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Abstract— PID controllers are popular in industries for 

controlling process of a system or a plant. There are 

many different tuning techniques available to tune a PID 

controller. In this paper machine learning and 

optimization approach is used to tune the controller. 

Multiple Linear Regression algorithm of Machine 

Learning and Gradient Descent based optimization 

algorithm is used to obtain PID parameters. PID tuning 

is performed on a PID controller of Blending Control 

System. This paper presents a method of obtaining 

FOPDT model from system’s transient specifications, 

generating data-set of FOPDT model and then applying 

Multivariate Linear Regression with Gradient Descent to 

obtain optimal tuned values of 𝑲𝒑, 𝑲𝒊 and 𝑲𝒅 parameters 

of PID controller. 
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I.  INTRODUCTION 

After the advent of PID controllers in the early 20th 

century, control theory has developed to a great extent. 

From the age of Pneumatic Controllers to this age of 

Artificial Intelligence and Automation, PID controllers have 

constantly evolved and still holds the most prominent place 

in Industrial Control. Similarly PID tuning techniques have 

also adopted new technologies to simplify the tuning 

process and obtain better control results. Starting from 

classical tuning approaches like Ziegler-Nicolas tuning[1], 

Cohen-Coon Tuning[2]to modern tuning techniques like 

IMC tuning, Lambda Tuning[3] and Meta-heuristic tuning 
techniques like Genetic Algorithm[4], Particle Swarm 

Optimization[5], TLBO[6], etc. are different tuning 

techniques suggested by different researchers. Current trend 

in PID algorithm is towards Machine Learning, Deep 

Learning and Fuzzy Logic[7] implementation on PID 

controller. Machine Learning approach consists of different 

supervised and unsupervised techniques like Regression, 

Classification, etc. And deep learning approach is driven by 

Reinforcement Learning, Neural Networks[8], etc.  

All these different approaches to tune PID controller 
have its own advantages and limitations. Classical tuning 

approach is most widely known but least used practically. 

For tuning a controller by ZN Tuning algorithm we require 

the system to reach on the verge of instability, which is 

practically not implementable. Many papers have been 

written on Meta-heuristic techniques for PID tuning but 

meta-heuristic techniques like Genetic Algorithm requires 

more computation time and gives no guarantee of finding an 

optimal solution in a fixed time, also GA may converge to 

local optima if system is very complex. Deep learning and 

reinforcement learning algorithms require large datasets and 
many repetitions/iterations to get a perfect tuning model [9]. 

These techniques are more complex for a simple linear 

system. Linear regression with gradient descent is studied in 

paper [10] and [11] for first order and second order system 

respectively. This paper presents a method to tune simple 

FOPDT models by Linear Regression with Gradient 

Descent. 

II. THE PID CONTROLLER 

The PID controller contains Proportional term, Integral 

term and Derivative term. Proportional term accounts for 

present error value, integral terms reduces offset error and 

derivative terms increases the speed of response. PI and P 
controllers are also widely used depending on the 

application. Figure 1 shows the block diagram of PID 

controller and system negative feedback arrangement.  

 

Fig. 1. PID Controller with Negative Feedback 
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Input to controller is error signal and controller output is 

given to system input. The mathematical form of PID 

controller is given by this equation: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +  𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 +  𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
                           (1) 

III. DEVELOPMENT OF FOPDT MODEL 

    A mixer tank has one inlet stream and one outlet stream. 

No reaction terms are considered for this application. It is 

assumed that mixing in the tank is perfect, so we can assume 

the concentration and temperature in the tank to be constant. 

The volume of the mixer tank is also assumed to be constant. 

By species balance we can derive the following equation of 

change in outlet concentration per unit time: 

 
𝑑𝐶𝑎

𝑑𝑡
=  

𝑞

𝑉
 (𝐶𝑎𝑓  − 𝐶𝑎)                                                       (2) 

    Where 𝐶𝑎 is outlet concentration, 𝐶𝑎𝑓 is feed concentration 

(inlet concentration). q is volumetric flow rate and V is the 

volume of tank. Units of all specifications are described in 

Table 1 [12]. The figure (2) below shows step response of 

mixing tank. Giving a step input to the Blender we obtain 

the as response shown in Figure 2. Table 2 shows the data 

of Time and Concentration values after providing step input 

to the system. 

 
 

 

 

 

 

 

   

 

 

 

 

Fig. 2.   Step Response Curve 

A. FOPDT Model Generation – 

    Data of Concentration vs. Time is used to construct 

FOPDT (First Order Plus Dead Time) model. Time values 
are taken from 0 to 10 (in hours) with the steps of 0.0001 so 

1000 values of concentration and time data are generated to 

obtain an accurate FOPDT model. Lesser the data less 

accurate will be modeling and identification of FOPDT 

system. 

 

 

Table -1 Blender Specifications 
 

Sr. No Parameter Value 

1. Volumetric Flow-rate 100 m3/hr. 

2. CSTR Volume 100 m3 

3. Feed Temperature 300 K 

4. Feed Concentration 1 mole/L 

 

Using Smith’s Method of identification of FOPDT model, 

the dead time (L) value of -0.333 and tau value of 0.222 is 

obtained. FOPDT identification is obtained by finding 

63.2% and 28.3% values of time constants 𝑡1  and 𝑡2  

respectively. Process dead time (L) and process time 

constant (tau) values are given by equations (3) and (4). 

L= 𝑡2  - 𝑡1                                                                           (3) 

tau = 1.5 ( 𝑡2  - 𝑡1  )                                                            (4) 

After performing step test we obtain the transfer function of 

FOPDT model shown in equation (5).  

𝐻 =  𝑒−0.333𝑠 1

0.222𝑠+1
                                                  (5) 

Other popular FOPDT identification method is Sundaresan 

and Krishnaswamy [13] method to find values of dead time 
and tau. For this study Smith’s FOPDT method is 

considered. As compared to Nishikawa’s method [14] of 

FOPDT identification, Smith’s method [15] and 

Sundaresan-Krishnaswamy method has lower 

computational cost.  

Table -2 Time versus Concentration Data 
 

Sr. 

No 

Time Concentration 

1. 0.101 0.0960 

2. 0.202 0.1829 

3. 0.303 0.2614 

4. 0.404 0.3323 

 

IV.  MULTIVARIATE REGRESSION WITH GRADIENT 

DESCENT 

The Linear Regression is a mathematical approach which is 
based on modeling a system using linear relationship 

between input and output variables. Multivariate Linear 

Regression contains one output variable and multiple input 

variables. Linear Regression is a type of supervised learning 

technique. For this technique to function properly there 
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should be linear relationship between input and output 

variable. 

    First finding closed loop transfer function. On this transfer 
function we apply Linear Regression that relates three input 

variables with one output variable. Transient specifications 

of system like Rise Time, Settling Time and Overshoot are 

used as input variables. Mathematical equation of Linear 

Regression is given by (6). 

𝑦 = ∑ 𝜃(𝑗)𝑋(𝑗)
𝑗
𝑛=0                                                                   (6)   

    𝜃(𝑗) are weights associated with input variables 

𝑋(𝑗).  𝑗 are the number of input variables.  Gradient Descent 

algorithm minimizes the error between the predicted output 

variable and the actual output variable [6]. The error can be 

calculated using cost function given by equation (7). 

𝐽(𝜃) =
1

2𝑚
∑ (ℎ(𝜃)𝑋(𝑗) −  𝑦(𝑗))

2𝑚
𝑗=0                                      (7) 

Where m is the number of iterations. After performing the 
partial derivation of cost function we get the update rule as 

given by equation (8). 

𝜃(𝑖) = 𝜃(𝑖) − 𝛼
1

𝑚
∑ (ℎ(𝜃)𝑋(𝑗) −  𝑦(𝑗))𝑚

𝑗=0 𝑋(𝑖)
𝑗

                      (8) 

Where Alpha (α) is the Learning Rate. Learning rate being 
small, algorithm convergence will be slow and if the learning 

rate is very high then algorithm may miss the optimal point 

by converging faster than expected. 

 

V. PROBLEM FORMULATION 

Transfer function of closed loop system is created using 
FOPDT system and controller. This closed loop system 

comprises of controller, system (FOPDT) and feedback 

element in general. For training the model one of the 

parameter 𝐾𝑝, Ki and 𝐾𝑑 is varied in a certain range and 

other two parameters are kept constant. For example, we 

vary 𝐾𝑑 from 0.1 to 10 at steps of 0.1, keeping value of 𝐾𝑝 

at 100 and value of Ki at 7. Output is noted after giving a 

step input. For this study 𝐾𝑝, Ki and 𝐾𝑑 are taken as output 

variables and Rise Time, Settling Time and Overshoot as 

considered as input variables. Transient parameters of rise 

time (𝑡𝑟𝑖𝑠𝑒 ), settling time (𝑡𝑠𝑒𝑡 ) and overshoot (𝑂𝑣) are 

obtained by using ‘stepinfo’ function of MATLAB. 

Similarly Ki is varied, keeping 𝐾𝑝 and 𝐾𝑑 constant. Then 𝐾𝑝 

is varied, keeping Ki and 𝐾𝑑 constant. We obtain the optimal 

PID parameters by the given equations (9), (10) and (11) 

respectively. 

𝐾𝑝 =  𝑡𝑟𝑖𝑠𝑒𝜃1 +  𝑡𝑠𝑒𝑡𝜃2 +  𝑂𝑣𝜃3                                      (9) 

𝐾𝑖 =  𝑡𝑟𝑖𝑠𝑒𝜃4 +  𝑡𝑠𝑒𝑡 𝜃5 + 𝑂𝑣𝜃6                                     (10) 

𝐾𝑑 =  𝑡𝑟𝑖𝑠𝑒𝜃7 +  𝑡𝑠𝑒𝑡 𝜃8 + 𝑂𝑣𝜃9                                    (11) 
            

  Theta are the optimal weights associated to the input 
variables. Other transient input variables like Peak and Peak 

time can be added to work with five input variables.  

VI. SIMULATION 

Sample Dataset for 𝐾𝑝: Table 2 shows sample data-set for 𝐾𝑝 

obtained by keeping Ki and 𝐾𝑑 constant at 2.67 and 0.13 

respectively. 𝐾𝑝 is varied from 0 to 3.25 with the steps of 0.01 

and transient response is recorded in a ‘.csv’ file. 

Table -3 Sample of Kp Dataset 
 

𝑲𝒑 Rise Time Settling 

Time 

Overshoot 

0 0.662 5.72 35.99 

0.01 0.66 5.69 35.4 

0.02 0.659 5.67 34.81 

0.03 0.657 5.63 34.23 

 

Sample Dataset for Ki: Table 4 shows sample data-set for Ki 

obtained by keeping 𝐾𝑝 and 𝐾𝑑 constant at 1.62 and 0.13 

respectively. Ki is varied from 0 to 5 with the steps of 0.05 and 

transient response is recorded in a ‘.csv’ file. 

Table -4 Sample of Ki Dataset 
 

𝑲𝒊 Rise Time Settling 

Time 

Overshoot 

1 0.1719 6.55 0 

1.05 0.1712 6.20 0 

1.1 0.1691 5.87 0 

1.15 0.1685 5.58 0 

Sample dataset for 𝐾𝑑: Table 5 shows sample data-set for 𝐾𝑑 
obtained by keeping Ki and Kp constant at 2.49 and 1.26 

respectively. 𝐾𝑑 is varied from 0 to 0.25 at the steps of 0.001 

and transient response is recorded in a ‘.csv’ file. 

Table -5 Sample of Kd Dataset 
 

𝑲𝒅 Rise Time Settling 

Time 

Overshoot 

0 0.1844 1.93 19.30 
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0.001 0.1849 1.92 18.97 

0.002 0.1852 1.91 18.65 

0.003 0.1854 1.90 18.33 

 

After generating the data-sets for Kp, Ki and Kd, model 

training is performed using multivariate linear regression with 

gradient descent algorithm. The result of the training is shown 

in Table 6 and compared with the results of MATLAB Auto-

Tuner. 

 

Fig. 3.   Tuned PID Response 

Table -6 Output Parameters 
 

Method/Parameter 𝑲𝒑 𝑲𝒊 𝑲𝒅 

Linear Regression 1.62 2.99 0.13 

MATLAB Auto-

Tuner 

1.9 3.03 0.12 

 

Comparing the PID response obtained by linear regression with 

gradient descent algorithm versus the response obtained by 

MATLAB Auto-tuner we find that linear regression with 

gradient descent works better for this application. PID response 

obtained by linear regression with gradient descent has less 

overshoot as compared to that of the response obtained by 

MATLAB Auto-Tuner. Figure 4 shows the response of system 

to PID controller parameters tuned by linear regression with 
gradient descent.  

Convergence curve of gradient descent algorithm shows that 

algorithm correctly converged after 2000 iterations. Figure 3 

shows the convergence curve of gradient descent. The learning 

rate affects the convergence of the curve. Table 7 shows the 

effect of hyper-parameter (learning rate and number of 

iterations)changes on the 𝑲𝒑 value. 

If we change number of input variable it does not affect much 

on the PID tuning performance. Till now we were using three 

input parameters now after adding two more input parameters 

(peak and peak time) the result obtained is almost same as with 

three input parameters.  

 

Fig. 4.   Gradient Descent Convergence Curve 

Table -7 Hyper-Parameter Effect on Kp 
 

Alpha 

Value 

𝑲𝒑 at 500 

Iterations 

𝑲𝒑 at 3000 

Iterations 

𝑲𝒑 at 10000 

Iterations 

0.01 1.614 1.624 1.625 

0.005 1.492 1.624 1.625 

0.001 0.639 1.54 1.624 

0.0001 0.079 0.421 1.072 

 

    From the data of learning rate (Alpha) and number of 

iterations of gradient descent it is clear that small values of 

learning rate requires more number of iterations to achieve 

proper convergence. If the value of alpha is large and number 

of iterations are less than algorithm training will result in 

incomplete convergence and tuning will not take place as 

expected.  

Figure 4 shows how the PID controller response changes with 
change in number of iterations. For this response the value of 

learning rate selected is 0.005. Vale of n equal to 500 and Alpha 

equal to 0.005 gives less overshoot as compared to n = 3000 



                    International Journal of Engineering Applied Sciences and Technology, 2021    

                            Vol. 5, Issue 9, ISSN No. 2455-2143, Pages 184-188 
                                            Published Online January 2021 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                        

188 

 

with α = 0.005 and n = 10000 with α = 0.001. Using optimal 

value to alpha and number of iterations we can perform fine 

tuning of PID controller. 

 

 

Fig. 5.   PID Controller Response on Variation in Iterations 

VII. CONCLUSION 

    Very less research work is done till now on tuning PID 

parameters with linear regression techniques so there is vast 

scope of research in the field of PID controller tuning. This 

study shows the result of PID tuning of FOPDT system 

using multivariate linear regression with gradient descent 

algorithm, this tuning technique can be applied to variety of 

systems including first order, second order and FOPDT 

systems. Selection of optimal hyper-parameters results in 

fine tuning of the model. For tuning of Non-Linear systems 
using the technique presented in the paper, we can linearize 

the system at any one parameter and perform training of the 

model. Feasibility check of PID tuning of Non-Linear 

system can also be performed.  
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