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I.  INTRODUCTION 

Several problems in science and technology can be 

formulated into differential equations. The analytical methods 
of solving differential equations are applicable only to a 

limited class of equations. Quite often differential equations 

appearing in physical problems do not belong to any of these 

familiar types and one is obliged to resort to numerical 

methods. These methods are of even greater importance when 

we realize that computing machines are now readily available 

which reduce numerical work considerably. 

In the methods of Euler, Runge-Kutta, Milne, 

Adams-Bashforth, etc. the next point on the curve is evaluated 

in short steps ahead, by performing iterations until sufficient 

accuracy is achieved. As such, these methods are called step-
by-step methods. 

Euler and Runga-Kutta methods are used for 

computing y over a limited range of x- values whereas Milne 

and Adams methods may be applied for finding y over a wider 

range of x-values. 

If the conditions are prescribed at one point only 

(say, ), then the differential equation together with the 
conditions constitute an initial value problem of the nth order. 

If the conditions are prescribed at two or more points, then the 

problem is termed as boundary value problem. 

The Euler method (also called as Forward Euler 

method) is a first-order method, which means that the local 

error (error per step) is proportional to the square of the step 
size, and the global error (error at a given time) is proportional 

to the step size. Here the error represents difference between 

the exact solution  and the Euler approximation. The Euler 

method often serves as the basis to construct more complex 

methods. It is a first-order numerical procedure for 

solving first order ordinary differential equations (ODEs) with 

a given initial value. It is the most basic explicit 

method for numerical integration of ordinary differential 

equations and is the simplest Runge–Kutta method. 

The Euler method is more accurate if the step size  is 

smaller 

II. PROPOSED ALGORITHM 

 

Step-1: Let ) be the first order ordinary 

differential equation with the initial 

condition  
Step-2: Let h be the difference between the equally 

spaced data. 

Step-3: Construct a table for Euler modified method 
with the columns  

  x,  ,  Mean and            

New  y =  + h (mean) where 

  x =  , mean = the average of present y’ and 
starting y 

Step-4: The starting value of x is  and from the next 

x =  
Step-5: The starting value of new y of the table only is 

calculated by Euler formula                    

.  

Step-6: There is no change in the values of x and  till 
the successive approximate values of new y 

are equal. 

 

III. EXPERIMENT AND RESULT 

 

3.1. To Find y at x=0.2 of   with the condition 

y(0) = 1 and h = 0.1.  

Let us consider f(x,y) = x + y  and  . 

Constructing a table for Euler modified method by the 

proposed algorithm, we have  
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Since the last two successive values of New 

y are approximately equal,  y(0.1) = 1.1105.   

i.e. At x = 0.1, y = 1.1105 

Proceeding with the next table with  

1.1105, we have 

 

 
 

Since the last two successive values of New y are 

approximately equal, y(0.2) = 1.2431.   

i.e. At x = 0.2, y = 1.2431. 

 

3.2. To find y(0.2) and y(0.4) of    with y(0)=0 

and h=0.2.. 

Let us consider f(x,y) = y+  and . 

Proceeding with the proposed algorithm for Euler 

modified method, From the iteration-1, y(0.2) = 0.2468. 

From the iteration-2, 0.6031. 

 

 

 

3.3 To find y(0.1) of   with y(0)=1 and h=0.02. 

  

 On applying proposed algorithm,  

Let f(x,y) =   and  

 From the iteration-1, y(0.02) = 1.01961. 

 From the iteration-2, y(0.04) = 1.03848 

 From the iteration-3, y(0.06) = 1.05729 

 From the iteration-4, y(0.08) = 1.0755 

 From the iteration-5, y(0.1) = 1.0934 

IV. CONCLUSIONS 

The proposed method is the easiest way of calculating the 

approximate solution of first order ordinary differential 

equation. It is giving almost the same solution to that of 

standard Euler modified method. 
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