
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 188-191
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

188

FREQUENT SUBGRAPH EXTRACTION

BASED ON MAP REDUCE

 Cheetirala Sudhakar, Chandini Sasanapuri, Swapna Priya, Pavan Kumar N

 Asst. Professor, Department of CSE

 Vignan IIT, Vizag, Andhra Pradesh, India

ABSTRACT: Frequent sub graph extraction from a large

number of small graphs is a primitive operation for many

data mining applications. To extract frequent subgraphs,

existing techniques need to enumerate a large number of

subgraphs which is super linear with the cardinality of the

dataset. Given the rapid growing volume of graph data, it

is difficult to perform the frequent subgraph extraction on

a centralized machine efficiently. So, there is a need to

investigate how to efficiently perform this extraction over

very large datasets using MapReduce. Parallelizing

existing techniques directly using MapReduce does not

yield good performance as it is difficult to balance the

workload among the compute nodes. This framework

adopts the MRFSE strategy to iteratively extract frequent

subgraphs, i.e., all frequent size-(i+1) subgraphs are

generated based on frequent size-i subgraphs at the i
th

iteration using a single MapReduce job. To efficiently

extract frequent subgraphs, preparation and mining phase

are used which includes isomorphism testing to eliminate

duplicate patterns. Frequent subgraphs extraction can be

done efficiently and efficiently by using a distributed

environment named Hadoop MapReduce framework.

Keywords: Map Reduce, Frequent sub graph, Feature

extraction.

I. INTRODUCTION

Graph mining is a process of finding new, unknown,

interesting, useful and understandable patterns from a large

volume of data. One important aspect in graph mining is

concerned with the discovery of frequent subgraphs extraction

from a large volume of data. Frequent subgraphs extraction

helps in wide range of applications like identifying the

relationship between chemical compounds and building graph

indexes. Frequent subgraph extraction is used in various other

disciplines like social networks, bioinformatics and semantic

web etc.

MapReduce is a programming model introduced by Google in

2004 which performs distributed computing on large volumes

of data in parallel mode on large number of clusters of

commodity hardware. MapReduce solves the issues like data

distribution and load balancing, fault tolerance, parallelization

and makes the user concentrate on problem solving rather than

worrying about these internal issues. MapReduce provides data

distribution and load balancing by splitting entire volume of

data into equal sized blocks. Replication of data is also

provided in MapReduce to avoid loss of data. MapReduce

distributes these equal sized blocks to all the nodes and makes

the users free from focusing on load balancing and data

distribution. MapReduce re-performs crashed tasks and

provides fault tolerance. In MapReduce framework, throughput

is increased by assigning uncompleted tasks of slower nodes to

the idle nodes.

Hadoop is an open source implementation of Google

MapReduce architecture provided by Apache Software

Foundation. This architecture uses Hadoop Distributed File

System (HDFS) for efficiently processing huge volumes of

data parallel on large clusters of commodity hardware in a

reliable manner. So, all the sequential algorithms need to be

redesigned into parallel computing algorithms to execute

efficiently on Hadoop MapReduce framework.

II. LITERATURE SURVEY

Frequent subgraph mining task is to discover all subset of

graphs which occur repeatedly. gSpan, Mofa, FFSM, Gston

are some of the most extensively used algorithms for frequent

subgraph extraction. The algorithms use a multiple-pass

generation-and-test method to generate the candidate (k+l)

subgraph from the frequent k-subgraphs. As we mentioned

earlier, the sequential algorithms performance is inefficient,

especially when the data sets volume grows towards a terabyte

or petabytes of data. Therefore, parallel algorithms were

proposed. However, parallel mining algorithms reveals new

problems that did not exist in sequential computing, such as

workload balancing, data partitioning and distribution, jobs

assignment, and parameters passing between nodes. Thus,

significant time and effort are required to solve these

problems. MapReduce is a framework that takes care of these

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 188-191
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

189

internal issues. Because of these benefits of the MapReduce

model, MRFSE algorithm using Hadoop MapReduce model is

implemented. Most of the real-life application data sets can be

denoted by direct or un-direct graphs. Numerous new classes

of applications such as Social networks, computer networks,

Cyber-security, mobile call networks, Protein-Protein

regulation networks, the World Wide Web can be represented

by a graph and it can be handled in parallel. For example, in

Cyber-security, a network traffic dataset can be modelled as a

graph where vertices represent IP addresses and edges are

typed by classes of network traffic.

III. PROBLEM DEFINITION

Let, G ={G1,G2,...,Gn} be a graph database, where each Gi є G,

where i ={1….n} represents a labelled, undirected and

connected graph. The size of graph is the number of edges it

has. Now, t(g)= { Gi : g is a subset of Gi belongs to G; where

i={1…..n} is the support-set of the graph g. Thus, t(g)

contains all the graphs in G that has a subgraph isomorphic to

g. The cardinality of the support-set is called the support of g.

g is called frequent if support ≥ minimum support, where

minimum support is minimum support threshold given as

input. The set of frequent subgraphs are represented by F.

Based on the size of a frequent subgraph, we can partition F

into a several disjoint sets, Fi such that each of the Fi contains

frequent subgraphs of size i only.

The generation of frequent subgraphs is not possible using a

single MapReduce job. This can be made possible by using

iterative MapReduce. Here mapper and reducer functions are

executed in an iterative manner. Iterative MapReduce is

defined as a multi staged execution of map and reduce phases

in a cyclic manner, i.e. the output of the stage i reducer is

given as an input to the stage i+1 mapper. An external

condition is used to decide when to terminate the job.

IV. ISSUES IN THE EXISTING SYSTEM

The existing algorithms execute sequentially to find all

frequent subgraphs. Therefore, the waiting and the scheduling

are pure overheads to the mining task. So, some distributed

environment like Hadoop MapReduce can be used to solve

this problem. The algorithms that previously existed requires

one iterative MapReduce phase to find all frequent subgraphs.

All the edges which are having support less than minimum

support are used in the iterative MapReduce, but could not

generate subgraphs as the graph does not meets the threshold

value. Also the number of isomorphism checking’s increases

and the amount of data generated in the map phase grows

exponentially with the length of the transactions in the dataset.

Therefore, its performance is inefficient. So, if infrequent

edges are eliminated in the first stage, then the amount of data

generated in the map and reduces phase’s decreases. So,

MRFSE framework with two maps and reduces phases is

proposed. This can be done by adding one more map and

reduce phase to generate frequent edges. These edges are used

in iterative map and reduce phases to generate candidate

subgraphs. Dynamic partition of data generated after

execution is one of the issue in Hadoop MapReduce

framework.

Figure 2.IV Replication of data in NameNode and DataNode

Job Tracker: Job Tracker executes the Map Reduce job by

assigning tasks to the Task Tracker.

Task Tracker: It executes the tasks assigned by Job Tracker.

During execution, the Task Tracker frequently communicates

with the Job Tracker. Otherwise, Job Tracker thinks that Task

Tracker node has crashed and assigns the task to another Task

Tracker node.

Algorithms in MRFSE

Generation Phase

Mapper_Generation

Input : (key, value) pair where key is offset and value is list of

all graphs in that partition

Output : (key, value) pair where key is min-dfs code and value

is a graph object

Mapper_generation(Long key, Text value)

Begin

Generate level_one_occurence list(value)

Generate level_one_map(value)

P=get size_one_edges()

forall Pi in P

Begin

 key_to_reducer = min-dfs(Pi)

 value_to_reduce r= object(pi)

emit(key_to_reducer, value_to_reducer)

End

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 188-191
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

190

End

Reducer_Generation

Input : (key, value) pair where key is min-dfs code and value

is a graph object.

Output : (key, value) pair where key is min-dfs code and value

is a graph object

Reducer_generation(Long key, Text value)

Begin

forall Pi in P

Begin

 if length(Pi.OL) > minimum support

Begin

key=min-dfs (Pi)

value=object(Pi)

emit(key, value)

End

End

End

After this generation phase, all frequent edges are generated.

These edges are given as input to mapper of Verification

phase.

Verification Phase

Mapper_verification

Input : (key, value) pair where key is min-dfs code and value

is a graph object.

Output : (key, value) pair where key is min-dfs code and value

is a graph object.

Mapper_verification(Long key, Text value)

Begin

P = reconstruct_graphs(value)

reconstruct_all_datastructures(value)

P=candidate_generation(p)

forall Pi in P

Begin

 if pass_isomorphism(Pi) = true

 Begin

 if length(Pi.OL) > 0

 Begin

 key_to_reducer = min-dfs(Pi)

 value_to_reducer=object(Pi)

 emit((key_to_reducer,

value_to_reducer)

 End

 End

End

End

Reducer_verification

Input : (key, value) pair where key is min-dfs code and value

is a graph object.

Output : (key, value) pair where key is min-dfs code and value

is a support count.

Reducer_verification(Text key, Intwritable value)

Begin

 support= 0

 forall Pi in P

 Begin

 support= support + length(Pi.OL)

 End

 if support >= minimum support

 forall Pi in P

 Begin

 write(min-dfs(Pi), support) to HDFS

 End

End

V. RESULTS

A real dataset containing a large number of graphs is taken as

a data source from a dataset repository and is processed taking

threshold (minimum support count) values as input.

The frequent subgraph extraction algorithm has been tested in

Map Reduce environment (Pseudo Distributed Mode) taking

another input as threshold value. For each threshold value, the

number of subgraphs obtained and running time to generate

frequent subgraphs in the MapReduce environment are noted.

It is observed that in Map Reduce (Pseudo Distributed Mode)

environment, with the increase in threshold value, the running

decreases. Also the running time varies with the change in

number of reducers. The experimental results are shown in the

following figure.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 188-191
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

191

Fig 4.1 Relationship between support and running time

Fig 4.2 A Graph showing Relationship between elapsed time

and support.

VI. CONCLUSION

As a parallel programming model, MapReduce is one of the

most important techniques for mining large volumes of data

on large number of clusters. MRFSE is an algorithm which

uses iterative MapReduce to generate frequent subgraphs. It

extracts the frequent subgraphs that are present with in a graph

database. A subgraph is said to be frequent if its count is

greater than minimum support. MRFSE uses two MapReduce

functions. One MapReduce is used to identify frequent edges

and another is used to generate candidate subgraphs in an

iterative manner. The elapsed time for different support value

is recorded. The number of subgraphs for a particular support

value is also recorded. The entire algorithm is executed in a

single cluster. For good and effective results, we can

implement this algorithm on a group of clusters. The

execution time decreases with the increase in the number of

clusters.

VII. FUTURE WORK

As Frequent Subgraph Mining has a major amount of research

attention, many frequent subgraph mining algorithms have

been proposed in the past decades. However, the enlarging

data in applications makes frequent subgraph mining of very

large volume of data is a challenging task. Here the iterative

frequent subgraph extraction algorithm based on MapReduce,

takes advantage of MapReduce’s parallel computation

capability to make the algorithm accelerated. And as the

number of nodes involved in the computation can be

dynamically changed, it makes the method with high

scalability. Frequent Sub graph Extraction based on Map

Reduce implemented in Hadoop fully distributed mode will

give better efficient results than in pseudo distributed mode for

large data sets. Embeddings means list of all edges that are

adjacent to a sub graph. Embeddings can be used to perform

isomorphism testing to eliminate duplicate subgraphs. It may

reduce the time taken for isomorphism testing.

VIII. REFERENCE

[1] J.Han. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[2] A.Inokuchi, T.Washio, and H.Motoda. An apriori-based

algorithm for mining frequent substructures from graph data. In

PKDD, pages 13–23, 2000.

[3] M.Kuramochi and G.Karypis. Frequent subgraph discovery.

In ICDM, pages 313–320, 2001.

[4] X.Yan and J.Han. gspan: Graph-based substructure pattern

mining. In ICDM, pages 721–724, 2002.

[5] J.Cheng, Y.Ke, and W.Ng. Efficient query processing on

graph databases. ACM Trans. Database Syst., 34(1), 2009.

[6] J.Dean and S.Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51, pp.

107–113, 2008.

[7] F. Afrati, D.Fotakis, and J.Ullman, “Enumerating subgraph

instances using map-reduce,” in Proc. IEEE 29th Int. Conf.

Data Eng., Apr. 2013, pp. 62–73.

[8] Agrawal R., & Shafer, J.C. (1996). Parallel mining of

association rules.Knowledge and Data Engineering, IEEE

Transactions on, 8(6), 962-969.

[9] R.Agrawal and R.Srikant, “Fast algorithms for mining

association rules in large databases,” in Proc. 20th Int. Conf.

Very Large Data Bases, 1994, pp. 487–499.

[10] J.Huan, W.Wang, J.Prins, and J.Yang. Spin: mining

maximal frequent subgraphs from graph databases. In KDD,

pages 581–586, 2004.

