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Abstract - The present paper deals with the study 

of momentum, heat and mass transfer 

characteristics in a MHD flow over a non-linear 

stretching sheet. The stretching of the sheet is 

assumed to be non-linearly proportional to the 

distance from slit. Two different temperature 

condition are studied (i) the sheet with prescribed 

surface temperature (PST) and (ii) the sheet with 

prescribe wall heat flux (PHF). The basic 

boundary layer equations for momentum and heat 

transfer, which are non-linear partial differential 

equation, are converted by means of similarity 

transformation. The resulting non-linear 

momentum equation is solved exactly.  The energy 

equation in the presence of internal heat 

generation or absorption is a differential equation 

with variable coefficients which is transformed to 

a confluent hyper geometric equation.  The 

solution and heat characteristics are obtained in 

terms of Kummer’s function. The effect of various 

parameter, temperature profile and wall heat 

transfer are presented graphically. 

Keywords:  Stretching sheet, Magnetic field, 

Kummer’s function, confluent hypergeometric 

equation.  

I. INTRODUCTION 

In recent years the studies of boundary layer 

flows on Newtonian fluids on stretching surfaces 

have great deal of applications in the fields of rolling 

and manufacturing of plastic film, artificial fibers, 

screwing, annealing and tinning of copper wires. 

Extrusion of a material and heat-treated materials that 

travel between feed and wind-up rollers or on 

conveyor belts these practical application and 

manufacturing process has a great attention due to 

flow of an incompressible fluid and heat transfer 
phenomenon over a stretching sheet. Water and air 

which are convectional fluids mostly used as cooling 

medium. For some sheet the rate of heat exchange 

due to above fluids are not suitable. Magnetic field is 

abundantly used in controlling flow kinematics for its 

easy use and intrusive quality.  The rate of stretching 

electrically conducting fluid and use of magnetic 

fields can control the rate of cooling. 

 The classical problem of the stretching of 

the sheet as discussed by Sakiadis[1961], 

Crane[1970] and Magyari, E and many others 
involves the assumption of linear stretching. The 

impact of heat and mass transfer on free convective 

flow over a porous vertical plate in the presence of 

transverse magnetic field discussed by Mankinde and 

Ogulu[2008]. A numerical solution for the heat 

transfer boundary layer flow of non-Newtonian fluid 

past a stretching sheet was obtained by 

Mukhopadhyay. Rashidi et al.[2014]  solved the heat 

and mass transfer effects in two dimensional MHD 

steady flow of visco elastic fluid.  

 The flow characteristics of fluid across a 
nonlinear stretching sheet with heat transfer were 

studied by Vajravelu[2001]. This work extended by 

Abbas and Hayat[2008] considering the stagnation 

slip flow and Rana and Bhargava[2012]  considering 

the fluid as nano fluid. Mabood et al.[2015] 

presented the numerical solution for velocity, 

concentration and temperature for the flow of 

nanofluid past a nonlinear stretching sheet. The two-

dimensional flow caused by a non linear stretching 

sheet with partial slip effects was discussed by 

Hayat et al.[2011]. The effects of chemical reaction 

and partial slip on the three-dimensional flow of a 
nano fluid impinging on an exponentially stretching 

surface are studied by Mahanthesh et al.[2015]. The 

effect of variable viscosity of viscous 
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incompressible second grade fluid over a stretching 

surface in uniform magnetic field is investigated by 

Mahanta[2012]. Study of viscoelastic fluid flow and 

heat transfer over a stretching porous surface with 
prescribed heat and mass flux embedded in a porous 

medium with viscous dissipation is dicussed by 

Anjali and Ganga. Computational modeling of heat 

transfer over an unsteady stretching surface 

embedded in a porous medium is studied by Pal and 

Hiremath[2010]. Flow and heat transfer of a fluid 

through a porous medium over a stretching surface 

with internal heat generation/absorption and suction 

/blowing is discussed by Cortell. Effects of variable 

fluid properties on MHD flow discussed by Suresh 

Babu et al.[2018]. 
 In most of the investigations involving heat 

transfer, we observed that PST (prescribe surface 

temperature) and PHF (prescribed wall heat flux) 

both not consider for non-linear stretching. In this 

work  we consider both heat transfer cases for non-

linear flow. 

 The objective of the present work is to 

analyze the development of heat and mass transfer 

in MHD flow over a stretching sheet with a non-

uniform heat source/sink. The non-linear flow of a 

Newtonian liquid due to a sheet that is stretched 

between two blocks and heat transfer in the 
boundary layer flow of the stretching sheet. An 

exact analytical solution to the momentum equation 

and series solution to the energy equations in terms 

of Kummer’s function are developed. Further, 

several graphs are drawn for various values of 

parameters like the Prandtl number, the heat source-

sink parameters and Chandrasekhar number. 

 

II. MATHEMATICAL FORMULATIONS 

We consider a steady, two-dimensional 

boundary layer flow of an incompressible liquid 

subjected to a transverse magnetic field.  The liquid 

is at rest and the motion is effected by pulling the 

sheet on   both ends with equal forces parallel to the 

sheet and a speed u , which varies quadratically with 

distance from the slit as
2dxcxu  . The flow 

field is subjected to a transverse uniform magnetic 

field  0H  is imposed in the vertical direction y-axis. 

It is assumed that magnetic field is negligibly small. 

The steady two-dimensional conservation of 
mass and the momentum boundary layer equations 

for the quadratic ally stretching sheet problem 

involving Newtonian liquids with transverse 

magnetic field are. 
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where x  and y  represent horizontal and 

transverse directions respectively, and u, v are 

components of the liquid velocity in x  and y  

directions,    is the dynamic viscosity and   is  

the kinematic viscosity. 

 

The boundary conditions are considered as 
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 We assume c , d  and   is quite small that 

facilitates the assumption of a weakly two-

dimensional flow. Here n is the non linear variable if 

n=1 the stretching of the sheet is linear and if n=2 the 

sheet is stretched quadratically and flow is to be 

considered non-linear. In this problem we consider 

non-linear stretching.  The constant  cv  represents 

suction velocity across the stretching sheet when cv < 

0, it is blowing velocity when cv > 0 and it represents 

impermeability of the wall when cv =0.                

  We now make the equations and boundary 
conditions dimensionless using the following 

definition  
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substituting dimensionless quantity (4)   in the   
equations (1) and (2) and it   takes the non-

dimensional form as follows 
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where  Q=
c

Hm
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   is a Chandrasekhar 

number  ( QM n   is called Hartmann number),  

Now we introducing the stream function ),( YX  

as 
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which satisfies the continuity equation (5), by 

substituting (7) in (6)  we get following partial 

differential equation                                                                                                                                    
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Similarly, substituting (7) in the boundary condition 

(3) using dimensionless quantities (4) which obtained 

in the following form                                                                                                          
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The solution to equation (8), subject to equations (9), 

may be taken as 

 

  ).()( 2 YfXYXf                       (10)    

                                                                                                                                     

Substituting equation (10) into equation (8) obtain the 

following ordinary differential equation   
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The boundary conditions, for solving equation (11) 

for dimensionless stream function f, can be obtained 

from equations   (9) in the form 
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 The solution of equations (11) subject to (12) is 
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where  ‘s’  is given by 
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Substituting equation (10) into equation (7), we can 

get   velocity components U and V  as 
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Having obtained the velocity distribution we discuss 

the heat transport in the aforementioned forced 
convective flow due a stretching sheet. 

 

III. HEAT TRANSFER ANALYSIS 

           The governing boundary layer heat transport 

equation with viscous dissipation and internal heat 

generation or absorption is 
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where T is the temperature of the liquid, 
  is the 

thermal diffusivity, 
Q  uniform heat source  and  

pC  specific heat at constant pressure. 

 

 The thermal boundary conditions for solving 

equation (17) depend on the type of heating process 

under consideration. We consider two different 

heating processes, namely (i) Prescribed Surface 

Temperature (PST) and (ii) Prescribed wall Heat Flux 

(PHF).  The heat transfer analyses for these two 

processes are carried out in section (i) and (ii). 

 

(i) Prescribed Surface Temperature (PST) 

 

The non-dimensionalized surface temperature in this 
case considered to be a power of X in the form  
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where A is a constant, Tw  is the wall (sheet) 

temperature and  T   is the constant temperature far 

away from the sheet.  We now define a non 

dimensional temperature  
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Where    
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Substitution of Eq. (19) in the energy equation (17) 

leads to the following equation  
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where  prime denotes differentiation with respect to 

Y  and the non-dimensional parameters are defined as 
given below: 

 

.sin/

.,PrPr

parametersksourceheat
cC

Q

numberandtl

P

































 

 

Obviously, we get an   X-independent similarity 

equation from equation (20)   
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and  
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Equation   (21) is the governing equation for the heat 

transfer in the flow due to the non-linearly stretching 

sheet and equation (22) concern the static situation.  

 

 The boundary condition in terms of    can 

be obtained from equations (18) and (19) as 
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equation (21)  is linear in    and we now transform 

the same into a confluent hyper geometric equation 

by using the transformation 
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substituting Eq.(24)    into  Eq.(21),  we get 
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where over dot denotes differentiation with respect to   

   and  
2sPr  . 

 

The boundary conditions in equation (25),  in terms 

of    translate to  
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The solution of equation (25) satisfying the condition 

(26) in terms of Kummer’s function is 
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The solution (27) can be written in terms of Y as 
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where 
2sPr/c  . 

 
The non-dimensional wall temperature gradient 

derived from equation (27)  is 
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The non-dimensional   local wall heat flux can be 
expressed as 

 

).0(2

0

















kAX
Y

T
kq

Y

w          (30) 

 

(ii) Prescribed Heat Flux (PHF) 

 

The power law heat flux on the wall surface is 

considered to be a power of X in the form 
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Where D a constant and k is is the thermal 
conductivity. We now define a non-dimensional 

temperature  
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In spite of the fact   that )Y( in equation (32) is 

the same as )Y(  defined in equation (19) for PST 

case, we prefer to use a different notation for the PHF 

case.  Substitution of equation (32) in the energy 

equation (17) leads to the following equation 
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Obviously, we get an X-independent similarity 

equation from the above equation is 
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Equation (35) is the governing equation for the heat 

transfer in the flow due to the non-linearly stretching 

sheet and equation (36) concern the static situation.  

The boundary conditions in terms of    can be 

obtained from equation (31) and (32) as  

 

,0)(and1)0(                   (37) 

 

prime denotes differentiation with respect to Y and 

all other parameters are as defined in the PST case, 
but where ever A is involved in the equation of PST 

case it is to be replaced by  D  of PHF.  Substituting 

equation (24) into (35) and (29), we get 

 

0
Pr

2Pr)1( 












  ,  (38) 

    ,00
Pr

Pr
2  and

s

s
        (39) 

where over dot denotes differentiation with respect to 

  equation (38) is a confluent hyper geometric 

equation and the solution for   satisfying equation 

(39) is obtained in terms of  Kummer’s function as 
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where   )4(PrbPr,a 2    and   

2sPr/c  . 

 

The solution (40) can be written in terms of  Y  as 
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The wall temperature wT   is obtained from equation 

(33)   as 
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IV. RESULT AND DISCUSSION 

 

 In this problem we investigate the boundary 

layer flow and heat transfer in a Newtonian liquid 

over a stretching sheet in the presence of a transverse 

magnetic field.  Similarity solution is obtained for the 

velocity distribution.  It is clear from equation (14) 

that s, which is function of the Vc and Chandrasekhar 

number Q,   contributes to the slope of the 
exponentially decreasing velocity profiles.  Thus‘s’ is 

an important parameter in the present study.  From 

Fig. 3 it is evident that s is an increasing function of  

Vc    and  Q thus implying that increasing  Vc and Q 

gives us steeper gradients in the axial and transverse 

velocity profiles.   Also from Fig. 4   and 5  it is 

apparent that the transverse velocity profile decays 

faster  than  the axial velocity  profile for increasing 

Vc.  The effect of magnetic field is to provide rigidity 

to the electrically conducting liquid.     

        The PST and PHF boundary conditions are 
used for solving the heat transport equation.  Figs. 7 

to 11 are plots of the temperature distribution for 

different values of Q, Pr and Vc. 

 The effect of transverse magnetic field on 

heat transfer is depicted in Fig. 6 and 7    for PST and 

PHF cases. From these plots it is observed that the 

transverse magnetic field contributes to the 

thickening of the thermal boundary layer. The 

resistance due to Lorentz force on the flow is 

responsible for enhancing the temperature.  

 Fig. 8 and 9 shows the effect of Prandtl 

number on the heat transfer in the PST and PHF 
cases.  From these plots it is evident that large values 

of Prandtl   number results in thinning of the thermal   

boundary layer. This is in contrast to the   effects of 

other parameters on heat transfer. 

 The effect of  Vc  on the heat transfer is 

demonstrated in Fig. 10 and 11 for PST and PHF 

cases. These graphs show that the parameter cV  

contributes to the thickening of thermal boundary 

layer. 

      On comparing the temperature distribution 

of the PST and PHF cases it is apparent that PST 

boundary condition succeeds in keeping the cooling 

liquid warmer than in the case when PHF boundary 

condition is applied. It may therefore be inferred that 

the PHF boundary condition is better suited for faster 

cooling of the stretching sheet. In contrast to the 

effect Vc and Q on   and , the effect of increasing 

Pr is to decrease the magnitude of  (Y) and )(Y

In other words it means that the thermal boundary 

layer thickness is a function of all the above   

parameters.    

    Table 1 : Values of  s  for different values     

                     Q and cV . 

cV  Q s 

0.1 0.05 0.929563 

0.2 0.05 0.844031 

0.3 0.05 0.767708 

0.4 0.05 0.7 

0.1 0.1 0.953565 

0.2 0.1 0.867708 

0.3 0.1 0.790871 

0.4 0.1 0.722497 

0.1 0.15 0.977033 

0.2 0.15 0.890871 

0.3 0.15 0.813553 

0.4 0.15 0.744552 

0.1 0.2 1 

0.2 0.2 0.913553 

0.3 0.2 0.835782 

0.4 0.2 0.76619 
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V. CONCLUSION  

 

 The PHF boundary condition is better suited 

for effective cooling of the stretching sheet. 

 The effect of magnetic field is to provide 

rigidity to the electrically conducting liquid.     

 The effect of Chandrasekhar number Q is to 

increase the temperature distribution in the 

flow region in both the cases of PST and 
PHF hence, the strength of external   

magnetic field should be as mild as possible 

for effective cooling of the stretching sheet. 

 The effect of cV  is increase the temperature 

distribution in the flow region in both the 

PST and PHF   cases  and Vc  contributes to 

the thickening of thermal boundary layer. 

 The effect of   Prandtl number Pr  is to 

decrease the thermal boundary layer 

thickness.  
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