs for parallel execution .In Conference Record
of the Fourteenth ACM Symposium on Principles of
Programming Languages,.

[6] Tan Guangming, Sun Ninghui , Gao Guang
R(,2007). :A Parallel Dynamic Programming
Algorithm on a Multicore Architecture.
ACM SPAA’07, June 9-11.

[7] Wolf M.E., Lam M.S(1991).: A data locality
optimizing algorithm. Proceedings of the ACM
SIGPLAN 1991 Conference on Programming
Language Design and Implementation,
Toronto,Ontario, (1991); SIGPLAN Notices 26(6),
June 26-28 pp. 30–44 .

[8] Raman Arun(2012): A System for Flexible Parallel
Execution. Ph.D. Thesis, Department of Electrical
Engineering, Princeton University.

[9] Cintra Marcelo, Llanos Diego R(2005).: Design Space
Exploration of a Software Speculative Parallelization

Scheme. IEEE Transactions On Parallel And
Distributed Systems, Vol. 16, No. 6,

[10] Cintra Marcelo, Llanos Diego R.(2003): Toward
Efficient and Robust Software Speculative
Parallelization on Multiprocessors. ACM PPoPP’03,
San Diego, California, USA June 11–13,.

[11] Deo Narsingh(1995): Graph Theory with Applications
to Engineering and Computer Science ,Prentice
Hall,Inc.

[12] Ullmann J. R(1997).: An algorithm for subgraph
isomorphism. Journal of the ACM, 23(1):31–42.

[13] Messmer B.T. and Bunke H.(1995): Subgraph
Isomorphism in Polynomial Time. University of Bern,
Institute of Computer Science and Applied
Mathematics, Bern, Switzerland Technical Report
IAM 1995-003.

[14] Corneil D. G. and Gotlieb C. C(1970).: An efficient
algorithm for graph isomorphism. Journal of the ACM,
17(1):51–64.

[15] McKay Brendan D(1981).: Practical graph
isomorphism. Congressus Numerantium, 30:45–87.

[16] McKay Brendan D(2004,). . The nauty page. Computer
Science Department, Australian National University,
http://cs.anu.edu.au/bdm/nauty/.

[17] Qiu Ming , Hu Haibin, Jiang Qingshan and Hu
Hailong(2010) : A New Approach of Graph
Isomorphism Detection based on Decision Tree

IEEE, Second International workshop on Education
Technology and Computer Science.

http://cs.anu.edu.au/bdm/nauty/

