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Abstract— Malware analysis and detection has become a 

prime research area in the case of smartphones, 

particularly based on android due to its widespread usage 

and increase in the number of malwares involving huge 

monetary gains. The exploding number of Android 

malware calls for automated analysis of the systems. There 

are two common techniques used for detecting malware, 

signature based and behaviour based. Signature based 

detection uses a sequence of bytes that appear in the 

binary code  to identify and detect a family of malware. 

Behaviour based detection uses features/ artifacts created 

by malware during execution for identification. In this 

paper, we propose a new malware classification method 

based on semantic similarity between two common 

subgraphs which is effective for the detection and analysis 

of new threats for which signatures are not available,  A 

behaviour graph is obtained by capturing suspicious API 

calls during the execution (in a sandboxed environment). 

We use a labelling mechanism for the API calls which will 

be regarded as a signature for malicious activity. Selected 

features are used to train an MCM classifier. On several 

benchmark datasets, the MCM classifier yields detection 

accuracy of 97% even with using one-tenth the number of 

support vectors used by SVMs. 

 

Keywords— Android Malware Analysis, API calls, Feature 
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I.  INTRODUCTION 

Android is becoming a target to a growing number of attacks 

and malicious applications due to its popularity.[40]. The goal 

of the attackers is to steal private information, transferring 

credit into their ac-count by subscribing to premium services, 

unwarranted premium-rate subscription of SMS services and 

advanced frauds. Most of the current commercial antivirus for 

malware detection are based on Static analysis which fail to 

detect zero-day malwares.[42] Signature based technique 

treats malwares as sequences of bytes that performs well for 

known malwares. Generally malware uses obfuscation as well 

as packing techniques to make static analysis harder[8]. Static 

analysis based detection methods can be easily by passed by 

simple code obfuscation because it ignores programs 

functionality such as APIs or function calls.[7] The 

obfuscation used by Android applications hides system 

activities by calling functions in native libraries written in C / 

C++ which is outside the Dalvik /Java runtime library. In 

dynamic analysis the source code is executed in a controlled 

environment, often called sandbox.[10] Dynamic analysis can 

counter obfuscation techniques but can be bypassed by 

runtime detection methods. Function-call graph was created 

from the disassembled code of program, in which all vertices 

represent functions in the program. Each function is a set of 

API calls . Edges represent relationship among functions. The 

instruction sequences of the malware binary depicting the 

structure and the functions are converted into a function-call 

graph. Function-call graph[38] abstracts away byte or 

instruction level details which act as an signature for the 

malware. It can be used to classify the malware variants. We 

propose a technique which can identify the semantic similarity 

between two malware programs through the use of function-

call graph. We have used a labelling mechanism for the API 

calls in the function call graph which will be regarded as a 

signature for malicious activity. A Minimal complexity 

machine is then used as a classifier to distinguish between 

benign and malicious applications. Experimental results show 

that the performance of this classifier is better than the 

classical SVM in terms of generalization accuracies on a 

number of selected features and number of support vectors 

required. In an experimental result on a total of 1200 malware 

samples, this classification approach is more effective for a 

resource constrained device such as smartphones, allowing a 

detection of 97 % of the malware families with only 1% false 

positives A sketch of our contributions are mentioned below: 
 

– Feature Space Extraction: Features are extracted by 

reverse engineering the Android application package file 

(APK)[14]. We decompile classes.dex file through dex2jar 

and then use jd-gui tool to analyse java source codes of 

jar/class file. The components of APK file comprise of 

AndroidMan-ifest.xml, Classes.dex, res directory, lib 

directory, META-INF directory, and resources. We extract the 

feature sets in the form of permissions and various API calls 

which help us in detecting the malicious activities using the 

Androidmanifest.xml. 
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– Extracting Call Graph Function And Labelling: The 

function call graph for a malware apk is extracted. Each 

function call of the application is represented by a node 

.Nodes are labeled according to the API calls contained in 

their corresponding functions. A hash-value is calculated over 

the node and direct neighboring nodes for each node in the 

function call graph which is treated as a label for that node.[3] 

This neighbourhood hash function also explicitly enumerates 

the occurrences of graph substructures. 

 

– Classification Of Malware Using MCM For Accurate 

Generalization: A classification module is developed with the 

aim of accurately declaring the app as a benign or malicious 

one. It achieves this by using a set of known permissions and 

API calls which are embedded in a feature space with the goal 

of finding a representation that is equivalent to a graph kernel. 

MCM classifier algorithm[27] is then used to classify an 

application into malicious and benign one. Though it is 

difficult to transform graphs to feature vectors without loss of 

structutal information contained in the graph, MCM uses a 

graph kernel based approach to graph learning while avoiding 

the explicit representation of the graph in high dimensional 

feature space[31]. It is based on low VC dimension which 

leads to good generalization. 

 

Rest of the paper is organized as follows: Section II: Details 

the related research work. Section III: Introduces our proposed 

technique of detecting Android malware by analyzing function 

call graphs and labelling them for forming signatures. Section 

IV presents the training and analysis. Section V details the 

experiments and the test results followed by detection 

performance in section VI and finally the conclusion in section 

VII. 

II. RELATED RESEARCH WORK 

There has been a continuous increase in malware based attacks 

in the past decade leading to a significant increase in research 

on malware detection for smartphones. SCANDAL[12] 

proposed by Kim described a Static Analyzer for detecting 

privacy leaks in Android applications based on the optimized 

method of advanced permission based detection. RiskRanker 

[13] detects zero day malwares by analysing untrusted apps in 

the Android market according to potential security risks in a 

two order risk analysis framework. DroidAPIMiner[20] and 

Drebin[2] classify applications based on static analysis of 

features learned from various benign and malicious 

applications. In [37], a technique based on machine-learning 

algorithms was proposed by zarni for detection of malicious 

Android applications in Android. They suggested that the best 

representation of executables is the combination of both 

permissions and features from the Manifest file. Several 

permission features are extracted from various downloaded 

applications from Android. The research work focused on 

dynamic analysis of Android malware includes TaintDroid 

[18] and DroidScope[15] .TaintDroid by W. Enck focuses on 

taint analysis and tracks the flow of privacy sensitive data 

through third-party applications by leveraging Android’s 

virtualized execution environment. DroidScope examines 

application at different layers of the platform. Both approaches 

provide detailed information about the behavior of 

applications but they require too many resources and cannot 

be deployed on smartphones directly. In pBMDS[22] a 

behavior-based malware detection sys-tem was proposed that 

correlates users inputs with system calls related to SMS/MMS 

sending to detect anomalous activities. DroidDolphin [23] 

uses a combination of static and dynamic analysis and repack-

ages the application by inserting the monitoring code. 

However the increasing use of emulator detection technology 

in malware evades the dynamic analysis methods.  

Another model DroidAnalytics is a signature based analysis 

system to automatically collect and analyze android malware 

[25]. It uses a multi-level signature algorithm to extract the 

malware feature based on their semantic meaning at the 

opcode level[34]. It is effective in analyzing repackaged and 

metamorphic malwares. Apposcopy [4] aims at describing the 

semantics-based malware detection approach which analyses 

the program statically and defines a high level language for 

specifying signatures of the mal-wares. It takes in account for 

the Inter-Component Call Graph of a malware to analyse its 

control flow. DroidChameleon[26] evaluated commercial 

malwares for their resistance to common obfuscation 

techniques. They demonstrated that most of the android anti-

malwares were unable to detect the programs even after small 

transformation in the program. 

In [28], a technique was proposed based on static and 

semantics aware malware detection that attempts to detect 

code obfuscation by identifying semantically equivalent 

instruction sequences in the malware variants. However 

attacks using the equivalent instruction replacement and 

reordering are still possible as it requires exact matching 

between the template and application instructions. 

SmartSiren [24] proposed by Cheng is a collaborative virus 

detection and alert system that uses a statistical analysis on the 

collected data to detect abnormal communication patterns such 

as excessive daily us-age of SMS/MMS messages. The 

difficulty of manually creating and updating detection patterns 

based on static or dymanic analysis for Android has motivated 

the use of machine learning techniques[16]. Several 

techniques have been proposed that analyze applications 

automatically using machine learning methods [11]. In[19], a 

machine-learning based framework CROWDROID was 

developed that detects Trojan-like malware on Android 

smartphones. It analyzes the number of API invocations and 

system call count that has been used by an application during 

the execution of an action. However, their detection 

methodology can be easily detected by malware as it modifies 

the application under analysis. 
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In MAMA[29] manifest analysis for malware detection in 

android is explained . They evaluated the capacity of these two 

feature sets viz uses-permissions and uses-features in the 

manifest file to detect malware using machine-learning 

techniques. Machine learning algorithms has been 

considerably used for anomaly detection. [11]. Recently, 

Support Vector Machines (SVMs),a supervised learning 

algorithm based on the pioneering work of Vapnik [32] and 

Joachims [33] on statistical learning theory have been 

successfully applied in a number of classification problems. 

The emergence of mobile malware that spread via SMS/MMS 

messaging and Bluetooth is increasing at an alarming rate 

thereby requiring novel detection methods. Though Random 

Forest and Support Vector Machines(SVM) are amongst the 

most widely used machine learning techniques today for 

malware detection. The SVM[30] is used widely with several 

variants such as the maximum margin L1 norm SVM , and the 

least squares SVM (LSSVM) based on solving the quadratic 

programming problem. However, taking into account the 

limitations and resource constraints of smartphones, we 

present a machine learning based classifier system for the 

detec-tion of malware on Android devices based on minimal 

complexity machine. We integrate the call graph labelling 

approach with a new lightweight classifier for smartphones 

that accounts for unknown malware behaviors. The goal of our 

work is to develop a malware detection framework for android 

that overcomes the limitations of signature-based detection 

while addressing resource constraints of smartphones. 

III. PROPOSED METHODOLOGY 

This section describes the overall methodology. 

1. Call graph extraction : The function call graph for 

an application will be extracted, which contains information 

about the nodes and edges present. Each node will be labelled 

according to the instruction they contain and function they 

represent. It employs 2 steps: 

Step 1 Unpack the malware and disassemble using dex2jar. 

Extract API calls and permissions used for the apk using jd-gui 

as depicted in fig 1. 

Step 2 Extract the function call graph of an android application 

with the details of edges and nodes using Gephi as shown in fig 

2. 

2. Hashing of neighbourhoods and Labelling: For 

every node in a graph, there will be a set of edges. A hash 

value is generated for each node based upon the labels of nodes 

themselves as well as their neighbours. This makes it easy to 

include not just the properties of the node but also the 

occurrences of substructures traversed 

3. Count sensitive Graph Kernel. Neighbourhood hash 

values for unrelated nodes can be same leading to accidental 

hash collision and resulting in positive semi-definitiveness of 

the kernel. In order to re-solve the problem of hash collision, 

we use graph kernel based on count of common substructures. 

4. Feature space embedding. Features are embedded 

using an explicit map inspired by the count sensitive 

neighborhood hash graph kernel introduced by Hugo Gascon 

[3] Employ an explicit mapping inspired by a linear-time graph 

kernel to efficiently map call graphs to an explicit feature 

space. The map is designed such that evaluating an inner 

product in the feature space is equivalent to computing the 

respective graph kernel. 

5. Learning and feature analysis. A multiple 

complexity machine is then trained to learn a detection model 

that is able to classify applications as benign or malicious. The 

classifier which takes malicious features embedded in a graph 

kernel along with a behaviour signature database detection of 

known malwares. The model is then deployed in the handsets 

to detect the malware apks. 

In an empirical evaluation on a total of 1200 malware samples, 

this approach is shown to be highly effective, enabling a 

detection of 97% of the malware families with only 1% false 

positives. The methodology is used to detect the presence of an 

instance of a malware in an android application by considering 

its function call pattern [35] and ignoring the syntax of a code 

thus making it resilient to various obfuscation techniques.[8] It 

aims to find the presence of the malware instance by 

concentrating on two generally observed facts: 

1. Malicious functionality of an Android program is 

present only on a very small number of functions. 

2. Number of times, the function with malicious instance 

called is much higher than the normal functions. To understand 

more about every step, let us talk about each of them in detail. 

To understand more about every step, let us talk about each of 

them in detail. 

A) Call Graph Extraction and Labelling: 

We first begin by disassembling the application with the help 

of dex2jar and jd-gui [14]. In order to extract the malicious 

features[1], we analyse Androidmanifest.xml using Android 

asset packaging tool (AAPT). The extracted static features and 

dynamic features are represented as strings, which cannot be 

fed to classifier directly. For example, a malware sending 

premium SMS messages may contain the requested 

permissions “SEND_SMS", and the hardware components 

“Android.hardware.telephony" 

Feature sets are extracted from the AndroidManifest file. The 

information stored in this file can be efficiently retrieved using 

AAPT to extract the following feature sets: 

Feature Set 1: Hardware Components: If an application is 

requesting access to specific hardware components like 

camera, touchscreen, GPS module, it indicates some harmful 

behaviour leading to security breach. An attacker can collect 
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location information and send it over the network using GPS 

and network access. 

Feature Set 2: Permissions: Whenever an application is 

installed in Android, it requests the permissions which allows 

an application to access related resources. A malicious 

application can make use of these permissions to access 

resources leading to security implications. For example, most 

of the malwares like DroidKungfu, Fakeplayer, Basebridge and 

JSMHider sends premium SMS messages using SEND_SMS 

permission. 

Feature Set 3: App components: An android application 

makes use of four different components: 

Activities, services, content providers and broadcast 

receivers.[20] These components are declared in the manifest. 

A malware can make use of these components to perform the 

suspicious activity. For example, Basebridge malware activate 

three service - AdSmsService, BridgeProvider and 

PhoneService to com-municate with control server,also block 

messages to do malicious activity without user‘sends 

knowledge. 

Feature Set 4: Filtered intents: Intents provide interprocess 

and intraprocess communication allowing information about 

events to be exchanged between different components and 

applications. As malware uses these intents for malicious 

communication, it is listed in the manifest file. A typical 

example is Gin-Master which root devices to escalate 

privileges, steal confidential information and send it to a 

remote website, plus install applications without user 

interaction. 

Feature Set 5: Restricted API calls: Use of restricted API calls 

for which the required permissions have not been requested 

reveals malicious behaviour. Example includes the malware 

using root exploits such as GinMaster to bypass the limitations 

imposed by the Android platform. 

 

 

 

Fig. 1. Disassembling APK 

Feature Set 6: Used permissions: We extract the set of API 

calls used and the corresponding subset of permissions that are 

both requested and actually used. Stowaway, an automated tool 

by Felt et. al [9] determines the set of API calls used by an 

application and maps to permissions. 

Feature Set 7: Suspicious API calls: Certain API calls which 

allow access to sensitive data or resources of the smartphone 

leading to malicious activity are gathered in a separate feature 

set. Some of the examples include API calls for the following: 

– Accessing sensitive data, such as getDeviceId() and 

getSubscriberId() 

– Accessing sensitive data, such as getDeviceId() and 

getSubscriberId() 

– Network communication, execHttpRequest() and 

setWifiEnabled() 

– Sending and receiving SMS, such as sendTextMessage() 

– Execution of external commands like Runtime.exec() 

– Obfuscation, like Cipher.getInstance() 

Feature Set 8: Network addresses: Network connections are 

used to retrieve commands or filter data such as all IP 

addresses, hostnames and URLs collected from the device. 

Some of these addresses are involved in botnets and serve as a 

very important feature for the detection of a malicious 

behaviour. 
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Fig. 2. Function Call Graph for the malware 

We then obtain its function call graph with the details of edges 

and nodes.[21] To optimize our frame-work each node is 

assigned a label in the form of a short bit sequence of 8 bits. 

Mathematically, each graph can be formalized as a tuple of 

four factors namely nodes, edges, label set, and the labelling 

function. Each graph G can be represented as G = (V,E,L,l) 

where V is the finite set of nodes, and each node v2 V is 

associated with one of the applications´ functions; E: V1 ! V2 

denotes the set of directed edges, where an edge from a node 

v1 to a node v2 indicates a call from the function represented 

by v1 to the function represented by v2. Finally, L is the 

multiple set of labels in the graph and l: V!L is a labelling 

function, which assigns a label to each node by considering a 

set of features from the Feature set which represents the 

function it performs. An application is mapped to a vector 

space of malicious features by constructing a vector B(x), such 

that for each feature extracted from the application. 

We define a label function for a node as: 

L(v) = B(x1), B(x2), B(x3), B(x4),…………. B(xn)   (1) 

n=number of features from the set of Feature Set  

described above. (1) 

       

     𝐵(𝑥) =  {
1 , 𝑥 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡
0, 𝑥 ∉ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡

                       (2) 

Where xi denotes the presence or absence of that feature set in 

a node. Thus we formulate a boolean expression that capture 

the functionality of a malware using the feature sets described 

above and the dependencies between features. We illustrate 

this with an example of a malicious application which sends 

premium SMS messages using permissions and hardware 

components. A corresponding vector repre-sentation for this 

application looks like this: 

 

𝜙(𝑥) =   

(

 
 
 
 
 
 

0
0
1
..
.
1
0
1)

 
 
 
 
 
 

 

            (3) 

 

B) Hashing of Neighbourhoods 

A malware performs a list of activities in the course of its 

lifecycle that may appear to be harmless when analyzed in 

isolation. So a malware cannot be detected by the activity of a 

standalone function. Thus we strive to incorporate composition 

of a function that not only includes the label of node itself but 

also includes labels of neighbouring nodes. We compute a 

neighbourhood hash over all of its direct neighbours in the call 

graph. We use a procedure inspired by the neighbourhood hash 

graph kernel (NHGK) originally proposed by Hido and 

Kashima.[36] The NHGK is a so called decomposition kernel 

as defined by Haussler [39] because it is a kernel operating 

over a large set of sub graphs. Its complexity is fairly low and 

expresses the graph in a very readily readable form. Moreover, 

it is able to run in linear time in the number of nodes. 

The main ideology behind the NHGK is to package the 

information of all the neighbouring nodes and then further 

incorporating that value with label’s original node to form a 

new hash. The algorithm used to calculate hash for a node is 

given by 

ℎ(𝑣) = 𝑟(𝑙(𝑣))∏{ ∏ 𝑙(𝑧)

𝑍∈𝑉𝑣

 } 

 

Thus h(v) will provide us with a new hash or a new label for a 

node which is a function of G = (V; E; L; h(:)) where h(.) is a 

hash function which assigns the label L to each node by 

considering the function associated with it. The neighbourhood 

hash of order p can then be defined recursively as G
p+1

= h(G
p
). 

Choosing p larger than one still allows to construct a valid 

decomposition kernel [3]. Since incorporating path length of 

more than one, there is a risk of overlapping substructures and 

thus the values of bits observed might lead to wrong results. 

Therefore taking values of hash over the path in call graph of 

length of only 1 is a better option than taking it over iterative 

sequence of functions in the call graph. 
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Fig. 3. Algorithm for NHGK 

 

 

 
 

Fig. 4. An example of simple neighborhood hash. (a) A node v having 
two neighbours. (b) The procedure to compute the neighborhood hash 
for node v using XOR and ROT 

 

C) Graph Kernel 

 

The previous section covered how to construct a function call 

graph from a given application and use a labeling function for 

the vertices to represent a functionality in the subgraphs 

through the use of neighbourhood hash. The next step is to find 

the similarity between the graph G(1)representing the malware 

and graph G(h) and of the application. So the malware 

detection problem transforms to a graph classification problem. 

The graph classification problem is linked to the graph 

similarity problem are computationally very hard. Traditional 

techniques for finding the graph similarity such as the Graph 

Edit Distance which measures the number of basic operations 

needed to transform one graph into another are NP-

complete[6]. Kernel-based Support Vector Machines[31] have 

been proven extremely powerful for classification tasks and 

Graph Kernels have emerged as a solution to let the SVM 

operate efficiently in the graph space. Graph kernels measure 

the similarity between two graphs without an explicit 

construction of the feature vectors. In order to use the current 

machine learning techniques used to classify graphs G(h) and 

G(1), we make use of the graph kernel. The aim is to find the 

number of common subgraphs related to the features, we need 

to classify the samples as a function of their shared common 

substructures. In order to calculate the degree of similarity 

between the graphs, the NHGK evaluates the count of common 

identical substructures in two graphs, which after hashing gives 

the number of shared node labels. Since multiple nodes can 

have same label or hash, kernel value can be represented as the 

size of the intersection of the multisets Lh and L1 for two 

function call graphs Gh and G1 which can be defined as a 

function. 

 

                               𝐾𝑝(𝐺ℎ, 𝐺1) =  |𝐿ℎ ∩ 𝐿1|                  (4) 

 

To classify the program as malicious and benign, we can 

calculate the above function to find the similarities amongst 

different set of graphs. 

 

 
Fig. 5. Graph Kernel 

 

 

D) Feature Space Embedding 

 

We then input the features in terms of the neighbourhood hash 

obtained for the nodes to make use of classifier to detect the 

application as malicious or benign. We embed every kernel K 

in the feature space whose inner product is equivalent to the 

graph kernel. The neighborhood hash graph kernel as 

represented in Fig 5, evaluates the count of common identical 

substructures in two graphs. Now we create an explicit 

representation for the kernel represented by histogram H which 

is fed to the classifier. In order to understand the decision of the 

classifier malicious and benign, we map the histogram H of 

labels represented in binary form in a graph to a vector in the 

following way, where M is the maximum value for all the 

histograms in the dataset and a is the value of each bin in H. 

We first sort the labels and formulate a histrogram H for 

multiset Lh as H(Lh) which is of the form (a1, a2, a3, a4,…… ap) 

where ai  𝜖 to the set of natural numbers and denotes the 

frequency of ith hash in G and p is the number of elements in 

Li. Thus the number of shared nodes will be equal the the 

minimum of ai amongst the two graphs denoted by the 

function. 

 

                         𝑆(𝐻1, 𝐻ℎ) =   ∑ 𝑚𝑖𝑛(𝑎ℎ
𝑖 , 𝑎𝑖

ℎ)
𝑝
𝑖                       (5)                          
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Fig. 6. Histogram for the frequency of the labels a1, a2 to ap in Graph 

(Gh and G1) 

 

This provides an easy way to denote the intersection between 

the two multisets. This is known as multiset intersection. This 

can be easily observed that function Kp(Gh; G1) is similar to the 

function S(H1; Hh). We further use a histogram function (H) for 

feature mapping in such a way that S is an inner product in the 

induced vector space initially proposed by Barla. For the 

purpose, each histogram is mapped to a P-dimensional vector 

(H) (Eqn 7). Each bin i of the histogram is associated with M 

dimensions in the vector space. 

 

∅(𝐻) =  (1, . . . ,1,⏞    
𝑎1

0, . . . ,0⏞    
𝑀−𝑎1

⏟        …
𝑏𝑖𝑛1

, 1, … ,1,⏞    
𝑎𝑁

0, . . . ,0⏞    
𝑀−𝑎𝑃

⏟        
𝑏𝑖𝑛𝑃

) 

 

Where M is the maximum value amongst all the histogram bins 

and P is the number of bins present in the data set. Thus the 

number of elements in the vector space is PM. 

 

Suppose the frequency of the given label is ai. These 

dimensions are marked as 1 for ai number of terms and 0 for 

the rest M - ai terms left. Thus the whole graph is represented 

in a vector space in the form of 0‘s and 1‘s which makes it very 

easy to analyse and also to recognize the pattern as for each 

bin, the sum of elements will be its frequency or height of the 

histogram. Thus the 𝜙(H) function represents the similar graph. 

Comparing the two graph on the basis of the function 𝜙(H) 

will be even more comfortable as shown in Fig 6. Thus the 

neighbourhood hash graph kernel can be represented as 

 

𝐾𝑝(𝐺ℎ, 𝐺1) = 𝑆(𝐻ℎ , 𝐻1) =  〈𝜙(𝐻ℎ), 𝜙(𝐻1)〉 

 

One important advantage to represent the program in the form 

of (Hh; H1) provides us a way to analyse using MCM. It 

provides a method to handle programs with thousands of edges 

and nodes. 

IV. TRAINING AND FEATURE ANALYSIS 

While Support Vector Machine produces state of the art classi- 

-fier, VC dimension of a SVM can be unbounded. The VC 

dimension measures the complexity of a learning machine, and 

a low VC dimension leads to good generalization. So we make 

use of Minimal Complexity Machine proposed by Jaydeva [27] 

to learn a hyperplane classifier by minimizing an exact, or 

bound on its VC dimension. It considers each data point as a 

vector in space and uses the principles of regressions to 

categorize them into two. There exists a hyperplane that can 

classify these points with zero error.[27] To serve our 

objective, we implement the methods of Graph Kernels, which 

is a powerful machine learning framework to provide inner-

product in a graph, and also find similarities amongst the 

various graphical structures. Addition of machine learning 

classifier will add self-efficacy to this system making it, self-

reliant. Graph kernel will provide a platform for our classifier 

to work in a graphical space and MCM can be used to classify 

the program as malicious and benign on the basis of results 

obtained. 

V. EXPERIMENTS, DATA SETS AND RESULTS 

For all experiments, we consider a dataset of real Android 
applications [5] and real malware acquired from the Google 
Play Store, contagiominidump[43], virus total and various 
other sources, such as An-droid websites, malware forums , 
security blogs and Android Malware Genome Project[44]. We 
use Virus Total[41] to determine malicious and benign 
applications. We ensure that the applications are accurately 
split into benign and malicious samples by flagging the 
application as malicious even if one of the ten scanners falsely 
labels a benign application as malicious. We have used 20 
malware families in our dataset as listed in the Table 1. 

 

Table 1 

List of Malware Samples and their Detection accuracy 

VI. DETECTION PERFORMANCE 

MDROID is able to reliably detect all families with an average 
accuracy of 97% and a false-positive rate of 1%. In particular, 
all families show a detection rate of more than 90%. Its 
detection rate depends on the number of samples taken for 
training the detection model. We have trained our model on the 
samples taken from a set of known malware families listed in 
the table above. The features extracted from the set of known 
malware families are examined and the feaures with the highest 
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contribution to the classification decision are averaged over all 
members of known families and then used for the detection of 
the unknown malware. The kernel trick of MCM allows the 
data instances to be projected into a higher dimensional space 
and find a hyperplane in that space which is same as a non-
linear hyperplane in the original d-dimensional space. Our 
results show a significant improvement over other existing 
machine learning methods. The results of the experiments are 
shown in Fig 7. 

 

Fig. 7. Detection Accuracy of Malware Families 

VII. CONCLUSION 

Security attacks on smart phones are become smarter and 

devastating as more people are switching to smart phones for 

their serious applications. With an exponential growth in 

unknown malware, there is a need to establish malware 

detection methods that are both robust and efficient. As the 

vast majority of mobile malware targets the Android platform, 

this work focuses on structural detection of Android malware. 

However, the method presented can be adapted to other 

platforms with minor changes in the feature sets extracted. 

Our method employs static analysis approach for extracting 

the feature set and an explicit feature map using a labelling 

function inspired by the neighbourhood hash graph kernel to 

represent malicious applications based on their function call 

graphs. We have presented a machine learning approach based 

on hyper plane classifier MCM, especially suitable for 

resource constrained devices such as smartphones. We have 

conducted experiments on various malware datasets and 

shown that the trained classifier outperforms classical SVM in 

terms of generalization accuracies on selected datasets. Future 

work would investigate the classifier performance with larger 

sample sets as more malware samples are discovered in the 

wild. Further studies would also investigate performance 

improvement via prior incorporation of expert knowledge for 

feature selection. 
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