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Abstract-Robust regression play vital role in many fields 

specially image processing. Corner detection is the one of the 

important role in image process. Much corner detection is to 

develop day to day; such corner detection is based on robust 

regression. SAmple Consensus (SAC) has been popular in 

regression problems with samples contaminated with 

outliers. It has been a milestone of many researches on 
robust estimators, but there are a few survey and 

performance analysis on them. According to SAC family to 

analyze the performance evaluation based on being accurate 

inliers (Maximum), being fast, and being robust. 

Performance evaluation performed online fitting with various 

data distributions. These papers analyze the performance of a 

more SAC family and also find a unique robust regression on 

the maximum number of inliers. Total Least Square (TLS) 

model fitting estimation was utilized the present performance 

in real data. 

Keywords: RANSAC, fitting, robust regression, 

Regression.  

I. INTRODUCTION 

Robust regression is to develop day to day in computer vision 

and other related regression field. The theory of robust 

regression deals with deviations from the assumptions of the 
model and is concerned with the construction of regression 

procedures which are still reliable and reasonably efficient in 

a neighborhood of the model; see the books by Huber (1981), 

Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Maronna, 

Martin, and Yohai (2006), and Dell’Aquila and Ronchetti 

(2006) for an overview. Robust regression are now some 40 

years old. Indeed, one can consider Tukey (1960), Huber 

(1964), and Hampel (1968) the fundamental papers which 

laid the foundations of modern robust regression.  

 

Robust regression control Type I error and also maintain 
adequate regression power. In contrast, claims that classic 

parametric tests are robust usually only consider a Type I 

error, not power. An overview of the robustness argument 

can be found in Sawilowsky (1990). The origin of the 

robustness argument can be traced back to several key 

articles and books, including Boneau (1960); Box (1953); 

Lindquist (1953); and Glass, Peckham, and Sanders (1972). 

Countless studies have shown that even when classic 

parametric tests are robust to Type I errors, they are usually 

considerably less powerful than their modern robust 

counterparts [2]. The RANSAC families formulate regression 

with outliers as a minimization problem. This formulation is 

similar with least square method, which minimize sum of 
squared error values. Robust fitting algorithms are mostly 

based on sampling strategies, hypotheses are generated and 

their support is measured in the point cloud. Examples for 

this strategy are the least-median-of squares (LMS) [3].  

The problem of estimation in the presence of high 

percentages of outliers. This type of problem occurs in all 

stages of automatic calibration, orientation and surface 

reconstruction, as automatic image matching procedures are 

error prone. Regression and probability theory are 

indispensable for handling uncertainty and estimating 

parameters under these conditions. There exits powerful 

robust estimation techniques. However, no unique techniques 
exists which is applicable in all situations [4]. 

The paper gives the demonstration on the ability 

(performance) of RANSAC family to correctly estimate 

parameters, mean and number of inliers to be taken. Even 

most of the robust regression method the percentage of 

outliers is far beyond 50% and the outliers hide the true 

solution. As an example we take the classical problem of 

straight line fitting. Experiments have been made with 

MATLAN a development package. Section 2 details the 

introduction of RANSAC families. Section 3 presents the 

performance of RANSAC families with comparisons and the 
paper is concluded in section 4. 

 

II. ROBUST REGRESSION 

 

Outliers are sample values that cause surprise in relation to 

the majority of the sample. 

outliers may be correct, but they should always be checked 

for transcription errors. They can play havoc with standard 

regression methods, and many robust and resistant methods 

have been developed since 1960 to be less sensitive to 

outliers. In computer vision widely using robust estimator 

specially RANSAC families.  The following chart is to be 
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indicating that the unique model robust regression performed 

of RANSAC family.  

A. RAndom SAmple Consensus (RANSAC)    
One of the most Robust attractive techniques is 

Random Sample Consensus (RANSAC) [5]. It randomly 

chooses a minimal se of observations and evaluates their 

likelihood until a good solution is found or a preset number 

of trials is reached. RANSAC is a technique which is best 
suited for estimated problems with a small number of 

parameters and a large percentage of outliers. It has regularly 

been applied matching, detection and registration. 

The idea of the RANSAC algorithm is to repeatedly select a 

random subset S of the data, to determine a solution p=F(S) 

and evaluate it with other data. RANSAC uses three 

parameters: 

1. The number n of trials,  

2. The threshold k for determining where a data point agrees 

with model in [6], and possibly. 

3. The threshold t for the required number of inliers. 

The number of iterations, n, is chosen high e3nough to ensure 
that the probability p (usually set to 0.99) that at least one of 

the sets of random samples does not include an outlier. Let u 

represent the probability that any selected data point is an 

inlier and v= 1-u the probability of observing an outlier. N 

iterations of the minimum number of points denoted m are 

required, where  

p= 1-(1-(1-u)m) n    and   nmin(Pmin, u ,n)= 
           

            
. 

B. Recursive RANSAC (RRANSAC) 
The ransom sample consensus (RANSAC) algorithm is 

frequently used in computer vision to estimate the parameters 

of a signal in the presence of noisy and even spurious 

observations call gross errors. Instead of just one signal, we 

desire to estimate the parameters of multiple signals, where at 

each time step a set of observations of generated from the 

underlying signals and gross errors are received. RRANSAC 

develop the recursive RANSAC (RRANSAC) algorithm to 

solve the inherent data association problem and recursively 

estimate the parameters of multiple signals without prior 

knowledge of the number of true signals. The performance of 
RRANSAC with several existing algorithms, and also 

demonstrate the capabilities of RRANSAC in an aerial 

geolocation problem [7].  The general form of RRANSAC is 

denoted by   ri [t]= 
 

 
                    

C. N Adjacent Points SAmple Consensus (NAPSAC) 

The most effective algorithms for model parameterization in 

the presence of high noise, such as RANSAC, MINPRAN 

and Least Median Squares, use random sampling of data 

points to instantiate model hypotheses. However, their 

performance degrades in higher dimensionality due to the 

exponentially decreasing probability of sampling a set of 

inliers. It is suggested that biasing this random selection 

towards clusters in multi-dimensional space may be 

preferable. Based on this premise, the NAPSAC (N Adjacent 
Points Sample Consensus) algorithm is derived and its 

performance in high dimensionality is shown to be superior 

to RANSAC on a hyper plane fitting problem [8].  

D. M-estimator SAmple Consensus (MSAC) 

MASAC has two goals. The first is to develop a variety of 

robust methods for the computation of the Fundamental 

Matrix, the calibration-free representation of camera motion. 

The methods are drawn from the principal categories of 

robust estimators, viz. case deletion diagnostics, M-

estimators and random sampling, and the paper develops the 

theory required to apply them to non-linear orthogonal 

regression problems. Although a considerable amount of 
interest has focused on the application of robust estimation in 

computer vision, the relative merits of the many individual 

methods are unknown, leaving the potential practitioner to 

guess at their value. The second goal is therefore to compare 

and judge the methods. Comparative tests are carried out 

using correspondences generated both synthetically in a 

regression controlled fashion and from feature matching in 

real imagery. In contrast with previously reported methods 

the goodness of fit to the synthetic observations is judged not 

in terms of the fit to the observations per se but in terms of fit 

to the ground truth. A variety of error measures are 

examined. The experiments allow a regression satisfying and 
quasi-optimal method to be synthesized, which is shown to 

be stable with up to 50 percent outlier contamination, and 

may still be used if there are more than 50 percent outliers. 

Performance bounds are established for the method, and a 

variety of robust methods to estimate the standard deviation 

of the error and covariance matrix of the parameters are 

examined. The results of the comparison have broad 

applicability to vision algorithms where the input data are 

corrupted not only by noise but also by gross outliers [9].  

E. Locally Optimized RANSAC (LORANSAC) 
A new enhancement of RANSAC, the locally optimized 
RANSAC (LO-RANSAC). It has been observed that, to find 

an optimal solution (with a given probability), the number of 

samples drawn in RANSAC is significantly higher than 

predicted from the mathematical model. This is due to the 

incorrect assumption, that a model with parameters computed 

from an outlier free sample is consistent with all inliers. The 

assumption rarely holds in practice. The locally optimized 

RANSAC makes no new assumptions about the data, on the 

contrary it makes the above-mentioned assumption valid by 

applying local optimization to the solution estimated from the 

random sample. The performance of the improved RANSAC 

is evaluated in a number of epipolar geometry and 
homographic estimation experiments. Compared with 

standard RANSAC, the speed-up achieved is two to three 

fold and the quality of the solution (measured by the number 

of inliers) is increased by 10-20%. The number of samples 

drawn is in good agreement with theoretical predictions [10]. 

F. Maximum Likelihood Sample Consensus 

(MLESAC) 

  LORANSAC estimating multiple view relations from point 

correspondences. The method comprises two parts. The first 

is a new robust estimator MLESAC which is a generalization 

of the RANSAC estimator. It adopts the same sampling 
strategy as RANSAC to generate putative solutions, but 

chooses the solution that maximizes the likelihood rather than 

just the number of inliers. The second part of the algorithm is 

a general purpose method for automatically parameterizing 

these relations, using the output of MLESAC. A difficulty 
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with multi view image relations is that there are often 

nonlinear constraints between the parameters, making 

optimization a difficult task. The parameterization method 

overcomes the difficulty of nonlinear constraints and 

conducts a constrained optimization. The method is general 

and its use is illustrated for the estimation of fundamental 

matrices, image–image holographies, and quadratic 

transformations. Results are given for both synthetic and real 
images. It is demonstrated that the method gives results equal 

or superior to those of previous approaches [11]. This method 

is dubbed MLESAC (maximum likelihood consensus). For 

real systems it is sometimes helpful to put a prior on Ê, the 

expected proportion of inliers. 

G. Z–HangSAC 

Zhang et al. (1997) proposed a sample consensus estimator, 

namely ZhangSAC and it is a novel technique for effectively 

calibrating a binocular stereo rig using the information from 

both scenes and classical calibration objects. The calibration 

provided by the classical methods is only valid for the space 

near the position of the calibration object. This technique 
tries to make the best use of the rigidity of the geometry 

between two cameras. The idea is to first estimate precisely 

the epipolar geometry which is valid for a wide range in 

space form all available matches, extracted from both the 

environment and the calibration objects. This allows us to 

conduct projective reconstruction. Using the prior knowledge 

of the calibration object and finally able to calibrate the 

stereo rig in a Euclidean space. The camera calibration 

method employs abstract concepts like the image of the 

absolute conic and circular points. It is restricted on 

homographic, research in computer vision, signal processing, 
multimedia computing and human machine. 

H. PROSAC 

Chum and Matas (2005) was developed a robust matching 

method PROgressive SAmple Consensus (PROSAC), it has 

exploits the linear ordering defined on the set of 

correspondences by a similarity function used in establishing 

tentative correspondences. Unlike RANSAC, which treats all 

correspondence equally and draws random samples 

uniformly from the full set, PROSAC samples are drawn 

from progressively larger sets of top-ranked correspondences.  

 

The structure of the PROSAC algorithm is similar to 
RANSAC. First, hypotheses are generated by random 

sampling. The samples, unlike in RANSAC, are not drawn 

from all data, but from a subset of the data with the highest 

quality. In fact, PROSAC is designed to draw the same 

samples as RANSAC, only in a different order. The tth 

sample in PROSAC and it is denoted by  

             
 
        (1) 

where g(t) is a growth function defined as g(t) = min{n} and 

  
  is a set containing m-1 points drawn at random from the 

set U g(t)−1. In practice, the PROSAC approach often achieves 

significant computational savings, since good hypotheses are 

generated early on in the sampling process. Two important 

points must be noted. First, though PROSAC often succeeds 
in dramatically reducing the number of hypotheses required, 

this is data-dependent, and also hinges on the availability of a 

reasonable similarity function to rank correspondences. 

Secondly, it is observe that in many cases, correspondences 

with high similarity scores often lie on the same spatial 

structure and are potentially in a degenerate configuration. 

I. AMLESAC 
 Anton et al. (2005) introduced A Maximum 

Likelihood Estimator SAmple Consensus (AMLESAC) 

robust estimator, which is a noise adaptive variant of the 

renowned MLESAC estimator. It adopts the same sampling 
strategy and seeks the solution to maximize the likelihood 

rather than some heuristic measure, but unlike MLESAC, it 

simultaneously estimates the outlier share   and inliers noise 

level  . The effective optimization for computation speed-up 

is also introduced. The proposed algorithm searches for the 

parameter vector   with highest likelihood on input data x 

with assumption that input data is a mixture of inliers 

measured with error that obey the Gaussian distribution and 

uniform distributed outliers. 

J. GASAC 
Volker and Olaf (2006) proposed Genetic Algorithm 

SAmpling Consensus (GASAC), and it is a robust estimator 

based on an evolutionary optimization technique. GASAC is 

based on genetic algorithm, whose procedure is quite 

different from RANSAC. It manages a subset of data as a 

gene, which can generate a hypothesis. Each gene receives 

penalty by loss of its generated hypothesis. The penalty 

causes less opportunity in evolving the new gene pool from 

the current genes. A population G consists of several 

individuals, who are characterized by an individual 

chromosome. Such chromosome g corresponds to a duple of 
m elements, which are called genes. The representation of the 

existing problem by a chromosome is trivial, if for n 

homologous points Xi the index i is directly defined as gene  

gk           for k= 1,2,….m     (2) 

where a gene may occur only once within the chromosome. 

The fitness of a chromosome decides on its ability to prevail 

within the gene pool. The computation requires a linear 

method for the appropriate projective transformation with 

minimal parameters algorithm for the epipolar and 6-point-

algorthim for the trifocal geometry. Then, the geometrical 

image error is determined for all points and a robust cost 
function is used to measure the fitness.  

 

K. U-MLESAC 

Choi and Kim (2008) proposed user independent parameter 

estimator, U-MLESAC, which is based on MLESAC. It is 

executed by four steps sampling data, estimating parameters, 

estimating variables of the error model, and evaluating the 

parameters according to ML criterion. In contrast MLESAC, 

U-MLESAC estimates variance of the error model. It also 

calculates the proper number of iteration according to its 

terminal criterion. Its terminal criterion is to guarantee that 

two events happen simultaneously all sampled data belong to 
inliers and have small noise enough to satisfy error tolerance. 

The number of iteration can be derived from probabilities of 

each event. Accuracy and running time can be adjusted by 

two conditions, failure rate and error tolerance.  

 

U-MLESAC calculates the necessary number of iteration 

using two conditions, (i) Sampled data are all inliers (ii) they 
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are within desired error tolerance   .The error function is 

Gauss error function which is used to calculate a value of 

Gaussian cumulative distribution function. Coefficient k has 

physical meaning which is probability that sampled data 

belong to the error bound  . U-MLESAC can control trade-

off between accuracy and running time using two variables 

  and  . 

L. GroupSAC 
Ni et al. (2009) introduced Group SAmple Consensus 

(GroupSAC). It is a novel variant of the RANSAC algorithm 

called GroupSAC. It is much more efficient, in particular 

when dealing with problems with low inliers ratios. This 

algorithm assumes that there exists some grouping in the 

data, based on a new binomial mixture model rather than the 

simple binomial model as used in RANSAC. Group SAC 

draw samples from increasing number of groups but is still 

able to achieve the same random sampling as in standard 

RANSAC, i.e., each minimum sample set has the same 
chance being sampled, when the computation budget is 

exhausted.  

 

More specifically, Group SAC goes through all possible 

configurations in the order of their cardinalities. Let k be the 

total number of groups among all the data points, and all the 

configurations can be divided into R = min (m, K) subsets 

{Ck}, k=1,…,R, such that  

Ck={Gn / |Gn|=k}    (3) 

Group SAC starts sampling from C1 until it finally reaches 

CR. For each subset Ck, Group SAC goes through each 
configuration Gu by drawing minimum sample sets from it. 

By the end of the Rth stage, all the configurations will have 

had their opportunity to be selected. The Group SAC 

algorithm can be slighted modified to integrate the additional 

ordering based on the group sizes.  

M. LO-MLESAC 

Tian et al. (2009) introduced enhancement of MLESAC, the 

Locally Optimized MLESAC (LO-MLESAC). The LO-

MLESAC adopts the same sample strategy and likelihood 

theory as the previous approach and an additional 

generalization model optimization step is applied to the 
models with the best quality. 

 

The MLESAC, the probability density is also used for the 

classify inliers and outliers and it is satisfies the inequality as 

follows, 

  
 

     
     

   

   
        

 

 
                       (4) 

The idle number of outer iterations depends on 

algorithms confidence level p(.) and the inliers ratio γ: 

     
            

          
                             (5) 

The LO-MLESAC algorithm can be summarized as follows. 

N. BetaSAC 

Antoine et al. (2010) established Beta SAmple Consensus 

(BetaSAC) and it is a strategy for RANSAC sampling with 

reference to the beta distribution. In the context of sample 

selection, this method builds a hypothesis set incrementally, 
selecting data points conditional on the previous data selected 

for the set. Such a sampling is shown to provide more 

suitable samples in terms of inliers ratio but also of 

consistency and potential to lead to accurate parameters 

estimation. 

 

BetaSAC differs essentially by the selection random variable 

X(t; s). In standard RANSAC, the selection is uniform even 

for t ≤ TN. In PROSAC, d(k) stands for the kth data point in a 

sorting. This sorting is performed once and for all, based on 
an inliers prior associated to each data point. g(t) is a growth 

function which limits a uniform selection in a progressively 

larger set of top ranked data points. Group SAC makes a 

uniform selection in a configuration defined as a union of 

predefined data groups  

G(t) = {Gi}, i=1…k.     (6)                                             

 

BetaSAC is characterized by its random variable 

XBetaSAC(t; s) , where s is the partial minimal hypothesis 

set, being built at iteration t. XBetaSAC(t; s) is the result of 

the selection of the kth data point in a sorting depending on s, 

where k is a value in {1,…,N} drawn by the random variable 
Bil(t)/n. The use of BetaSAC requires the definition of a 

scoring function q. It tries two different functions. The first, 

qmatching(d) is simply the matching score of the 

correspondence d. The second scoring function is qaffine(d,s).  

This is the function used in PROSAC framework is defined 

as 

               
                      

                        
        (7) 

O. INAPSAC 

Muthukrishnan and Radha (2012) proposed Improved N 

Adjacent Point of Sample Consensus (INAPSAC) it is an 

improvement of NAPSAC with higher dimension. Especially 

the inliers identification scheme is based on proximity in 3 

dimension spheres. If the initial point, X0, lies on the 

manifold, then the rest of the points sampled adjacently will 

theoretically have a significantly higher probability of being 

inliers. If there are not enough points within the hyper sphere 

to estimate the manifold, then that sample is considered a 

failure. 

P. AMSAC 

Wang et al. (2013) proposed an Adaptive M-estimator 

Sample Consensus (AMSAC). Based on AIKOSE, developed 

a novel robust estimator called AMSAC. It can adaptively 

compute the inliers scale without requiring a manually tuned 

threshold. The cost function of AMSAC is written as follows, 





n

I

iAMSAC r
1

2)(    (8) 



 


otherwieseS

Srr
r

,ˆ5.2

ˆ5.2,
)(

22
2

 (9) 

where    is obtained by Adaptive Iterative Kth Ordered Scale 

Estimator (AIKOSE). Thus the AMSAC estimator can be 
written as follows, 

           
   
 
 AMSAC   (10) 

Q. ANTSAC 

Sebastian et al. (2014) introduced a generic RANSAC variant 

using principle of Ant Colony Algorithms (ANTSAC). This 
algorithm is present a new variant of the well-known 
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RANdom SAmple Consensus (RANSAC) algorithm for 

robust estimation of model parameters. The idea of this 

method is based on a kind of volatile memory which is 

similar to the pheromone evaporation in the ant colony 

optimization algorithm. Therefore, it is called improved 

RANSAC like algorithm ANTSAC. ANTSAC is 

computationally efficient and convincingly easy to 

implement. It turns out that ANTSAC significantly 
outperforms RANSAC regarding the number of inliers after a 

given number of iterations. The advantage of ANTSAC 

increases with the complexity of the problem, i.e., with the 

number of model parameters, as well as with the relative 

number of outliers. ANTSAC is entirely generic, such that no 

further domain knowledge is required, as it is for many other 

RANSAC extensions. Nevertheless, it shows that it is 

competitive to state of- the-art methods even in domain 

specific scenarios. 

 

As the probability of finding M using the RANSAC 

algorithm raises with the number of iterations, the Tangential 
Inliers Probation (TIP) becomes more obvious, but is already 

noticeable after just a few iterations. To exploit this 

information during the iterative process need an appropriate 

memory to store the TIP information for each sample. 

Additionally, it is also have to modify the selection process in 

such a way that the TIP is respected profitably. In this 

approach both requirements are solved through techniques 

based on the Ant Colony Optimization (ACO) algorithm. 

The pheromone level for each sample can be expressed as the 

probability 

         
    

            

     (11) 

Combining a pheromone memory and probabilistic picking, 

the ANTSAC algorithm no longer is a pure Monte Carlo 

method like classic RANSAC, but rather a meta-heuristic 

search strategy, where the TIP gives some kind of search 

direction. 

 

R. SSAC  
Muthukrishnan and Ravi (2016) discovered S- estimator 

Sample Consensus (SSAC) it is based on residual scale of M 

estimation. M estimation is not a function of the overall data 

because it uses the median as the weights, and it uses S-

estimator based residual standard deviation instead of 
median. According to Salibian and Yohai (2006), the S-

estimator is defined by,   ̂    = min β      (e1,e2,...,en) with 

determining minimum robust scale estimator    . 

The matrix can be written as  

                                   
                                             (12) 

where    is a  n x n matrix with its diagonal elements are the 

iteratively reweighted. Equation (5.12) is known as iteratively 

reweighted least squares (IRLS) equation. Solution for this 

equation gives an estimator for ̂ . This is given by 

           ̂ =         
                (2.13) 

The computational algorithm of SSAC, which is used in the 

place of sample selection, is as follows: 

S. LO-SSAC 

Muthukrishnan and Ravi established (2016) locally optimized 

SSAC (LO-SSAC) it likes LO-RANSAC, LO-MLESAC, an 

enhancement of SSAC. The mathematical aspects of SSAC 

procedure is described in [12]. To speed up the process of 

detecting the maximum of number of inliers, the LO-SSAC is 

proposed. The IRLS (Iterative Re-weighted Least Square) 

function, 

       =  
    

  

 
 
 

 
 

             

                                             

              (14)                                          

where   = 
  

  
 and c= 1.547. 

The average number of best sample is  

 
 

 
  

 

 
           

 

 
 
  (15) 

It is finite and upper bound as the number of correspondences 

is discrete. This theoretical bound was confirmed 

experimentally, the average number of local optimizations 

over and execution of SSAC. 

T. RD-RANSAC 

 Ravi (2017) proposed a method for detection of 

outliers which a Robust Distance to be used RANSAC (RD-

RANSAC). A novel idea on hot to make RANSAC 

repeatable is presented, which will find the optimum set in 
nearly run for multi-model. Robust methods are capable of 

discriminating correspondence outliers, thus, obtaining better 

results. Our proposed method is an improvement of 

RANSAC which takes into account additional information of 

the quality of the matches to largely reduce the computational 

cost of the pair wise distance estimation by Rousseeuw’s 

Minimum Covariance Determinant (MCD). However, even 

in quite large samples, the chi-square approximation to the 

distance of the sample data from the MCD centre with 

respect to the MCD shape is poor. RANSAC can only 

estimate one model for a particularly data set. The two or 
more model exists; RANSAC may fail to find either one. The 

problem is hard as the number of outlier is usually large, 

possibly larger than 50%, thus powerful estimation 

techniques are need. Experiments with up to 80% outlier 

prove the efficiency of RANSAC. RANSAC is not always 

able to find the optimum set even for moderately 

contaminated sets and it usually performs badly when the 

number of inliers is less. However this work proposes a new 

robust method for pair wise distance estimation to combine 

the benefits of RANSAC algorithm, namely improved 

quality, reduced computational time and less parameter to 

adjust and powerful estimation techniques up to more than 
80% outlier prove the efficiency. 

 

III. EXPERIMENTAL RESULTS 

To developed simulation software to investigate it is 

based on SSAC, LO-SSAC and RD-RANSAC. The user 

specifies the number of points, the percentage of outliers, the 

straight line and the measuring precision used for generating 

the inlier data using TLS model. In addition, the user 

specifies the required minimum probability for success and 

the expected error rate, independently of the generation in 

order to investigate the effect of erroneous assumptions In 
this section presents the simulation study with result to 

compare the performance of RD-RANSAC, SSAC, LO-
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SSAC , RANSAC and other RANSAC families. This 

simulation study is carried out for the different number of 

threshold such as 2 and for various samples sizes, n=100, 

n=500 and n=1000 with error (   5%, 10% and 20%. The 

data is generated using TLS tools. The number of inliers are 

estimated using various RANSAC techniques, the results are 

summarized in the below table 
 

Table 3.1 Inliers Identification under various RANSAC 

family procedures 

 
Methods 

 =0.05  =0.1  =0.2 

Sample size (n) Sample size (n) Sample size (n) 

1
0
0
 

5
0
0
 

1
0
0

0
 

1
0
0
 

5
0
0
 

1
0
0

0
 

1
0
0
 

5
0
0
 

1
0
0

0
 

TLS 95 475 950 90 450 850 80 400 800 

LMeDs 94 463 940 88 438 847 78 395 759 

RANSAC 94 463 940 88 438 847 78 395 759 

ZhangSAC 93 460 926 86 437 841 74 390 745 

MLESAC 92 460 931 87 432 843 75 395 755 

NAPSAC 93 462 927 87 432 841 76 366 751 

R RANSAC-T 91 453 931 85 421 840 71 381 740 

R RANSAC-S 91 453 931 85 421 840 71 381 740 

FH-MAPSAC 90 452 931 84 427 839 74 385 752 

LORANSAC 92 462 932 81 417 841 70 386 753 

PROSAC 90 452 932 82 426 834 71 380 758 

AMLESAC 91 441 930 81 415 836 72 388 756 

GASAC 90 452 931 84 427 839 74 385 752 

U-MLESAC 91 459 922 84 429 840 71 384 756 

GroupSAC 92 460 911 81 430 841 70 380 758 

Lo-MLESAC 91 467 930 85 427 838 69 388 744 

BetaSAC 90 466 920 83 424 833 73 378 756 

INAPSAC 93 463 928 87 433 842 78 386 752 

AMSAC 92 471 934 80 431 840 74 382 748 

ANTSAC 91 472 933 82 424 837 77 387 759 

SSAC 94 467 942 89 440 848 80 397 763 

LO-SSAC 94 466 942 89 441 848 80 397 764 

MAPSAC 91 472 933 82 424 837 77 387 759 

RD-RANSAC 94 467 942 89 441 848 80 397 764 

 

It is observed from the table, error tolerance and the numbers 

of inliers are conflicting to each other, if error tolerance 
increases the number of inliers decreases. Further, it is noted 

that the TLS, RRANSAC, MLESAC and INAPSAC 

techniques produces the similar results. But SSAC, LO-

SSAC and RD-RANSAC inliers identified similar to each 

other compared to others method. It is concluded that SSAC, 

LO-SSAC and RD-RANSAC out performs over the other 

SAC procedures in the different types of error situations. 

 

IV. CONCLUSION 

 

RANSAC and its descendants are summarized in three 

viewpoints: accuracy, computing time, and robustness. This 

paper also describes that completely different methods share 

the same idea. The results of this experiment were also 

analyzed in three viewpoints. The results presented a trade-
off of accuracy/robustness and computing time. A 

meaningful research has been performed in RANSAC family, 

but it needs to investigate more. Balanced 

accuracy/robustness and computing time can be achieved 

from merging the previous works or the new breakthrough. 

Adaptation in variable data is a challenging problem because 

the previous works do not keep accuracy in low inlier ratio. 

MLESAC is the first breakthrough which reformulated 

original RANSAC in the probabilistic view. The new 

interpretation of the problem can lead another breakthrough. 

The problem can be incorporated with other problems such as 

model selection. With data with multiple models is a 
attractive problem for the current single result formulation. 

The new tool can stimulate this field such as genetic 

algorithm of GASAC. Survey and performance evaluation, 

including the recent works, contributes users to choose a 

proper method for their applications. 
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