
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 185-189
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

185

SPEED PERFORMANCE BETWEEN SWIFT AND

OBJECTIVE-C

Harwinder Singh

Department of CSE

DIET, Regional Centre PTU,

Mohali, INDIA

Abstracts: The appearance of a new programming

language gives the necessity to contrast its contribution

with the existing programming languages to evaluate the

novelties and improvements that the new programming

language offers for developers. Intended to eventually

replace Objective-C as Apple’s language of choice, Swift

needs to convince developers to switch over to the new

language. Apple has promised that Swift will be faster

than Objective-C, as well as offer more modern language

features, be very safe, and be easy to learn and use. In

this thesis developer test these claims by creating an iOS

application entirely in Swift as well as benchmarking

two different algorithms. Developer finds that while

Swift is faster than Objective-C, it does not see the

speedup projected by Apple. Swift was launched to offer

an alternative to Objective-C because this has a syntax

which barely evolved from it was created and has a great

difference with other programming languages that have

appeared in the latest years, because these have based on

the C++ syntax. For this, Swift is inspired in new

programming languages like C++11, C#, F#, Go,

Haskell, Java, JavaScript, Python, Ruby. Then his

syntax is totally different than its predecessor. The

Swift’s syntax is more simplified because it does not use

pointers and includes improvements in its data

structures and in its syntax.

Keywords: Swift vs Objective-C, Swift in iOS mobile app,

Swift,

I. INTRODUCTION

In the summer of 2008 Apple launched the App Store for

the iPhone and iPod touch. Originally containing only 522

apps, as of 2014 the App store houses over 1 million apps

and has seen over 75 billion app downloads. This platform

has attracted thousands of developers to create applications

for iOS devices, and has launched thousands of careers and

companies. As Objective-C aged it became harder

for new developers, unfamiliar with C and SmallTalk, to

learn and understand. Languages such as Java, Python, and

JavaScript became widely used and began to set the

standard for modern programming languages. Developers

began to complain that Objective-C was di cult to learn and

uncomfortable to use.

Swift is a new programming language for iOS and OS X

apps that builds on the best of C and Objective-C, without

the constraints of C compatibility. Swift adopts safe

programming patterns and adds modern features to make

programming easier, more flexible, and more fun. Swift’s

clean slate, backed by the mature and much loved Cocoa

and Cocoa Touch frameworks, is an opportunity to

reimaging how software development works.

II. LITERATURE SURVEY

By Christ Lattner(2015)Released in June of 2014 by

Apple Swift is a statically typed language and

compiled language that uses the LLVM compiler

infrastructure and the Objective-C runtime . Since Swift

uses the same runtime as Objective-C the two languages

can be intermixed in a single program or project,

as both will compile down to native machine code. Swift

can access Objective-C classes, types, functions, and

variables through a "bridging header", as well as by

extension C and C++ code. Similarly Objective-C can

access code written in Swift, with some exceptions. This

allows Swift to work with the Cocoa and Cocoa Touch

frameworks and existing Objective-C apps and libraries

without rewriting the large body of code that was written for

iOS devices. Swift is heavily influenced by many other

languages such as Rust, Haskell, Ruby, Python, and C#, and

offers many of the object-oriented and functional features

found in these languages. Swift also includes a

read-eval-print-loop (REPL) that can be accessed in Xcode

as well as on the command line.

Prof. Diwakar Gupta: Many previous researchers have

proposed methods for evaluating and com-paring new

programming languages. Languages are often compared

against one another on a number of different criteria.

Developers compared C++, Java, Perl, and Lisp together

and their approach was extended to even more languages by

other developers. Both of these papers conclude that

each language has various pros and cons and are

suited to different types of tasks, with Java and C receiving

the most favourable reviews. Many programming language

evaluations examine a language holistically and

qualitatively, although attempts have been made to be more

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 185-189
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

186

rigorous and quantitative. Urban propose a qualitative

framework for assessing languages in terms of twelve

different attributes including regularity, readability,

reliability, portability, and Input/output. This framework

provides a standardized way to evaluate a

language in isolation and describes the key

attributes important in any language design. Although

these frameworks and comparisons help unveil the

important aspects of a programming language, they are too

high level to be appropriately applied to Swift. Other

researchers have looked at programming languages as they

apply to a specific domain. Since swift is meant to

be used primarily for mobile devices, this type of

research is more applicable. Gupta discusses the

appropriateness of programming languages for teaching

beginners or teaching, ultimately recommending basic or C.

Howatt recommends evaluating a language based on how

well it solves a given project or task on hand although he

has doubts about the real world relevance of this approach.

Oppermann and Compos discuss several popular languages

used for mobile clients and server-side development. They

conclude that using single language on both the mobile

client and server offers a distinct advantage and that Java

and Python are the best choices for this approach.

Developers use design patterns to evaluate the Go

programming language .They implement a subset of the Hot

Draw framework in Go and use their implementation to

motivate a discussion of the language . This project was

the main source of inspiration for my analysis of Swift,

since the authors used a large project to demonstrate their

view on a new language. While I do not use design

patterns or the Hot Draw frame-work in my Swift

application.

By Apple’s Developers Team(2014)Development on Swift

was begun in July 2010 by Chris Lattner, with the eventual

collaboration of many other programmers at Apple. Swift

took language ideas

"from Objective-C,Rust, Haskell, Ruby, Python, C#, CLU,

and far too many others to list". On June 2, 2014, the Apple

Worldwide Developers Conference (WWDC) application

became the first publicly released app written in

Swift. A beta version of the programming language was

released to registered Apple developers at the conference,

but the company did not promise that the final version of

Swift would be source code compatible with the test

version. Apple planned to make source code converters

available if needed for the full release.

The Swift Programming Language, a free 500-page manual,

was also released at WWDC, and is available on

the iBooks Store and the official website.

Swift reached the 1.0 milestone on September 9, 2014, with

the Gold Master of Xcode 6.0 for iOS.Swift 1.1 was

released on October 22, 2014, alongside the launch of

Xcode 6.1. Swift 1.2 was released on April 8, 2015, along

with Xcode 6.3. Swift 2.0 was announced at WWDC 2015,

and was made available for publishing apps in the App Store

in September 21, 2015.A Swift 3.0 roadmap was announced

on the Swift blog on December 3, 2015. However, before

that, an intermediate Swift 2.2 embracing new syntax and

features was introduced. This also omits some outdated

components including Tuple splat syntax, C-style for loops.

Swift won first place for Most Loved Programming

Language in the Stack Overflow Developer Survey

2015 and second place in 2016.

Google is said to be considering using swift as a first class

language for its operating system android. During the

wwd 2016, apple announced an ipad exclusive app, named

swift playgrounds that will easily teach people how to code

in swift. The app is presented in an interface which provides

feedback when lines of code are placed in a certain order

and executed.

III. RESEARCH WORK

Swift needs to convince developers to switch over to the

new language. As it assumed that swift will be faster

than objective-c, as well as swift is safe, and easy to learn

and use. In this thesis developers, developing an ios

application entirely in swift as well as benchmarking two

different algorithms. As it's mentioned earlier that swift is

faster than objective-c and it does not find the performance

projected by DEVELOPERS. I ALSO CONCLUDE THAT SWIFT

HAS MANY ADVANTAGES OVER OBJECTIVE-C, AND IS EASY

for developers to learn and use. However there are some

weak areas of Swift involving interactions with Objective-C

and the strictness of the compiler that can make the

language bit difficult to work with. Apart from all these

drawbacks, Swift is overall a successful software generating

language for us.

The four stated goals of swift (safety, clarity, modernity, and

performance) reflect both an accurate analysis of the

deficiencies of objective-c and an fair assessment of the

various developments that have taken place over the last

three decades in programming language design--mostly

object oriented languages like c++, java, python, and ruby,

but also more specialized languages such as the functional

language haskell.

If you have experience using Objective-C to develop for

Apple platforms, you may be wondering: “Why did Apple

release a new language?” After all, developers had been

producing high-quality apps for Mac OS X and iOS for

years. Apple has a few things in mind. First, Objective-C is

an older language. And while this is not always a problem, it

leads to some difficulty in this case. The syntax of

Objective-C was solidified prior to the rise of prominent

scripting languages in the 1990s that popularized more

streamlined and elegant syntax (e.g., JavaScript, Python,

PHP, Ruby, and others). This means Objective-C feels

strange to most developers when they get started, so its

syntax can be an impediment to developer productivity.

Additionally, as an older language, Objective-C is missing

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 185-189
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

187

many advancements developers in modern languages

currently enjoy. Also, Swift aims to be safe. Objective-C did

not aim to be unsafe, but things have changed quite a bit

since Objective-C was released in the 1980s. For example,

the Swift compiler aims to minimize undefined behavior,

which is intended to save the developer time debugging

code that failed during the runtime of an application.

Another goal of Swift is to be a suitable replacement for the

C family of languages (C, C++, and Objective-C). That

means Swift has be fast. Indeed, Swift's performance is

comparable to these languages in most cases. Swift gives

you safety and performance all in a clean, modern syntax.

The language is quite expressive; developers can write code

that feels natural. This feature makes Swift a joy to write

and easy to read, which makes it great for collaborating on

larger projects.

3.1 Objectives

• To calculate speed of code execution with swift

Language over Objective-c and other Programming

Language used in iOS mobile application.

To measure performance of swift language on iOS mobile

application platform.

Finding out Feature set and safety course for Swift

Language.

3.2 Software And Hardware Requirements

3.2.1 Software Used:

• Mac operating system El-Capitan

IDE Xcode(Latest 7.3)

Language Swift (Version 2.2)

3.2.2 Hardware Used:

• Mac mini system form Apple or Other Mac CPU with

OSX installed. 

3.4 Methodology

Swift and Objective-C compilers are based on the LLVM

Compiler Infrastructure, and there is a single iOS SDK for

both Swift and Objective-C. That's why there isn’t much

difference between the ways the programming languages

work with the Cocoa frameworks.

We decided to examine both Swift and Objective-C

performance by comparing their data structures. For that we

took Objective-C Foundation framework and Swift’s native

solutions.

In Swift, all classes are created during compile-time.

Methods cannot be added on-the-fly and all types are known

before the run time. Since everything is known beforehand,

a compiler can optimize code without any problem.

Objective-C, on the other hand, can’t optimize as

effectively, because all dynamic languages work slower than

static.

Swift drops the two-file requirement. Xcode and the LLVM

compiler can figure out dependencies and perform

incremental builds automatically in Swift 1.2. As a result,

the repetitive task of separating the table of contents (header

file) from the body (implementation file) is a thing of the

past. Swift combines the Objective-C header (.h) and

implementation files (.m) into a single code file (.swift).

Objective-C’s two-file system imposes additional work on

programmers -- and its work that distracts programmers

from the bigger picture. In Objective-C you have to

manually synchronize method names and comments

between files, hopefully using a standard convention, but

this isn’t guaranteed unless the team has rules and code

reviews in place.

IV. RESULT

Test performed with an algorithm in each language to sort a

list of 1,000,000 objects in ascending order. The objects

were sorted in order based on a randomly generated

numerical instance variable that ranged from −1000 to 1000.

Since C does not support objects a struct was used instead. I

ran each algorithm 25 times and plotted the results. Swift

and Objective-C both performed approximately equal,

running on average 1.4x faster than Python. However both

languages paled in comparison to Java and C, with Java

being on average twice as fast as either language.

 xdeN lxpmkpfx N ereoN reN N flue lu x N e kN errderrNfrep txeN

ekoxeexpN eeN rON niOmhN ruokp eefN ON xrteN kmN eexN egxN

urOolroxesN ror ON plOO OoN xrteN ruokp eefN eN e fxeN ON xrteN

urOolrox NfONee eNexeeNt meNmrpNklelxpmkpfx Nndexte gx- Nd N

rN e oO etrOeNfrpo OsN plOO OoN kON rgxproxN rufkeeN nrdN mreexpN

eerONl eekONrO NedNmreexpN eerONndexte gx- Nne uxNee uuNOkeN

tl exN reN mreeN reN sN t me’eN lxpmkpfrOtxN reN kON lrpN eeN

wrgr N ne uxN eexexN pxelueeN rpxN rllpkd frexN eex N ee uuN eek N

eereN eN eNlOu oxu N eereNt meN eNtl exNreN mreeNreNlpkextex Nd N

ellux

Apart from the performance benchmark swift contains the

feature list, taken from other programming languages as

they are listed below. 

SWIFT FEATURE
LANGUAGES WITH

SIMILAR FEATURES

CLOSURES JAVASCRIPT

GENERICS
JAVA

TYPE INFERENCE
HASKELL

TUPLES
PYTHON

FUNCTIONS AS FIRST

CLASS OBJECTS
JAVASCRIPT

OPERATOR OVERLOADING
C++

PATTERN MATCHING
SCALA,HASKELL

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 185-189
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

188

OPTIONAL TYPES
HASKELL, RUST

AUTOMATIC REFERENCE

COUNTING
OBJECTIVE-C

PROTOCOLS
JAVA,C++

READ-EVAL-PRINT-LOOP

(REPL)
PYTHON

V. CONCLUSION

Swift's level of raw processing performance has yet to be

credibly demonstrated. But there is good reason to believe

that this will be achieved, with Swift performing far faster

than Python and Ruby, at least modestly faster than

Objective-C, and even slightly faster than C in some

circumstances.

Swift is not yet a production language for large-scale

projects. Small and perhaps medium-scale apps have been

successfully built and are in the App Store, built by

developers with a certain persistence and willingness to

work around problems. The compiler is slow, with delays

apparently exponentially related to the amount of code and

dependent upon which files and modules the code is

packaged in. Error messages are not very informative, often

at an extremely low level. Automatic bridging that is

intended to make Swift work "seamlessly" with the iOS API

doesn't always work. As discussed earlier, the compiler

often produces poorly optimised code, including code with

extraneous retain-release statements. The Xcode interactive

development environment can be slow to respond with

autocompletion and with flagging errors and turning error

flags off when they have been fixed.

The reaction to Swift from the developer community has

generally been very positive. Criticism has been minor. This

is perhaps surprising given the programmer culture in which

people have strong and often crazy opinions about

everything, no matter how ill-informed.

Some of the negative reactions have been predictable:

Enthusiasts of scripting languages like JavaScript think that

not having implicit type conversion (automatically

converting a data value's type when necessary) makes the

language too inflexible. This is mostly a philosophical

disagreement that has no solution. Some programmers feel

that errors are inevitable and want their programs to run no

matter what. Others want them to quickly fail in hopes of

getting every LAST BUG OUT.

O Some major projects that were started in Swift reverted to

Objective-C when compiler and other issues developed.

Most of these projects are looking to migrate to Swift as

soon as they reasonably can.

Some programmers will not be so quick to switch.

Automatic Reference Counting has solved the most

significant annoyance with Objective-C (having to allocate

and deallocate memory manually) and its source of the most

critical errors (memory leaks when memory not deallocated

properly and crashes when deallocation is done

unnecessarily). Many programmers will have worked with

Objective-C so long that they have adapted to its quirks, are

blind to its confusing aspects, and can work productively

with it (although they surely spend a lot of time debugging.)

There are other programmers who like doing tricky (and

arguably unsafe) things with low level pointers.

Apple is quick to deprecate APIs that it no longer considers

those it wants developers to use, and is aggressive about

pushing users and developers to the latest versions of iOS

and to relatively recent hardware. But Apple clearly needs

Objective-C to maintain the legacy APIs, and parts of the

iOS and OS X operating systems, that have been written in

it. And there is a large base of app code that has been

written in Objective-C. Apple is unlikely to be very quickly

aggressive about getting to developers to switch to Swift.

But Apple has made it easy to mix Swift and Objective-C

code. It is quite possible that Apple will slowly nudge

developers in the direction of using Swift, without

prohibiting Objective-C. This might include requiring aÍpps

being submitted to the App Store to be have their root

controller written in Swift but allow calling on Objective-C

code. It could also involve developing new APIs for Swift

that do not work in Objective-C.

VI. REFERENCES

 [1] @ADAMJLEONARD, @THINKCLAY, AND

@CESAR_DEVERS, “SWIFT TOOLBOX,”

HTTP://WWW.SWIFTTOOLBOX.IO/, 2014. [ONLINE].

AVAILABLE: HTTP://WWW.SWIFTTOOLBOX.IO/. [ACCESSED:

17-APR-2015].

 [2] E. GONZÁLEZ, H. FERNÁNDEZ, AND V. DÍAZ, “GENERAL

PURPOSE MDE TOOLS,” INT. J. INTERACT. MULTIMED.

ARTIF. INTELL., VOL. 1, PP. 72–75, 2008.

[3] E. R. NÚÑEZ-VALDEZ, O. SANJUAN-MARTINEZ, C. P. G.

BUSTELO, J. M. C. LOVELLE, AND G. INFANTE-HERNANDEZ,

“GADE4ALL: DEVELOPING MULTIPLATFORM VIDEOGAMES

BASED ON DOMAIN SPECIFIC LANGUAGES AND MODEL

DRIVEN ENGINEERING,” INT. J. INTERACT. MULTIMED.

ARTIF. INTELL., VOL. 2, NO. REGULAR ISSUE, PP. 33–42,

2013.

 [4] R. GONZALEZ-CRESPO, S. R. AGUILAR, R. F. ESCOBAR,

AND N. TORRES, “DYNAMIC, ECOLOGICAL, ACCESSIBLE AND

3D VIRTUAL WORLDS-BASED LIBRARIES USING OPENSIM

AND SLOODLE ALONG WITH MOBILE LOCATION AND NFC

FOR CHECKING IN,” INT. J. INTERACT. MULTIMED. ARTIF.

INTELL., VOL. 1, NO. 7, PP. 63–69, 2012.

[5] A. PUDER AND I.YOON, “SMARTPHONE

CROSS-COMPILATION FRAMEWORK FOR MULTIPLAYER

ONLINE GAMES” IN 2ND INT. CONF. ON MOBILE, HYBRID,

AND ON-LINE LEARNING, 2010 © IEEE COMPUTER SOCIETY.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 185-189
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

189

DOI: 10.1109/ELML.2010.13.

 [6] A. PUDER AND P. ANTEBI, “CROSS-COMPILING ANDROID

APPLICATIONS TO IOS AND WINDOWS PHONE 7” IN MOBILE

NETWAPPL, 2012 © SPRINGER SCIENCE+BUSINESS MEDIA,

LLC. DOI: 10.1107/S11036-012-0374-2

[7]INDERJEET SINGH AND MANUEL PALMIERI, “COMPARISON

OF CROSS-PLATFORM MOBILE DEVELOPMENT TOOLS”, IDT

MALARDALEN UNIVERSITY

 [8] C. XIN, “CROSS-PLATFORM MOBILE PHONE GAME

DEVELOPMENT ENVIRONMENT” IN INT. CONF. ON

INDUSTRIAL AND INFORMATION SYSTEMS, 2009 © IEEE

COMPUTER SOCIETY. DOI: 10.1109/IIS.2009.96

[9]INC. APPLE. USING SWIFT WITH COCOA AND

OBJECTIVE-C. 2. APPLE, INC., 2014.

[10] SULTAN S AL-QAHTANI, PAWELPIETRZYNSKI, LUIS F

GUZMAN, RAfiKARIF, AND ADRIEN TEVOEDJRE. COMPARING

SELECTED CRITERIA OF PROGRAMMING LANGUAGES JAVA,

PHP, C++, PERL, HASKELL, ASPECTJ, RUBY, COBOL, BASH

SCRIPTS AND SCHEME REVISION 1.0-A TEAM CPLGROUP

COMP6411-S10 TERM REPORT. 2012.

[11] LEX FRIEDMAN. THE APP STORE TURNS fiVE: A LOOK

BACKWARD AND FORWARD.

HTTP://WWW.MACWORLD.COM/ARTICLE/2043841/

THE-APP-STORE-TURNS-FIVE-A-LOOK-BACK-AND-FORWARD.

HTML, JULY 2013.

[12] JAMES HOWATT. A PROJECT-BASED APPROACH TO

PROGRAMMING LANGUAGE EVALUATION. ACM SIGPLAN

NOTICES, 30(7):37–40, 1995.

[13]PRASHANT KULKARNI, HD KAILASH, VAIBHAV

SHANKAR, SHASHINAGARAJAN, AND DL GOUTHAM.

PROGRAMMING LANGUAGES: A COMPARATIVE STUDY. 2008.

[14] STEPHEN G. KOCHAN. PROGRAMMING IN OBJECTIVE-C.

SAMS PUBLISHING, 1999.

