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Abstract - Recent approaches in Title generation using 

neural approaches have relied on an end to end deep 

learning system based on the sequence to sequence model. 

Such approaches have yielded good results but remain 

constricted in use due to a fixed size input which is often 

very small compared to the text being used or might take 

huge compute power to train and use if input size is 

increased. Our approach amalgamates an extractive and 

abstractive approach to get the best of both worlds using a 

textrank algorithm for the extractive part and a 

reasonably small seq2seq architecture as the abstractive 

part. Testing on the Amazon Fine Food Review dataset, 

our approach gives good results using less compute 

power.We utilize the prevailing metrics of ROUGE and 

Cosine Similarity. Manual checking shows that the 

majority of our generated topics are grammatically correct. 

Index Terms—Deep learning, Machine learning, 

Predictive models, Natural language processing, 

Tokenization 

I. INTRODUCTION 

Text Summarization in recent times has employed either an 

extractive or abstractive methodology. The former may utilize 

a neural approach as in [4] or utilize a graph based ranking 

algorithm as in [7] and related works. Abstractive methods are 

also gaining prominence in recent years with breakthroughs in 

Deep Learning and availability of datasets and computation 

power and resources. Such abstractive methods can be either 

based on a sequence to sequence model or a basic LSTM 

model which suitable tackles the problem of many to many 

mapping. Our contribution links both these methods, utilizing 

the speed and ease of the Textrank algorithm[7] alongside the 

robustness of deep learning models. As the internet grows in 

size and use, we see a explosion of data. A huge part of this 

data is text, which grows in the form of news articles and 

blogs. Indexing this huge amount of textual data is extremely 

important. Our approach can handle large amounts of data, 

due to our usage of the Textrank algorithm[7] and generate a 

proper short summary or topic, utilizing the very best in 

current deep learning research. The paper is divided into five 

sections. Section II explains the current trends in research, and 

how we build our own work on top of that. Section III 

explains our model, it’s various parts and the training 

parameters, The next section IV defines the evaluation metrics 

and showcases a few outputs for us to evaluate our 

workagainst. Section V concludes the paper with added 

anecdotes about how successive research may be handled.  

II.  RELATED WORK 

Summarizing text requires an innate amount of insight over a 

particular piece of text and has been used widely in Natural 

Language based applications. Text Summarization can be of 

two major types extractive and abstractive. Extractive Text 

Summarization provides a summary on a piece of text on the 

basis of sentences already present in the input text and merely 

uses an algorithm to chose sentences on the basis of their 

importance to be used in the summary. In case of Abstractive 

Text Summarizers, capture the information of the whole piece 

of text input and create an entirely new piece of text 

containing new sentences. Sentences are not extracted but 

generated in this case.  

A. Past Work on Extractive Text Summarization 

Textrank is one of the most popularly used algorithms that 

have been used up till date for text summarization, not using a 

deep learning approach. It was introduced in 2004 by 

Mihalcea and Tarau in Textrank: Bringing Order into texts [7]. 

It used an unsupervised approach and is still utilized in text 

summarizers which are extractive in nature to tackle the 

situation by providing a network graph based solution. It 

works by asserting the importance of a specific node over 

others in the system. In case of a text summarization task, 

Textrank[7] arranges the sentences in a descending order of 

their similarities to each other to capture the most amount of 

information from the piece of text to generate a summary. The 

Textrank algorithm was inspired by Google’s PageRank 

algorithm which was able to bring about a revolution in the 

field of web search technology.  

 

 

Fig.1.  TextRank Overview [11] 

Extractive Text Summarization can also use Deep 
Learning based approaches where sentences are treated as 
long sequences of text requiring classification. 
SummaRuNNer by Nallapati, Zhai and Zhou[4] used a 
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Recurrent Neural Network(RNN) based sequence model for 
summarization of documents. The model could be 
abstractively trained on an extractive model that could be 
trained on human generated reference summaries alone, which 
eliminated the requirement for sentence level extractive labels. 
SummaRuNNer used a GRU based Recurrent Neural Network 
which was trained on the CNN/ DailyMail corpus created 
originally for question answering which was based on 
passages and was modified for the task of document 
summarization. The model also used the DUC 2002 single 
document summarization dataset which consists of 567 
documents to evaluate model in an additional external domain 
test.  

BERT or Bidirectional Encoder Representations from 
Transformers is a State of the art language model for Natural 
Language Processing which was introduced by researchers at 
Google AI Language. BERTSUM[13] uses bert-base-uncased 
version of BERT which is a pre-trained Transformer model, 
which has achieved substantial performance of NLP based 
applications. BERTSUM[13] is a simple variant of BERT 
used specifically for extractive text summarization tasks. The 
model for BERTSUM was trained majorly on the CNN/ Daily 
Mail dataset[14] and the New York Times[15] Annotated 
Corpus which outperformed the last best performing system 
by 1.65 on the ROUGE-L metric. 

Reinforcement Learning can also be used in Text 
Summarization as done in [17] where it had been used to 
globally optimize the ROUGE metric for evaluating. The 
model specifically used Reinforcement Learning to rank 
sentences for generating a summary for an extractive text 
summarization implementation.  

 

B. Past Work on Abstractive Methods 

 Abstractive Text Summarization requires the use Deep 
Learning based approaches where the overall knowledge and 
information of the piece of text needs to be captured. For 
example, Abstractive text summarization using sequence-
tosequence RNNs and beyond by Nallapati, Zhou, Santor, 
Gulcehre, Xiang[5] which used an Attentional Encoder-
Decoder Recurrent Neural Networks based model as its 
architecture which addressed some key problems generally 
faced in text summarizing by modelling keywords, containing 
sentence to word structure hierarchy.The model used a 
bidirectional GRU-RNN based encoder and a uni-directional 
GRU-RNN based decoder architecture, which is unlike our 
model which uses an LSTM-RNN based encoder and decoder. 
The model was trained on the annotated GigaWord Corpus, 
DUC Corpus and the CNN/ Daily Mail Corpus and was 
evaluated on metrics such as Rouge-1, Rouge-2 and Rouge-L. 
In Deep Reinforced Model for Abstractive Summarization by 
Paulus, Romain, Xiong and Socher [2], a Reinforcement 
Learning model with intra-attention is used which although 
computationally expensive, gives great results. 

 Pointer Generator Networks can also be used to create 
abstractive text summarization models such as the one used in 
Get To The Point by See, Liu and Manning[16]. A hybrid 
pointer-generator network was used that had the capability of 
copying words from a reference text through pointing, which 
aided to the accuracy in reproduction of knowledge, while also 
retaining the ability to generate new words via the generator. 
Coverage was implemented to track the content that had been 
summarized which penalized repetition. The model was 

trained using the CNN/ Daily Mail[14] Dataset and 
outperformed the previous state of the model by at least 2 
ROUGE points.  

 Extreme Summarization by Narayan et. al.[18] uses a 
Convolutional Sequence-to-Sequence Learning Model for 
abstractive text summarization exclusively conditioned on the 
topic of newspaper articles. The model was trained over the 
XSum dataset which was created using BBC articles and their 
single line sentence summaries.  

III. PROPOSED WORK 

We introduce three models for abstractive summarization 
CNet, CNet+G, CNet+2G. CNet features the basic architecture 
where the embedding layer is trainable in both the encoder and 
decoder. This lets the model learn it’s own vectorized 
representations of words that it encounters during training. 
The next model CNet+G utilizes pretrained GloVe vectors[10] 
in the encoder part. GloVe is a pretrained vector 
representation of common words in the english vocabulary. 
We use 100 dimension GloVe vectors, but available vectors 
range from 50 dimensions to 300 dimensions. This means that 
a big part of parameters is not trainable and this speeds up 
training speeds. The model CNet+2G utilizes pretrained 
GloVe vectors in both the encoder and decoder part. This 
further speeds up training. Comparison of the three models is 
given in Table I.  

A. Basic Architecture 

 The main model architecture consists of 2 distinct 
components, the first component is the extractive model which 
is fed with a large paragraph or text and supplies the output in 
the form of the top n sentences according to the provided input. 
The extractive model compares each sentence with every other 
sentence by considering the vocabulary, which is the number 
of unique words present in both the sentences, in the text. 
Stopwords in the sentences are not considered in the 
vocabulary as they are inconsequential in our case.  

    Vectors of similar dimensions are created on the basis of the 
vocabulary and hence the amount of similarity between 2 
sentences is measured and a score is provided on the basis of 
cosine similarity between both the sentences. Cosine 
Similarity measures the similarity of 2 specific non zero 
vectors of an inner product entity that measure the angle of 
cosine between them, similar to how a dot product is 
generated for 2 vectors. A Similarity Matrix is then generated 
with respect to the individual similarity scores provided for 
each of the sentences from the text that are compared. Using 
this Similarity Matrix, a similarity graph is generated by using 
the Text Ranking algorithm[7]. 

   Text Ranking does not require any training data and can be 
used on any random piece of text and is a ranking algorithm 
specifically based on a graph network. The nodes on the graph 
signify the each of the sentences in the text provided as input 
and the distance between each of the nodes is specified with 
respect to the similarity score generated for both the sentences. 
If two particular sentences are very similar to each other, then 
this signifies that the distances between the nodes signifying 
them will have a smaller distance and a higher similarity score 
when compared to two other nodes on the graph which have a 
smaller similarity score specifying, that they have a smaller 
similarity score and hence the distances between the node will 
be certainly larger. On the basis of this network graph 
generated with respect to the similarity scores of sentences, 
sentences are ranked on the basis of their similarities. 
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 In this case, ranking of the sentences is done on the basis 
of how dissimilar 2 specific sentences are, this is because the 
text is being summarized on the basis of the sentences that are 
being extracted. The aim is to gather the gist of the entire 
piece of text and hence requires the use of sentences which are 
unique to one another. Hence, the sentences are ranked in a 
decreasing order of their similarity. From this new list of 
sentences the top N sentences capable of capturing the 
knowledge of the whole text are selected and a summary is 
then generated from these N sentences which we assume to be 
not larger than 80 words. 

 

Fig.2.  Main Model Architecture. 

B. Modules 

 Encoder 

The Encoder uses a multiple layers of a network to 
convert the input sentences into the form of their 
corresponding hidden vectors. These vectors are 
either being trained as the model trains as in CNet, or 
utilize pretrained GloVe Vectors [10] as in CNet+G 
and CNet+2G. The encoder LSTM parses the entire 
sequence of input, one element at a time at each time 
step. It is then able to process all the relevant 
information to capture the contextual knowledge 
present in the entire sequence of the input provided at 
each and every timestep. In this case the Encoder 
takes in an input of less than or equivalent length of 
80 elements and its output is a hidden vector having 
500 elements or dimensions. The encoder uses a 
triple layer stacked lstm architecture whose output is 
fed into the attention layer of the architecture. 

 The Decoder is a component which uses an LSTM 
architecture. It receives the entire hidden vector and 
using it, generates the ouput word by word at each an 
every instance or a timestep. The hidden vector that 
the decoder uses as input is first injected with a 
START token at the beginning of the sequence and 
the an END token is added at the end of the sequence. 
While decoding this vector, the target sequence is 
unestablished. The Decoder starts predicting the 
target sequence by first parsing the START token 
which signifies the beginning and the end is denoted 
by the ENDtoken, after which it understands that 
there are no more words to be processed. Each 
recurrent unit of the LSTM architecture accepts an 
element from the hidden vector also known as a 

hidden state from the previous unit and also produces 
anewhiddenstateas well as its own hidden state. The 
architecture is presented in Fig. 2. 

C. LSTM Unit Overview 

 

Fig.3.  LSTM Unit [8]. 

      

    Our model uses three layers of stacked LSTM(Long Short 

Term Memory) units as the Recurrent Neural Unit. LSTMs 

have gained a lot of traction in recent years due to the way 

they handle the vanishing gradient problem with ease. Our 

models were trained for about ten epochs each with RMSProp 

as the optimizer. Using RMSProp instead of traditional 

optimizers like Stochastic Gradient Descent improves training 

efficiency and helps the model converge better.  

 

The LSTM layer consists of three distinct gates - the Input 

gate, Forget gate and Output gate.The Input gate informs what 

newinformationweregoingtostoreinthecellstate,theForget gate 

tells us about the information to throw away from the cell state. 

The output gate is used to provide the activation to the final 

output of the LSTM block at a given timestamp.  

D. Attention Layer  

The attention layer sits on top of the encoder and decoder 

LSTM layers. Through training it learns to concentrate more 

on parts of the output of the previous layer which is mostly 

required for generating the summary in the next layer using 

the dense output layer. Without the attention layer, the encoder 

would have to pass on the entire information about the input 

sequence using the thought vector, leading to information loss 

and ambiguity. The attention layer, as shown in Fig. 2 solves 

this issue by taking information from the encoder at each step 

and weighing them in accordance to the decoder’s needs. 
E. Dataset  

We train and test our model on the Amazon Fine Food 
Reviews dataset [9]. It consists of 100000 reviews of products 
on amazon alongside their short summaries in phrases. Apart 
from this, it also contains a helpfulness indicator and a rating 
index in the range 1 - 5. After removing rows for missing data 
and duplicates, we end with 88421 rows. This is further divided 
into testing and training sets. The training set consists of 79516 
data points while the test set consists of 8836 data points. Our 
evaluation given in Table II includes 5 random sentences from 
the test set.  
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F. Comparison of Presented Models  

CNet utilizes around 56M parameters, with each epoch 
taking around 22 minutes to train. CNet+G has 34M 
parameters out of which 28M are trainable(the rest accounting 
for the encoder embedding layer) and it takes around 20 
minutes for each epoch. CNet+2G has 28M total and 21M 
trainable parameters but epochs take around 30 minutes to train. 
Our models were trained on Google Colab’s environment using 
the NVIDIA Tesla K80 GPU accelerator. It offers 24GB 
memory for training the model.  

 

IV. EVALUATION 

A. Metrics  

We utilize Cosine Similarity and ROUGE as methods to 
evaluate how well our models are doing.All models get similar 
scores on Cosine Similarity metrics while the ROUGE metrics 
show a bit of variation in the scores. Table I showcases how 
well our models perform on the Amazon Fine Food Reviews 
dataset[9]. 

The Cosine Similarity works by forming a vectorized Bag 
of Words representation of the ground truth label and the 
outputs we get from the models. 

 

  

 Here x and y refer to the two vectors formed out of the 

two sentences being compared. The vectors are formed using 

Bag of Words, which counts the frequency of unique words in 

both the sentences. In the numerator we have the dot product 

of x,y and in the denominator, the absolute values of x and y 

respectively are multiplied.  

 Recall Oriented Understudy for Gisting Evaluation or 

ROUGE is an evaluation metric for specifically evaluating 

Text Summarization and Machine Translation application on 

the basis of metrics such as Precision and Recall. 

 Recall describes the amount of information being 

captured from a piece of reference text by providing a ratio 

between the total amount of overlapping words in the 

reference text and the summary versus the total words in the 

piece of reference text. 

 Recall tells us about the amount of information that has 

been captured in the generated summary but this information 

might not be necessarily relevant. This is a particular downfall 

of the Recall metric and hence Precision as a metric is used to 

measure the amount of relevant information that is captured 

from the piece of reference text. Simply put, Precision is the 

ratio of number of overlapping words present in both the 

summary generated and the reference text versus the total 

words that are present in the generated summary.  

 Rouge-1 is an evaluation metric which describes the 

overlap of unigrams in the output summary and the reference 

summary. Rouge-2 on the other hand is an evaluation metric 

focussing on the overlap of bigrams in the output summary 

and the reference summary. Rouge-1 is generally used over or 

together with the Rouge-2 metric to show the fluency in the 

summary.  

 Rouge-L is to measure the amount of longest matching 

sequence of words using longest common subsequence or 

LCS. The utility of using LCS is that it doesnt need matches 

consecutively but in-sequence matches that specifically 

describe sentence level word order. It natively includes in-

sequence longest matching N-grams and hence does not 

require the explicit definition of an N-gram length.  

B. Results 

 

 According to Cosine Similarity, all three models offer 
the same performance. This can be misleading at times as if 
different words with similar meaning are compared, cosine 
similarity will be low while information conveyed may be the 
same. The ROUGE scores offer a better way to evaluate how 
well our models do.  

 Our models accurately predict the required topic in 
accordance with the context of the text in question. We have 
presented the output of five random sentences from the 
validation set and the output given by each of our three models. 
This can be viewed in Table II. Manual overview reveals that 
though the topics generated by our model is a bit generalized at 
times, it captures the overall gist very effectively. 

V. CONCLUSION AND FUTURE WORK  

Future work can focus on training bigger networks, capable of 
outputting longer sentences. A weight factor maybe introduced 
to penalize shorter sentences, thus forcing the model towards 
longer and more coherent summaries. Models with alternative 
recurrent units like GRUs may also be used as in 
SummaRuNNer by Nallapati, Zhai and Zhou[4].  

 Research can also focus on better extractive methods, 
using a neural approach, which trades runtime for better 
extractive results. An alternative dataset may also be used.  

 Instead of GloVe Embeddings, BERT Embeddings[12] 
can be used. These Bidirectionally trained embeddings have 
shown a lot of potential in recent months. Also, instead of 
utilizing 100 dimension GloVe Vectors, we can use smaller or 
bigger, ie. upto 300 dimension GloVe Vectors.  

VI. CONCLUSION 

Future work can focus on training bigger networks, capable of 

outputting longer sentences. A weight factor maybe 

introduced to penalize shorter sentences, thus forcing the 

model towards longer and more coherent summaries. Models 
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with alternative recurrent units like GRUs may also be used as 

in SummaRuNNer by Nallapati, Zhai and Zhou[4]. Research 

can also focus on better extractive methods, using a neural 

approach, which trades runtime for better extractive results. 

An alternative dataset may also be used. Instead of GloVe 

Embeddings, BERT Embeddings[12] can be used. These 

Bidirectionally trained embeddings have shown a lot of 

potential in recent months. Also, instead of utilizing 100 

dimension GloVe Vectors, we can use smaller or bigger, ie. 

upto 300 dimension GloVe Vectors.    
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