
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

23

STUDY ON SQL INJECTION ATTACKS: MODE,

DETECTION AND PREVENTION

Subhranil Som

AIIT, Amity University Uttar

Pradesh, Noida, India

Sapna Sinha

AIIT, Amity University Uttar

Pradesh, Noida, India

Ritu Kataria

AIIT, Amity University Uttar

Pradesh, Noida, India

Abstract: Web applications are presently utilized for

online administrations, for example: long range informal

communication, shopping and managing accounts and so

forth. Web applications deals with complex user

information. Unauthorized access can lead to collapse of a

system; even can harass the existence of a company or a

bank or a branch. SQL Injection Attacks (SQLIA) is a

standout amongst the most hazardous security dangers to

Web applications. Researchers are working to control

SQLIA at the application layer, but beforehand they are

trying to prevent SQLIA at the database level through

stored procedures. This paper shows ways to prevent

SQLIA in stored procedures. The application is secured

from attacks with the technology on two phases because if

first phase is unable to protect then second phase can

prevent attack.

Keywords: SQLIA, SQL Injection, Database Security,

SQL Attacks and Prevention, Stored Procedures, Query

Tokenization

I. INTRODUCTION

SQL injection exposures have been communicated greatly

unsafe for the database. Vital databases are absolutely

accessible by attacker by injecting SQL queries that are

retrieved by web application. As customer information is

frequently kept in these databases, important information is

lost and the security breach. Attackers can even use a SQL

injection exposure is used by attackers for controlling and

making the web application structure worse.

A class of code-injection attacks is pointed by SQL Injection;

customer gives the data which is incorporated into a SQL

query in such a way that part of the customer's information to

be known by SQL codes. SQL commands given by attacker

straight away to the database, through these vulnerabilities.

These attacks are dangerous to any Web application that gets

data from customers and goes along with it into SQL request

to a key database.

This paper, weights on various parts of SQL Survey. This

field related work done is exhibited in Section 2. Future

investigation orientation to prevent SQLIA and a part of this

paper determination and tokenization approach for resolution

is contained in section 3. Section 4 presents SQLIA detection

approaches and section 5 presents proposed technique.

Finally, section 6 discusses conclusion and future work.

II. RELATED WORK

SQL Injection Attack Detection and Prevention Methods: A

Critical Review (Dr. Manju Kaushik et al. 2014) suggests

that by using SQLIA, an attacker can get these lines gain or

adjust private/fragile information. There are beside no

emphasis is laid on securing set away procedures in the

database layer which could experience the bad impacts of

SQLIA. As set away methods live on the database front, the

procedures proposed by them can't be associated with secure

set away frameworks themselves. They proposed a novel

strategy to prepare for the assaults centered at set away

philosophy. This system joins static application code

examination with runtime acknowledgment to take out the

occasion of such assaults. In the static part, they lay out a set

away strategy parser, and for any SQL decree which depends

on upon customer inputs, they use this parser to instrument

the vital clarifications with a particular finished objective to

differentiate the primary SQL verbalization structure with

that including customer inputs. The course of action of this

method can be automated and used on a need-simply

introduce. [6]

Study of SQL Injection Attacks and Countermeasures

(Sayyed Mohammad et. al. 2013): This paper gives scientific

categorization of strategies to avert and recognize SQLIA.

We characterize web application vulnerabilities and how they

may bring about SQLIA. At that point, we show an order of

SQLIA in view of weakness. A while later, the SQL injection

isolation and three unique classes for counteractive action

strategies. These distinctive methodologies in the time that

balance to SQLIA plausibility. Various SQL recognition and

aversion strategies are being talked about in this paper which

as of late been proposed by a given attacker. Moreover, the

systems were assessed, as for sending prerequisites [7].

A Survey of SQL Injection Countermeasures(r

R.P.Mahapatra et al. 2012): The various SQLIA types were

studied and the prevention techniques which the researcher

proposed went under a survey in this paper [8].

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

24

Advanced SQL Injection in SQL Server Applications (Chris

Anley 2002): This document discusses in detail the common

'SQL injection' technique, as it applies to the popular

Microsoft Internet Information Server/Active Server

Pages/SQL Server platform. It discusses the various ways in

which SQL can be 'injected' into the application and

addresses some of the data validation and the isolation issues

of database identified with these attacks [12].

SQL Injection Attack (J.makesh et al. 2015): SQL injection

is the database attacking not just attacks the database it have

different budgetary result. We say a few methods in this

paper and future work is to execute the firewall to the SQL

server to maintain a strategic distance from the infusion

assaults. A definitive goal for thoroughly destroy the entire

idea of SQL injection and to stay away from this system

turning into a toy in hands of exploiters. [15]

SQL Injection Attacks in Web Application (Mihir Gandhi et

al. 2013): This paper exhibits the different diverse procedures

of SQLIA. By utilizing these methods the software engineers

and framework managers can comprehend the SQLIA all the

more altogether and secure the web application from SQLIA.

However as the innovation keeps on growing, so will the

security dangers and systems utilized by pernicious clients.

As the clients of the web move their delicate information into

the online environment, it is essential that security be given

the most striking in the improvement of web applications.

[17]

SQL Injection Attacks: Techniques and Protection

Mechanisms (Nikita Patel et al 2011): Code injection attack,

particularly SQLIA is one of the scandalous issues.

Controlling the pernicious SQL code/script on the web

application and keeping up the end security is still a key test

for the web engineer. Web designers included in creating

sites should consider these issues utilizing databases. This

paper depicts how an assailant can abuse the web application

by utilizing SQL injection attack to get private data from a

database. Diverse assurance systems against SQLIAare

likewise proposed [18].

III. TYPES OF SQLIA

Tautologies

These kinds of attacks inject SQL tokens to the conditional

query statement which are constantly assessed to be genuine.

This type of attack uses WHERE clause to extract the

valuable information from the input fields which are easily

accessible that leads to the failed authenticity of control.

Illustration 1: Think about a web application which collects

info through Customer, by means of the above SQL query,

the aftereffect is as following.

Assume an attacker gives a name like this:

SELECT * FROM Customer WHERE name = ‘ritu’ OR ‘1’

= ‘1

This statement will give back all lines from the database of

customer, instead of ‘ritu’ is a genuine customer name or not

since OR is added to the WHERE clause. The result of ‘1’ =

‘1 comparison will be always ‘true’, and the resultant of

WHERE clause assesses for all columns in the table to be

genuine. On the off chance that this is utilized for validation

purposes, the attacker will frequently login as a first or last

customer in the table.

Logically Incorrect Queries

At the point when a query is not required, an incorrect text

from the database, including required data is returned. These

incorrect texts help attackers to find parameters in the

application and in this manner the application's database.

Without a doubt attackers garbage info or SQL token injected

into query language structure mistake, to deliver logical error,

syntax error, or type mismatches purposely.

Union Query

By this strategy, the attacker provides the incorrect data with

the few correct fields, the SQL query is sent with the ‘Union’

of both correct and incorrect fields. As the result, the dataset

from the database is fetched with the correct fields.

Illustration 4:

An attacker could inject the text “’ UNION SELECT

card_No from Credit_Cards where acct_No=12450 --” into

the login field, which produces the following query:

SELECT acc_inf FROM clients WHERE login=’’ UNION

SELECT card_No FROM Credit_Cards WHERE

acct_No=12450 -- AND pass=’’ AND pin=

In the first statement, the login is null, hence the query is

invalid while the other query fetches the result. In the current

situation, the field "Card_no" will fetch out for

acc_No="12450". The consequences of the two queries are

joined and returned as the output which will show the

acct_No corresponding the credit card.

Piggy-backed Queries

In this sort of attack, with the existing query an attacker adds

on extra queries and with this type of queries the attacker

doesn’t changes the original query rather puts on a new query

with the old one resulting into multiple SQL queries received

by the database. Initially the existing query is implemented

and the substitute query follows the already implemented

query. This sort of attack can be exceptionally unsafe. In the

event that effective, attackers can embed SQL query basically

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

25

any sort, in substitute query, including stored procedures and

alongside the first query they are executed. This sort of attack

is regularly reliant on database designs that contain many

queries in one string is the weakness.

Illustration 3: In the event that the input is provided by an

attacker " '; DROP TABLE client - - " in the ‘pass’ field the

application produces the query:

SELECT acc_No FROM client WHERE login = ‘ritu’ AND

pass = ‘’; DROP TABLE client -- 'AND pin = 321

After going the first SQL query and detecting the delimiter

(";") injected query is executed automatically by database,

which results in losing the client useful information.

Stored Procedure

This process, Attackers pays attention to the stored

procedures which are available in the database system.

Database engine helps in the working of stored procedures.

Stored procedure is just a piece of code which is exploitable.

Stored procedure gives true or false values for the authorized

or unauthorized clients. For SQLIA, attacker will write “;

SHUTDOWN; --" with login or secret key. The below query

will be produced by the stored procedure:

Illustration 5:

SELECT acc FROM client WHERE Login= '1231' AND

Pass='9999 '; SHUTDOWN;--;

It works like piggyback attack. Firstly the existing query is

processed subsequently followed by the other query which

gets implemented and leads to shutting down of the database.

This states that along with the web application code the

stored procedure codes are equally exploitable.

IV. SQLIA DETECTION APPROACHES

Static Approach:

Software engineers give a few rules for SQLIA detection

amid web application advancement and this methodology is

otherwise called pre-creating approach. For the pre-created

technique for identifying SQLIA a compelling legitimacy

checking component is required for the info variable

information.

Dynamic Approach:

Post-created methods are helpful for examination of element

or SQL query on runtime, produced by client information by

a web application and consequently this methodology is

otherwise called post-created approach. Detection methods

works under this post-produced class executing before

presenting a query on the database server.

V. PROPOSED TECHNIQUE

In this paper, we have dealt with the security on the ends, i.e.

frontend and backend, with no compromisation by proposing

the two systems for avoiding SQLIA.

Its two stages are:

a) Frontend Phase

b) Backend Phase

Frontend Phase

Initially at front end we secure Database from any SQLIA. In

this methodology we include an additional section in client

table to store the Final Hash Code, which is obtained during

enrollment time of a client for the first time and is put into

client table along with client name and secret key as

demonstrated in the Table - 1.

CLIENT
SECRET

KEY

FINAL

HASH_CODE

Ritu Ritu09 12HJHOP34TTM

Geeta Geeta123 21313NKIFIFN3

Table - 1: Client Table

When a client logins,, a genuine client is recognized by

matching of client name, secret key and final hash code

which was generated at run time using the stored procedure.

For final hash code computation we will continue as

indicated by the given architecture in the Figure – 1.

Figure 1: Proposed Architecture

User

Data-

base

A

N

D

User

Data-

base

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

26

Working Methodology
The working of proposed methodology is defined in two

kinds:

1) New Client Registration:

A new client enters the log in details like distinctive name

and secret key on client side to get registered. As indicated by

the proposed design, the distinctive name and secret key is

prepared at the center level.

Below are the stages:

1. To discover hash value of log in name by secret key as

cow.

2. To discover hash value of secret key by log in name as

cow.

3. Linking the result of step1 and step2 to discover final

hash code.

4. Login name, Secret key and final hash code are to be put

away into the client table.

2) Login and verification:

The login structure must be filled by the client to get signed

into the database.

Below are the given stages:-

1. A distinctive name and secret key is to be entered at

client side.

2. The name put away in client table is matched with the

entered client name.

3. As per proposed system to discover final hash code at

run time, the client name and secret key is handled after

the client name is being matched.

4. Final hash code and secret word is checked with stored

values in the database.

5. In the event that client is legitimate then he/she can get to

data from database or else incorrect text is shown.

Figure - 2 demonstrates the three tier architecture of this

working methodology.

 Figure 2: Three tiers proposed Architecture

Backend Phase

The proposed framework notices on how SQLIA on Web

applications by tokenization and encryption for detection and

prevention. The tokenization process changes over the input

query in fruitful token and dynamic table stores it at the user

end. Name of field, name of table and information are

encoded by AES algorithm is connected by recognizing

spaces on the data query, double dashes and single quotes,

and so on. The initial encrypted query and table which is

tokenized is being sent on the server side. Now the query is

decrypted and generated into number of tokens which are

then stored into other dynamic table at the server end. After

comparing both the dynamic tables, if they are same then it is

evaluated that there was no injected query, henceforth the

query is carried to the central database for fetching the

output. In the event that they are distinctive, query is

dismissed and not sent to the server of the database. The

incorrect text warning is sent to the client. Figure 4

demonstrates the proposed design of prevention of SQLIA.

I. AES Encryption or Decryption:

The data and attributes of the query are encoded by AES

(Advanced Encryption Standard) algorithm needs less storage

and this process is quick [14].

As soon as the query is received at server end, it gets

decrypted with the similar key and gets transformed into

different tokens which are kept in the other dynamic table.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

27

Figure 3: Proposed Architecture of SQLIA Prevention

II. Tokenizing the query:

In this strategy, the tokens are being created from query input

given by the client. All strings before a space, a single quote,

and double dashes constitute a token.

It is carried out in four stages:-

Step 1: All the unimportant characters are exchanged which

could have attacked on the query.

Step 2: Identify the query with single quotes, spaces and,

doubles dashes.

The Figure - 4 demonstrates how tokens are made in data

query by recognizing single quote, spaces and double dash

for the underneath query:

"SELECT e_id, e_name FROM Employee WHERE pay >

1000"

Step 3: The query is broken into different fruitful tokens.

Step 4: The Dynamic table keeps the tokens.

Step 5: Sending query after tokenization, the dynamic token

table and the encrypted query are sent to server end

Figure 4: Formation of Tokens

III. Dynamic Tables comparison

Here, both Dynamic tables are matched with each other by

their lengths. However if the length of both the dynamic

tables are distinctive or regardless of the fact that all the

events are distinctive, then injection hasn’t attacked and

query is forwarded to the database.

In any case, there is injection displayed in the query, when

the tables are not of same size, fails to send query to main

database. Attacked query gets cancelled and gives back the

incorrect text to the user.

VI. CONCLUSIVE DISCUSSION AND FUTURE

WORK

This paper has demonstrated a strategy to change over SQL

query into number of helpful tokens by applying tokenization

and after that encoding all literals, fields, table and

information on the query by AES-algorithm to avoid SQLIA.

Our exploratory results demonstrate that a wide range of

SQLIA can successfully be prevented by this methodology. It

can likewise be effectively connected to some other dialect

and database stage without significant changes.

This methodology encourages quick and proficient getting to

system with database and keeps away from memory

necessities to store the actual query in storehouse.

This methodology because of its low preparing overhead has

immaterial impact on execution even at higher burden

conditions and does not require real changes to application

code.

Further study is done for making use of new algorithm to

encrypt data query for preventing SQLIA, the query change

plan is required.

VII. REFERENCES

[1] William G.J. Halfond, Jeremy Viegas, and Alessandro

Orso, (2006) “A Classification of SQL Injection

Attacks and Countermeasures”, 2006 IEEE

[2] Ankita Kushwah, Gajendra Singh (2014) “Sql Injection

Attacks: Prevention for All Types of Attacks”,

International Journal of Emerging Engineering

Research and Technology Volume 2, Issue 2, May

2014, PP 37-42

[3] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G.

Sivilotti (2005) “Using Parse Tree Validation to Prevent

SQL Injection Attacks” , 2005 ACM

1­59593­204­4/05/09

[4] Neha Mishra, Sunita Gond (2013) “Defenses To Protect

Against SQL Injection Attacks”,International Journal of

Advanced Research in Computer and Communication

Engineering Vol. 2, Issue 10, October 2013

[5] Parveen Sadotra (2015) “Hashing Technique - SQL

Injection Attack Detection & Prevention”, International

Journal of Innovative Research in Computer and

Communication Engineering (An ISO 3297: 2007

Certified Organization) Vol. 3, Issue 5, May 2015

[6] Dr.Manju Kaushik,Gazal Ojha (2014) “SQL Injection

Attack Detection and Prevention Methods: A Critical

Review” , International Journal of Innovative Research

in Science,Engineering and Technology(An ISO 3297:

2007 Certified Organization) Vol. 3, Issue 4, April 2014

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

28

[7] Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli

Pour (2013) “Study of SQL Injection Attacks and

Countermeasures”, International Journal of Computer

and Communication Engineering, Vol. 2, No. 5,

September 2013

[8] Dr R.P.Mahapatra and Mrs Subi Khan (2012) “A

Survey of Sql Injection Countermeasures”, International

Journal of Computer Science & Engineering Survey

(IJCSES) Vol.3, No.3, June 2012

[9] Sammangi Gowtam Pratap Kumar, Akula Sai Chanukya

,Ayinavalli Venkata Ramana (2014) “Collaborative

Technique to Detect and Prevent SQL Injection

Attacks”, International Journal of Advanced Computer

Communications and Control Vol. 02, No. 02, April

2014

[10] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, V. N.

Venkatakrishnan (2007) “CANDID: Preventing SQL

Injection Attacks using Dynamic Candidate

Evaluations”, 2007 ACM 978-1-59593-703-2/07/0011

[11] Pooja Saini, Sarita (2015) “Survey and Comparative

Analysis of SQL Injection Attacks, Detection and

Prevention Techniques for Web Applications Security”,

International Journal on Recent and Innovation Trends

in Computing and Communication ISSN: 2321-8169,

Volume: 3 Issue: 64148 – 4153

[12] Chris Anley (2002) “Advanced SQL Injection in SQL

Server Applications”, An NGSSoftware Insight

Security Research (NISR) Publication ©2002 Next

Generation Security Software Ltd

http://www.ngssoftware.com

[13] Tejinderdeep Singh Kalsi, Navjot Kaur (2015)

“Detection And Prevention Of Sql Injection Attacks

Using Novel Method In Web Applications”,Kaur et al.,

International Journal of Advanced Engineering

Technology E-ISSN 0976-3945

[14] Sonam Panda, Ramani (2013) “Protection of Web

Application against Sql Injection Attacks”, International

Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-166-

168 ISSN: 2249-6645

[15] J.makesh, S.Thirunavukarasu (2015) “SQL Injection

Attack”, Special Issue of Engineering and Scientific

International Journal (ESIJ) ISSN 2394-187(Online)

Technical Seminar & Report Writing - Master of

Computer Applications - S. A. Engineering College

ISSN 2394-7179 (Print) (TSRW-MCA-SAEC) – May

2015 16

[16] Mihir Gandhi, JwalantBaria (2013) “SQL INJECTION

Attacks in Web Application”, International Journal of

Soft Computing and Engineering (IJSCE) ISSN: 2231-

2307, Volume-2, Issue-6, January 2013

[17] Nanhay Singh, Khushal Singh, Ram Shringar Raw

(2012) “Analysis of Detection and Prevention of

Various SQL Injection Attacks on Web Applications”,

International Journal of Applied Information Systems

(IJAIS) – ISSN : 2249-0868 Foundation of Computer

Science FCS, New York, USA Volume 2– No.7, May

2012 – www.ijais.org

[18] Nikita Patel, Fahim Mohammed, Santosh Soni (2011)

“SQL Injection Attacks: Techniques and Protection

Mechanisms”, International Journal on Computer

Science and Engineering (IJCSE) ISSN: 0975-3397

Vol. 3 No. 1 Jan 2011 199-203

[19] Atefeh Tajpour , Suhaimi Ibrahim, Mohammad Sharifi

(2012) “Web Application Security by SQL Injection

DetectionTools”, International Journal of Computer

Science Issues, Vol. 9, Issue 2, No 3, March 2012 ISSN

(Online): 1694-0814 www.IJCSI.org 332

[20] Shubham Srivastava, Rajeev Ranjan Kumar Tripathi

(2012) “Attacks Due to SQL Injection & Their

Prevention Method for Web-Application”, International

Journal of Computer Science and Information

Technologies, Vol. 3 (2), 2012, 3615-3618

[21] Kamlesh Kumar Raghuvanshi , Deen Bandhu Dixit

(2014) “Prevention and Detection Techniques for SQL

Injection Attacks”, International Journal of Computer

Trends and Technology (IJCTT) – volume 12 number 3

– Jun 2014

[22] Manisha A. Bhagat, Prof. Vanita Mane (2013)

“Protection of Web Application against Sql Injection

Attack”, International Journal of Scientific and

Research Publications, Volume 3, Issue 10, October

2013 ISSN 2250-3153

[23] Bharti Nagpal, Naresh Chauhan, Nanhay Singh (2014)

“Protection Of Web Application Against Sql Injection

Attack”,Injection And Prevention Of Sql Injection

Attacks On Web Applications”, IJSWS 14-393; © 2014

[24] Khaled Elshazly, Yasser Fouad, Mohamed Saleh, Adel

Sewisy (2014) “A Survey of SQL Injection Attack

Detection and Prevention”, Journal of Computer and

Communications, 2014, 2, 1-9, Published Online June

2014 in SciRes. http: // www.scirp.org / journal /

jcchttp: // dx.doi.org /10.4236/jcc.2014.28001

[25] Ying Jin, Xiaoying Shen, Chunhui Song “A Filter-

Based Approach for Sql Injection Attack Detection”,

https: // www.ecs.csus.edu / csc / iac / docs /

publications/JIN_CATA12.pdf

[26] Etienne Janot, Pavol Zavarsky () “Preventing SQL

Injections in Online Applications:Study,

Recommendations and Java Solution Prototype Based

on the SQL DOM”, https: // www.owasp.org / images /

5 / 57 / OWASP - AppSecEU08-Janot.pdf

[27] Zhendong Su, Gary Wassermann (2006) “The Essence

of Command Injection Attacks in Web Applications”,

POPL '06 January 11.13, 2006, Charleston, South

Carolina, USA. Copyrightc 2006 ACM 1-59593-

02702/06/0001

[28] Asha. N, M. Varun Kumar, Vaidhyanathan.G (2012)

“Preventing SQL Injection Attacks”, International

http://www.ngssoftware.com/

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

29

Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

[29] Ms. Mira K. Sadar, Mr. Pritish A.Tijare, Mr. Swapnil

N.Sawalkar (2014) “ Securing Web Application against

SQL Injection Attack: a Review”, International Journal

on Recent and Innovation Trends in Computing and

Communication ISSN: 2321-8169 Volume: 2 Issue: 3

683 – 687

[30] Neha Singh, Ravindra Kumar Purwar(2012) “SQL

INJECTIONS – A HAZARD TO WEB

APPLICATIONS” ,International Journal of Advanced

Research in Computer Science and Software

Engineering Volume 2, Issue 6, June 2012 ISSN: 2277

128X

[31] Shelly Rohilla, Pradeep Kumar Mittal (2013) “Database

Security by Preventing SQL Injection Attacks in Stored

Procedures”, International Journal of Advanced

Research in Computer Science and Software

Engineering ,Volume 3, Issue 11, November 2013

ISSN: 2277 128X

[32] Derrick Hyatt (2009) “Web 2.0 Injection Infection

Vulnerability Class”, ISSN: 1939-3555 (Print) 1939-

3547 (Online) Journal homepage: http://tandfoline.com

/Ioi/uiss20

