
 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

197

CONCISENET: AN END TO END ABSTRACTIVE

MODEL FOR TOPIC GENERATION

 Saurav Saha Abhilash Pal R. Anita

 Department of CSE Department of CSE Department of CSE

 SRM IST - KTR SRM IST – KTR SRM IST - KTR

 Chennai, India Chennai, India Chennai, India

Abstract - Recent approaches in Title generation using

neural approaches have relied on an end to end deep

learning system based on the sequence to sequence model.

Such approaches have yielded good results but remain

constricted in use due to a fixed size input which is often

very small compared to the text being used or might take

huge compute power to train and use if input size is

increased. Our approach amalgamates an extractive and

abstractive approach to get the best of both worlds using a

textrank algorithm for the extractive part and a

reasonably small seq2seq architecture as the abstractive

part. Testing on the Amazon Fine Food Review dataset,

our approach gives good results using less compute

power.We utilize the prevailing metrics of ROUGE and

Cosine Similarity. Manual checking shows that the

majority of our generated topics are grammatically correct.

Index Terms—Deep learning, Machine learning,

Predictive models, Natural language processing,

Tokenization

I. INTRODUCTION

Text Summarization in recent times has employed either an

extractive or abstractive methodology. The former may utilize

a neural approach as in [4] or utilize a graph based ranking

algorithm as in [7] and related works. Abstractive methods are

also gaining prominence in recent years with breakthroughs in

Deep Learning and availability of datasets and computation

power and resources. Such abstractive methods can be either

based on a sequence to sequence model or a basic LSTM

model which suitable tackles the problem of many to many

mapping. Our contribution links both these methods, utilizing

the speed and ease of the Textrank algorithm[7] alongside the

robustness of deep learning models. As the internet grows in

size and use, we see a explosion of data. A huge part of this

data is text, which grows in the form of news articles and

blogs. Indexing this huge amount of textual data is extremely

important. Our approach can handle large amounts of data,

due to our usage of the Textrank algorithm[7] and generate a

proper short summary or topic, utilizing the very best in

current deep learning research. The paper is divided into five

sections. Section II explains the current trends in research, and

how we build our own work on top of that. Section III

explains our model, it’s various parts and the training

parameters, The next section IV defines the evaluation metrics

and showcases a few outputs for us to evaluate our

workagainst. Section V concludes the paper with added

anecdotes about how successive research may be handled.

II. RELATED WORK

Summarizing text requires an innate amount of insight over a

particular piece of text and has been used widely in Natural

Language based applications. Text Summarization can be of

two major types extractive and abstractive. Extractive Text

Summarization provides a summary on a piece of text on the

basis of sentences already present in the input text and merely

uses an algorithm to chose sentences on the basis of their

importance to be used in the summary. In case of Abstractive

Text Summarizers, capture the information of the whole piece

of text input and create an entirely new piece of text

containing new sentences. Sentences are not extracted but

generated in this case.

A. Past Work on Extractive Text Summarization

Textrank is one of the most popularly used algorithms that

have been used up till date for text summarization, not using a

deep learning approach. It was introduced in 2004 by

Mihalcea and Tarau in Textrank: Bringing Order into texts [7].

It used an unsupervised approach and is still utilized in text

summarizers which are extractive in nature to tackle the

situation by providing a network graph based solution. It

works by asserting the importance of a specific node over

others in the system. In case of a text summarization task,

Textrank[7] arranges the sentences in a descending order of

their similarities to each other to capture the most amount of

information from the piece of text to generate a summary. The

Textrank algorithm was inspired by Google’s PageRank

algorithm which was able to bring about a revolution in the

field of web search technology.

Fig.1. TextRank Overview [11]

Extractive Text Summarization can also use Deep
Learning based approaches where sentences are treated as
long sequences of text requiring classification.
SummaRuNNer by Nallapati, Zhai and Zhou[4] used a

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

198

Recurrent Neural Network(RNN) based sequence model for
summarization of documents. The model could be
abstractively trained on an extractive model that could be
trained on human generated reference summaries alone, which
eliminated the requirement for sentence level extractive labels.
SummaRuNNer used a GRU based Recurrent Neural Network
which was trained on the CNN/ DailyMail corpus created
originally for question answering which was based on
passages and was modified for the task of document
summarization. The model also used the DUC 2002 single
document summarization dataset which consists of 567
documents to evaluate model in an additional external domain
test.

BERT or Bidirectional Encoder Representations from
Transformers is a State of the art language model for Natural
Language Processing which was introduced by researchers at
Google AI Language. BERTSUM[13] uses bert-base-uncased
version of BERT which is a pre-trained Transformer model,
which has achieved substantial performance of NLP based
applications. BERTSUM[13] is a simple variant of BERT
used specifically for extractive text summarization tasks. The
model for BERTSUM was trained majorly on the CNN/ Daily
Mail dataset[14] and the New York Times[15] Annotated
Corpus which outperformed the last best performing system
by 1.65 on the ROUGE-L metric.

Reinforcement Learning can also be used in Text
Summarization as done in [17] where it had been used to
globally optimize the ROUGE metric for evaluating. The
model specifically used Reinforcement Learning to rank
sentences for generating a summary for an extractive text
summarization implementation.

B. Past Work on Abstractive Methods

 Abstractive Text Summarization requires the use Deep
Learning based approaches where the overall knowledge and
information of the piece of text needs to be captured. For
example, Abstractive text summarization using sequence-
tosequence RNNs and beyond by Nallapati, Zhou, Santor,
Gulcehre, Xiang[5] which used an Attentional Encoder-
Decoder Recurrent Neural Networks based model as its
architecture which addressed some key problems generally
faced in text summarizing by modelling keywords, containing
sentence to word structure hierarchy.The model used a
bidirectional GRU-RNN based encoder and a uni-directional
GRU-RNN based decoder architecture, which is unlike our
model which uses an LSTM-RNN based encoder and decoder.
The model was trained on the annotated GigaWord Corpus,
DUC Corpus and the CNN/ Daily Mail Corpus and was
evaluated on metrics such as Rouge-1, Rouge-2 and Rouge-L.
In Deep Reinforced Model for Abstractive Summarization by
Paulus, Romain, Xiong and Socher [2], a Reinforcement
Learning model with intra-attention is used which although
computationally expensive, gives great results.

 Pointer Generator Networks can also be used to create
abstractive text summarization models such as the one used in
Get To The Point by See, Liu and Manning[16]. A hybrid
pointer-generator network was used that had the capability of
copying words from a reference text through pointing, which
aided to the accuracy in reproduction of knowledge, while also
retaining the ability to generate new words via the generator.
Coverage was implemented to track the content that had been
summarized which penalized repetition. The model was

trained using the CNN/ Daily Mail[14] Dataset and
outperformed the previous state of the model by at least 2
ROUGE points.

 Extreme Summarization by Narayan et. al.[18] uses a
Convolutional Sequence-to-Sequence Learning Model for
abstractive text summarization exclusively conditioned on the
topic of newspaper articles. The model was trained over the
XSum dataset which was created using BBC articles and their
single line sentence summaries.

III. PROPOSED WORK

We introduce three models for abstractive summarization
CNet, CNet+G, CNet+2G. CNet features the basic architecture
where the embedding layer is trainable in both the encoder and
decoder. This lets the model learn it’s own vectorized
representations of words that it encounters during training.
The next model CNet+G utilizes pretrained GloVe vectors[10]
in the encoder part. GloVe is a pretrained vector
representation of common words in the english vocabulary.
We use 100 dimension GloVe vectors, but available vectors
range from 50 dimensions to 300 dimensions. This means that
a big part of parameters is not trainable and this speeds up
training speeds. The model CNet+2G utilizes pretrained
GloVe vectors in both the encoder and decoder part. This
further speeds up training. Comparison of the three models is
given in Table I.

A. Basic Architecture

 The main model architecture consists of 2 distinct
components, the first component is the extractive model which
is fed with a large paragraph or text and supplies the output in
the form of the top n sentences according to the provided input.
The extractive model compares each sentence with every other
sentence by considering the vocabulary, which is the number
of unique words present in both the sentences, in the text.
Stopwords in the sentences are not considered in the
vocabulary as they are inconsequential in our case.

 Vectors of similar dimensions are created on the basis of the
vocabulary and hence the amount of similarity between 2
sentences is measured and a score is provided on the basis of
cosine similarity between both the sentences. Cosine
Similarity measures the similarity of 2 specific non zero
vectors of an inner product entity that measure the angle of
cosine between them, similar to how a dot product is
generated for 2 vectors. A Similarity Matrix is then generated
with respect to the individual similarity scores provided for
each of the sentences from the text that are compared. Using
this Similarity Matrix, a similarity graph is generated by using
the Text Ranking algorithm[7].

 Text Ranking does not require any training data and can be
used on any random piece of text and is a ranking algorithm
specifically based on a graph network. The nodes on the graph
signify the each of the sentences in the text provided as input
and the distance between each of the nodes is specified with
respect to the similarity score generated for both the sentences.
If two particular sentences are very similar to each other, then
this signifies that the distances between the nodes signifying
them will have a smaller distance and a higher similarity score
when compared to two other nodes on the graph which have a
smaller similarity score specifying, that they have a smaller
similarity score and hence the distances between the node will
be certainly larger. On the basis of this network graph
generated with respect to the similarity scores of sentences,
sentences are ranked on the basis of their similarities.

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

199

 In this case, ranking of the sentences is done on the basis
of how dissimilar 2 specific sentences are, this is because the
text is being summarized on the basis of the sentences that are
being extracted. The aim is to gather the gist of the entire
piece of text and hence requires the use of sentences which are
unique to one another. Hence, the sentences are ranked in a
decreasing order of their similarity. From this new list of
sentences the top N sentences capable of capturing the
knowledge of the whole text are selected and a summary is
then generated from these N sentences which we assume to be
not larger than 80 words.

Fig.2. Main Model Architecture.

B. Modules

 Encoder

The Encoder uses a multiple layers of a network to
convert the input sentences into the form of their
corresponding hidden vectors. These vectors are
either being trained as the model trains as in CNet, or
utilize pretrained GloVe Vectors [10] as in CNet+G
and CNet+2G. The encoder LSTM parses the entire
sequence of input, one element at a time at each time
step. It is then able to process all the relevant
information to capture the contextual knowledge
present in the entire sequence of the input provided at
each and every timestep. In this case the Encoder
takes in an input of less than or equivalent length of
80 elements and its output is a hidden vector having
500 elements or dimensions. The encoder uses a
triple layer stacked lstm architecture whose output is
fed into the attention layer of the architecture.

 The Decoder is a component which uses an LSTM
architecture. It receives the entire hidden vector and
using it, generates the ouput word by word at each an
every instance or a timestep. The hidden vector that
the decoder uses as input is first injected with a
START token at the beginning of the sequence and
the an END token is added at the end of the sequence.
While decoding this vector, the target sequence is
unestablished. The Decoder starts predicting the
target sequence by first parsing the START token
which signifies the beginning and the end is denoted
by the ENDtoken, after which it understands that
there are no more words to be processed. Each
recurrent unit of the LSTM architecture accepts an
element from the hidden vector also known as a

hidden state from the previous unit and also produces
anewhiddenstateas well as its own hidden state. The
architecture is presented in Fig. 2.

C. LSTM Unit Overview

Fig.3. LSTM Unit [8].

 Our model uses three layers of stacked LSTM(Long Short

Term Memory) units as the Recurrent Neural Unit. LSTMs

have gained a lot of traction in recent years due to the way

they handle the vanishing gradient problem with ease. Our

models were trained for about ten epochs each with RMSProp

as the optimizer. Using RMSProp instead of traditional

optimizers like Stochastic Gradient Descent improves training

efficiency and helps the model converge better.

The LSTM layer consists of three distinct gates - the Input

gate, Forget gate and Output gate.The Input gate informs what

newinformationweregoingtostoreinthecellstate,theForget gate

tells us about the information to throw away from the cell state.

The output gate is used to provide the activation to the final

output of the LSTM block at a given timestamp.

D. Attention Layer

The attention layer sits on top of the encoder and decoder

LSTM layers. Through training it learns to concentrate more

on parts of the output of the previous layer which is mostly

required for generating the summary in the next layer using

the dense output layer. Without the attention layer, the encoder

would have to pass on the entire information about the input

sequence using the thought vector, leading to information loss

and ambiguity. The attention layer, as shown in Fig. 2 solves

this issue by taking information from the encoder at each step

and weighing them in accordance to the decoder’s needs.
E. Dataset

We train and test our model on the Amazon Fine Food
Reviews dataset [9]. It consists of 100000 reviews of products
on amazon alongside their short summaries in phrases. Apart
from this, it also contains a helpfulness indicator and a rating
index in the range 1 - 5. After removing rows for missing data
and duplicates, we end with 88421 rows. This is further divided
into testing and training sets. The training set consists of 79516
data points while the test set consists of 8836 data points. Our
evaluation given in Table II includes 5 random sentences from
the test set.

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

200

F. Comparison of Presented Models

CNet utilizes around 56M parameters, with each epoch
taking around 22 minutes to train. CNet+G has 34M
parameters out of which 28M are trainable(the rest accounting
for the encoder embedding layer) and it takes around 20
minutes for each epoch. CNet+2G has 28M total and 21M
trainable parameters but epochs take around 30 minutes to train.
Our models were trained on Google Colab’s environment using
the NVIDIA Tesla K80 GPU accelerator. It offers 24GB
memory for training the model.

IV. EVALUATION

A. Metrics

We utilize Cosine Similarity and ROUGE as methods to
evaluate how well our models are doing.All models get similar
scores on Cosine Similarity metrics while the ROUGE metrics
show a bit of variation in the scores. Table I showcases how
well our models perform on the Amazon Fine Food Reviews
dataset[9].

The Cosine Similarity works by forming a vectorized Bag
of Words representation of the ground truth label and the
outputs we get from the models.

 Here x and y refer to the two vectors formed out of the

two sentences being compared. The vectors are formed using

Bag of Words, which counts the frequency of unique words in

both the sentences. In the numerator we have the dot product

of x,y and in the denominator, the absolute values of x and y

respectively are multiplied.

 Recall Oriented Understudy for Gisting Evaluation or

ROUGE is an evaluation metric for specifically evaluating

Text Summarization and Machine Translation application on

the basis of metrics such as Precision and Recall.

 Recall describes the amount of information being

captured from a piece of reference text by providing a ratio

between the total amount of overlapping words in the

reference text and the summary versus the total words in the

piece of reference text.

 Recall tells us about the amount of information that has

been captured in the generated summary but this information

might not be necessarily relevant. This is a particular downfall

of the Recall metric and hence Precision as a metric is used to

measure the amount of relevant information that is captured

from the piece of reference text. Simply put, Precision is the

ratio of number of overlapping words present in both the

summary generated and the reference text versus the total

words that are present in the generated summary.

 Rouge-1 is an evaluation metric which describes the

overlap of unigrams in the output summary and the reference

summary. Rouge-2 on the other hand is an evaluation metric

focussing on the overlap of bigrams in the output summary

and the reference summary. Rouge-1 is generally used over or

together with the Rouge-2 metric to show the fluency in the

summary.

 Rouge-L is to measure the amount of longest matching

sequence of words using longest common subsequence or

LCS. The utility of using LCS is that it doesnt need matches

consecutively but in-sequence matches that specifically

describe sentence level word order. It natively includes in-

sequence longest matching N-grams and hence does not

require the explicit definition of an N-gram length.

B. Results

 According to Cosine Similarity, all three models offer
the same performance. This can be misleading at times as if
different words with similar meaning are compared, cosine
similarity will be low while information conveyed may be the
same. The ROUGE scores offer a better way to evaluate how
well our models do.

 Our models accurately predict the required topic in
accordance with the context of the text in question. We have
presented the output of five random sentences from the
validation set and the output given by each of our three models.
This can be viewed in Table II. Manual overview reveals that
though the topics generated by our model is a bit generalized at
times, it captures the overall gist very effectively.

V. CONCLUSION AND FUTURE WORK

Future work can focus on training bigger networks, capable of
outputting longer sentences. A weight factor maybe introduced
to penalize shorter sentences, thus forcing the model towards
longer and more coherent summaries. Models with alternative
recurrent units like GRUs may also be used as in
SummaRuNNer by Nallapati, Zhai and Zhou[4].

 Research can also focus on better extractive methods,
using a neural approach, which trades runtime for better
extractive results. An alternative dataset may also be used.

 Instead of GloVe Embeddings, BERT Embeddings[12]
can be used. These Bidirectionally trained embeddings have
shown a lot of potential in recent months. Also, instead of
utilizing 100 dimension GloVe Vectors, we can use smaller or
bigger, ie. upto 300 dimension GloVe Vectors.

VI. CONCLUSION

Future work can focus on training bigger networks, capable of

outputting longer sentences. A weight factor maybe

introduced to penalize shorter sentences, thus forcing the

model towards longer and more coherent summaries. Models

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

201

with alternative recurrent units like GRUs may also be used as

in SummaRuNNer by Nallapati, Zhai and Zhou[4]. Research

can also focus on better extractive methods, using a neural

approach, which trades runtime for better extractive results.

An alternative dataset may also be used. Instead of GloVe

Embeddings, BERT Embeddings[12] can be used. These

Bidirectionally trained embeddings have shown a lot of

potential in recent months. Also, instead of utilizing 100

dimension GloVe Vectors, we can use smaller or bigger, ie.

upto 300 dimension GloVe Vectors.

VI. ACKNOWLEDGEMENT

The authors thank Dr. Subalalitha C.N, Dept of CSE, SRM

Institute of Science and Technology for her support and

guidance during this project. We would also like to

acknowledge the help we have received from Christopher

Olah’s Blog on LSTMs[8] during this project.

VII. REFERENCE

[1] Moratanch N. and Chitrakala S. 2017. ”A survey on

extractive text summarization” in International Conference on

Computer, Communication and Signal Processing (ICCCSP),

Chennai,(pp. 1-6). doi: 10.1109/ICCCSP.2017.7944061

[2] Paulus, Romain, Xiong Caiming and Socher Richard. 2017.

A Deep Reinforced Model for Abstractive Summarization. in

ArXiv abs/1705.04304

[3] See, Abigail, Liu Peter J. and Manning Christopher D.

2017. Get To The Point: Summarization with Pointer-

Generator Networks. in ACL 2017.

[4] Nallapati Ramesh, Zhai Feifei, and Zhou Bowen. 2017.

SummaRuNNer: A recurrent neural network based sequence

model for extractive summarization of documents. In

Association for the Advancement of Artificial

Intelligence(2016).

[5] Nallapati Ramesh, Zhou Bowen, dos Santos Cicero,

Gulcehre Caglar, and Xiang Bing. 2016. Abstractive text

summarization using sequenceto-sequence RNNs and beyond.

In Computational Natural Language Learning.

[6] Chopra Sumit , Auli Michael , and Rush Alexander M .

2016. Abstractive sentence summarization with attentive

recurrent neural networks. In North American Chapter of the

Association for Computational Linguistics.

[7] Mihalcea, R., Tarau, P. 2004. Textrank: Bringing order

into texts. In Lin, D., Wu D. (Eds.), Proceedings of EMNLP

2004, pp. 404411 Barcelona, Spain. Association for

Computational Linguistics

[8] Christopher Olah, ’Understanding LSTM Networks’, 2015.

[Online]. Available: https://colah.github.io/posts/2015-08-

Understanding-LSTMs/ [Accessed: 20- August- 2019].

[9] Stanford Network Analysis Project, ’Amazon Fine Food

Reviews’, 2016. [Online]. Available:

https://www.kaggle.com/snap/amazon-finefood-reviews

[Accessed: 20- August- 2019].

[10] Pennington Jeffrey, Socher Richard, Manning

Christopher D. 2014. ’GloVe: Global Vectors for Word

Representation’, [Online]. Available:

https://nlp.stanford.edu/projects/glove/ [Accessed: 20- August-

2019].

[11] Joshi Prateek. 2018. ’An Introduction to Text

Summarization using the TextRank Algorithm’ [Online].

Available:

https://www.analyticsvidhya.com/blog/2018/11/introduction-

textsummarization-textrank-python/ [Accessed: 20- August-

2019].

[12] Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova

Kristina. 2018. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In NAACL-HLT.

[13] Yang Liu. Fine-tune BERT for Extractive Summarization.

2019 in arXiv:1903.10318 [cs.CL]

[14] See Abigail. CNN-dailymail dataset. [Online]. Available:

https://github.com/abisee/cnn-dailymail [Accessed: 20-

August2019].

[15] Sandhaus Evan. The New York Times Annotated Corpus.

2008 [Online]. Available:

https://catalog.ldc.upenn.edu/LDC2008T19 [Accessed: 20-

August- 2019].

[16] See Abigail,Liu Peter J., Manning Christopher D. 2017.

Get To The Point: Summarization with Pointer-Generator

Networks. 2017 in arXiv:1704.04368 [cs.CL]

[17] Narayan Shashi , Cohen Shay B., Lapata Mirella. 2018.

Ranking Sentences for Extractive Summarization with

Reinforcement Learning in Proceedings of NAACL-HLT

2018, pages 17471759.

[18] Narayan Shashi, B. Cohen Shay , Lapata Mirella. 2018.

Dont Give Me the Details, Just the Summary! Topic-Aware

Convolutional Neural Networks for Extreme Summarization

in Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 17971807

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 4, ISSN No. 2455-2143, Pages 197-202
 Published Online August 2019 in IJEAST (http://www.ijeast.com)

202

