

CLASSIFICATION OF SPECIES OF EBOLA-VIRUS, BASED ON THE PHYSICO-CHEMICAL-PROPERTIES, CONSERVED AMINO-ACIDS, GENE-STRUCTURAL INFORMATION AND INTERPRETING ITS SIGNIFICANCE

Divya Peddapalyam Msc. Biotechnology Garden City University Bengaluru, Karnataka, India Reetika Mishra Msc. Biotechnology Garden City University Bengaluru, Karnataka, India

Abstract—- Ebola Infection malady ia an uncommon and Destructive ailment which for the most part two people And non human primates, for example monkeys, gorillas, Chimpanzees. Among the five types of species i.e; Zaire, Sudan, Taiforest, Bundibugyo impacts the people and Reston Ebola virus known to cause disease in non human Primates and pigs. This Ebola infection was first found in 1976 close to ebola water way in majority rule republic Of congo.For Ebola virus sickness casuality rate is 90%. 318 individuals tainted and 280 passings are brought About by this infection with death pace of 88%.

I. OBJECTIVES

The extensive target of the subsequent module is that to create a compact, data rich outline of grouping information., illustrate the disparity between a gathering of sequences, Usage of arrangements as models to test hyphothesis, as well as to know whether this model of occasions precisely reflect known organic proof. The primary goal of the third module is to comprehend the essential ideas in quality finding, for example, relationship of protein and nucleotide groupings/exons/introns/coding arrangements/open perusing outlines/agreement properties of exon-intron fringes. Novel highlights of the program incorporate the ability to anticipate different qualities in a succession, to manage fractional just as complete qualities, and to foresee steady arrangements of qualities happening on either or both DNA strands. In the enormous scale investigation of gene, the regular procedure is totally inactivate every quality or over express it. In each case coming about phenotype may not be instructive. The loss of numerous proteins is deadly and this reveals to us that protein is fundamental however donot determine what protein really does. After forecast of quality structure, related with this protein we can research its Structure, Function, diseases, mutations and by utilizing this data we can fix numerous diseases. It utilizes factual example recognizable proof and succession similitude comparision, in which first technique utilizes every single imaginable ways to deal with concentrate the quality structure which incorporates advertiser region, start and end arrangements of intron and exon. As the closeness depends on the

Dr. Madhu Malleshappa Msc, PhD,Post-Doc Garden city University Bengaluru, Karnataka, India

evolution, either our grouping is homologous or not, this procedure depends on the comparability which exploit on the way that if the succession is similar, it will have a similar capacity.

II. METHODOLOGY

ProtParam registers different physico-substance properties that can be reasoned from a protein succession. No extra data is required about the protein under thought. The protein can either be indicated as a Swiss-Prot/TrEMBL promotion number or ID, or in type of a crude arrangement. Blank area and numbers are disregarded. In the event that you give the promotion number of a Swiss-Prot/TrEMBL passage, you will be incited with a delegate page that enables you to choose the part of the succession on which you might want to play out the investigation. The decision incorporates a choice of develop chains or peptides and spaces from the Swiss-Prot highlight table (which can be picked by tapping on the situations), just as the likelihood to enter start and end position in two boxes.

III. EXTINCTION COEFFICIENT

The Extinction coefficient shows how much light a protein assimilates at a specific wavelength. It is helpful to have an estimation of this coefficient for following a protein which a spectrophotometer when filtering it. It is conceivable to assess the molar Extinction coefficient of a protein from information of its amino corrosive creation. From the molar extinction coefficient of tyrosine, tryptophan, and cystine (cysteine doesn't ingest considerably at wavelengths >260 nm, while cystine does) at a given wavelength, the termination coefficient of a denatured protein can be figured. Two tables are delivered by ProtParam, the first demonstrating the processed qualities dependent on the supposition that all cysteine deposits show up as half cystines, and the subsequent one accepting that no cysteine shows up as half cystine. Formula for calculating Extinction coefficient is given below.

E(Prot) = Numb(Tyr)*Ext(Tyr) + Numb(Trp)*Ext(Trp) + Numb(Cystine)*Ext(Cystine) Ext(Tyr) = 1490, Ext(Trp) = 5500, Ext(Cystine) = 125; Published Online January 2020 in IJEAST (http://www.ijeast.com)

IV. ALIPHATIC INDEX

The Aliphatic list of a protein is characterized as the relative volume involved by aliphatic side chains (alanine, valine, isoleucine, and leucine). It might be viewed as a positive factor for the expansion of thermostability of globular proteins

Aliphatic index = X(Ala) + a * X(Val) + b * (X(Ile) + X(Leu))

Where,

X(Ala) = Mole percent of Alanine X(Val) = Mole percent of valine X(Ile) = Mole percent of Isoleucine X(Leu) = Mole percent of leucine

V. GRAND AVERAGE OF HYDROPHATICITY

The Grand Average of hydropathy (GRAVY) esteem for a peptide or protein is determined as the entirety of hydropathy estimations of all the amino acids, isolated by the number of deposits in the succession

VI. INVIVO HALF-LIFE

The half-life is an expectation of the time it takes for half of the measure of protein in a cell to vanish after its blend in the cell. The expectation is given for three creatures (human, yeast, and E. coli), yet it is conceivable to extrapolate the outcome to comparative living beings. ProtParam gauges the half-life by taking a gander at the Nterminal amino corrosive of the grouping under investigation.

VII. INSTABILTY INDEX

#' @export instaIndex

#' @title Compute the instability index of a protein sequence

#' @description This function calculates the instability index proposed by Guruprasad (1990). This index predicts the stability of a protein based on its amino acid composition, a protein whose instability index is smaller than 40 is predicted as stable, a value above 40 predicts that the protein may be unstable.

#' @param seq An amino-acids sequence

#' @return The computed instability index for a given amino-acids sequence

#' @references Guruprasad K, Reddy BV, Pandit MW (1990). "Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence".
Protein Eng. 4 (2): 155 - 61. doi:10.1093/protein/4.2.155
#' @examples

#' # COMPARED TO ExPASy INSTAINDEX

#' # http://web.expasy.org/protparam/

#' # SEQUENCE:

QWGRRCCGWGPGRRYCVRWC

#' # The instability index (II) is computed to be 83.68

#'

#' instaIndex(seq
"QWGRRCCGWGPGRRYCVRWC")

#' # [1] 83.68

instaIndex <- function(seq) {</pre> # Setting the Guruprasad scale guruprasad <c(WW = 1. WC = 1. WM = 24.68.WH = 24.68,WY = 1, WF = 1, WQ = 1, WN = 13.34,WI = 1, WR = 1. WD = 1, WP = 1, WT = -14.03, WK = 1, WE = 1, WV = -7.49, WS = 1, WG = -9.37, WA = -14.03, WL = 13.34.CW = 24.68, CC = 1. CM = 33.6, CH = 33.6,CY = 1,CF = 1, CQ = -6.54,CN = 1, CI = 1, CR = 1, CD = 20.26,CP = 20.26,CT = 33.6, CK = 1. CE = 1.CV = -6.54,CS = 1, CG = 1,CA = 1, CL = 20.26, MW = 1, MC = 1, MM = -1.88. MH = 58.28, MY = 24.68,MF = 1. MQ = -6.54,MN = 1, MI = 1, MR = -6.54,MD = 1. MP = 44.94,MT = -1.88, MK = 1, ME = 1. MV = 1,

MS = 44.94
MG = 1
MO = 1, MA = 13.34
MI = 1
WL = 1, UW = 1.99
HW = -1.00, $HC = 1$
$\Pi C = 1$,
HM = 1,
HH = 1,
HY = 44.94,
HF = -9.37,
HQ = 1,
HN = 24.68,
HI = 44.94,
HR = 1,
HD = 1,
HP = -1.88,
HT = -6.54,
HK = 24.68,
HE = 1,
HV = 1,
HS = 1,
HG = -9.37,
HA = 1,
HL = 1,
YW = -9.37,
YC = 1,
YM = 44.94,
YH = 13.34,
YY = 13.34,
YF = 1,
$\mathbf{Y}\mathbf{Q} = 1,$
$\mathbf{YN} = 1,$
YI = 1,
YR = -15.91,
YD = 24.68,
YP = 13.34,
YT = -7.49,
YK = 1,
YE = -6.54,
$\mathbf{Y}\mathbf{V}=1,$
$\mathbf{YS} = 1,$
YG = -7.49,
YA = 24.68,
YL = 1,
FW = 1,
FC = 1,
FM = 1,
FH = 1,
FY = 33.6,
FF = 1,
FQ = 1,
FN = 1,
FI = 1,
FR = 1,
FD = 13.34,
FP = 20.26,
FT = 1,
FK = -14.03,
FE = 1,
FV = 1,
FS = 1,

FA = 1,
FL = 1
OW - 1
$Q_{11} = 1,$ $Q_{12} = 6.54$
QC = -0.34,
$\mathbf{Q}\mathbf{M} = \mathbf{I},$
QH = 1,
OY = -6.54.
OF = -6.54
QI = 0.01;
QQ = 20.20,
QN = 1,
$\mathbf{QI} = 1,$
QR = 1,
OD = 20.26.
OP = 20.26
QI = 20.20,
QI = I,
QK = 1,
QE = 20.26,
OV = -6.54,
0S - 44.94
QD = 44.94, QC = 1
QG = I,
QA = 1,
QL = 1,
NW = -9.37.
NC = -1.88
100 = -1.00,
NM = 1,
$\mathbf{NH} = 1$,
NY = 1,
NF = -14.03,
NO6.54
MQ = 0.54, MM = 1
ININ = 1,
NI = 44.94,
NR = 1,
ND = 1,
NP = -1.88
NT7 / 9
NI = -7.40
NK = 24.08,
NF = 1
INL = 1,
NV = 1, $NV = 1$,
NL = 1, NV = 1, NS = 1,
NL = 1, NV = 1, NS = 1, NG = -14.03
NL = 1, NV = 1, NS = 1, NG = -14.03, NL = 1
NL = 1, NV = 1, NS = 1, NG = -14.03, NL = 1,
NL = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1,
NL = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1,
NL = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1,
NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34.
NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IV = 1
NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IT = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1.
NV = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IR = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1, IP = -1.88,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, IR = 1, IR = 1, ID = 1, IP = -1.88, IT = 1,
NU = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, IR = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49.
NV = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49, IF = 44.94
NV = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49, IE = 44.94, IV = 7.40
NV = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49, IE = 44.94, IV = -7.49, IE
NV = 1, NV = 1, NS = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49, IE = 44.94, IV = -7.49, IS = 1,
NV = 1, NV = 1, NG = -14.03, NL = 1, IW = 1, IC = 1, IM = 1, IH = 13.34, IY = 1, IF = 1, IQ = 1, IN = 1, II = 1, IR = 1, ID = 1, IP = -1.88, IT = 1, IK = -7.49, IE = 44.94, IV = -7.49, IS = 1, IG = 1,

TW = -14.03,

TC = 1,

TM = 1, TH = 1,

TY = 1, TF = 13.34,

	,
RF = 1,	TQ = -6.54,
RQ = 20.26,	TN = -14.03,
RN = 13.34,	TI = 1,
$\mathbf{RI} = 1,$	TR = 1,
RR = 58.28,	TD = 1,
RD = 1,	TP = 1,
RP = 20.26,	TT = 1,
RT = 1,	TK = 1,
RK = 1,	TE = 20.26,
RE = 1,	TV = 1,
RV = 1,	TS = 1,
RS = 44.94,	TG = -7.49,
RG = -7.49,	TA = 1,
RA = 1.	TL = 1.
RL = 1.	$\mathbf{KW} = 1$.
DW = 1	KC = 1.
DC = 1	KM = 33.6
DM = 1	KH = 1
DH = 1	KY = 1
DY = 1	KT = 1, KF = 1
DF = -6.54	KO = 24.68
DO = 1	KQ = 24.00, KN = 1
DQ = 1, DN = 1	KI = 1, KI = -7.49
DI - 1	KP = 33.6
DR = -6.54	KR = 33.0, KD = 1
DR = -0.54, DD = 1	KD = 1, KP = -6.54
DD = 1, DP = 1	KT = -0.54, KT = 1
DT = 1, DT = 14.03	KI = I, KK = I
DI = -14.03, DK = -7.40	KK = 1, KE = 1
DR = -7.49, DE = 1	KL = 1, KV = 7.40
DL = 1, DV = 1	KV = -7.49, VS = 1
DV = 1, DS = 20.26	KS = 1, KC = 7.40
DS = 20.20, DC = 1	KG = -7.49, VA = 1
DO = 1, DA = 1	KA = 1, KI = 7.40
DA = 1, DI = 1	KL = -7.49, EW = -14.02
DL = 1, DW = 1.99	EW = -14.05,
PW = -1.00,	EC = 44.94,
PC = -0.54,	EM = 1,
PM = -6.54,	EH = -6.54,
PH = I,	$\mathbf{E}\mathbf{Y} = \mathbf{I},$
PY = 1,	EF = I,
PF = 20.26,	EQ = 20.26,
PQ = 20.26,	EN = I,
PN = I,	EI = 20.26,
PI = I,	ER = 1,
PR = -6.54,	ED = 20.26,
PD = -6.54,	EP = 20.26,
PP = 20.26,	ET = 1,
PT = 1,	$\mathbf{EK} = 1,$
PK = 1,	EE = 33.6,
PE = 18.38,	EV = 1,
PV = 20.26,	ES = 20.26,
PS = 20.26,	EG = 1,
PG = 1,	EA = 1,

IL = 20.26, RW = 58.28,

RC = 1,

RM = 1, RH = 20.26,

PL = 1,

PA = 20.26,

RY = -6.54,

EL = 1,

VW = 1,

VC = 1,
VM = 1,
VH = 1,
VY = -6.54,
VF = 1,
VQ = 1,
VN = 1,
VI = 1,
VR = 1,
VD = -14.03,
VP = 20.26,
VT = -7.49,
VK = -1.88,
VE = I,
VV = 1,
VS = 1,
VG = -7.49,
VA = 1,
VL = 1,
SW = 1,
SU = 33.6,
SM = 1,
SH = 1,
SY = I,
SF = 1,
SQ = 20.26,
SIN = 1, $SI = 1$
SI = 1, SP = 20.26
SK = 20.20, SD = 1
SD = 1, SD = 44.04
SF = 44.94, ST = 1
SI = 1, SK = 1
SR = 1, SE = 20.26
SL = 20.20, SV = 1
SV = 1, SS = 20.26
SG = 1
SO = 1, SA = 1
SIX = 1, SL = 1
GW = 13.34
GC = 1.
GM = 1.
GH = 1.
GY = -7.49,
GF = 1,
GQ = 1,
GN = -7.49,
GI = -7.49,
GR = 1,
GD = 1,
GP = 1,
GT = -7.49,
GK = -7.49,
GE = -6.54,
GV = 1,
GS = 1,
GG = 13.34,
GA = -7.49,
GL = 1,
AW = 1,
$\Lambda C = 44.94$

AM = 1, AH = -7.49, AY = 1, AF = 1, AQ = 1, AN = 1, AI = 1, AR = 1.AD = -7.49,AP = 20.26,AT = 1, AK = 1, AE = 1, AV = 1, AS = 1, AG = 1, AA = 1, AL = 1, LW = 24.68,LC = 1, LM = 1, LH = 1, LY = 1, LF = 1, LQ = 33.6, LN = 1. LI = 1, LR = 20.26, LD = 1. LP = 20.26,LT = 1, LK = -7.49,LE = 1, LV = 1, LS = 1, LG = 1, LA = 1, LL = 1, 'NA' = 1) # Divide the amino acid sequence in dipeptides aa <- aaCheck(seq) dp <- lapply(aa, function(aa) { apply(embed(aa, 2)[, 2:1], 1, paste0, collapse = "") }) # Apply the formula: # (10/L)*sum(DIWV(XiYi+1) for each dipeptide) # Return the index value rounded to 2 decimals gp <- lapply(dp, function(dp) { (10 / (length(dp) + 1)) * sum(guruprasad[dp], na.rm =**TRUE**)}) return(unlist(gp)) MULTIPLE SEQUENCE ALIGNMENT VIII. MODULE-2

We care about the grouping arrangements in the computational science since it gives scientists helpful data about various viewpoints. For instance, it can educate us regarding the advancement of the living beings, we can see which locales of a quality (or its determined protein) are defenseless to change and which can have one buildup supplanted by another without evolving capacity, we can think about Homologous

UJEAST

Host

qualities and can reveal paralogs and Orthologs qualities that are quality items: GP1,2; GP1,2delta; sGP and ssGP.

developmental related. In issues, for example, the development of a transformative tree dependent on arrangement information, or in protein designing, where a different arrangement of related groupings may regularly yield the most supportive data on the plan of another protein, an atomic scholar must think about multiple arrangements all the while. A numerous grouping arrangement (MSA) organizes protein successions into a rectangular exhibit with the objective that buildups in a given section are homologous (gotten from a single situation in a hereditary grouping), superposable (in an unbending nearby basic arrangement) or assume a typical practical job. In spite of the fact that these three criteria are basically comparable for firmly related proteins, arrangement, structure and capacity separate over transformative time and various criteria may bring about various arrangements. Physically refined arrangements keep on being better than simply mechanized techniques; there is in this manner a persistent exertion to improve the organic exactness of MSA apparatuses. Also, the high computational expense of most guileless calculations inspires upgrades in speed and memory utilization to suit the quick increment in accessible succession information. The ClustalW calculation has three Important Phases. They are

Stage I: All sets of arrangements are adjusted independently ascertain a Distance Matrix dependent on the level of befuddles each pair of groupings.

Stage II: The guide tree is developed from the separation framework utilizing the Neighbor Joining calculation.

Stage III: The successions are dynamically adjusted after the guide tree.

MODULE-3

Genscan is utilized for anticipating the areas and exon-intron structures of qualities in genomic groupings from an assortment of creatures. This server can acknowledge arrangements up to 1 million base sets (1 Mbp) long. On the off chance that you experience difficulty with the web server or on the off chance that you have an enormous number of groupings to process, demand a nearby duplicate of the program.OMICS 01494 was created by Chris Burge in the examination gathering of Samuel Karlin, Department of Mathematics, Stanford University.OMICS_10494 is uninhibitedly accessible for scholastic use. Executables are right now accessible for the accompanying Unix stages: Intel/Linux, Sun/Solaris, Intel/Solaris, SGI/Irix, DEC/Tru64, and IBM/AIX.Distinguishes total exon/intron structures of qualities in genomic DNA. OMICS_01494 utilizes a homogeneous fifth request Markov model of noncoding areas and a three intermittent (inhomogeneous) fifth request Markov model of coding districts. Highlights of the program incorporate the ability to foresee various qualities in a grouping, to manage halfway just as complete qualities, and to anticipate predictable arrangements of qualities happening on either or both DNA strands

IX. LITERATURE REVIEW

Ebolavirus has a place with the request Mononegavirales and the family Filoviridae.Its RNA genome encodes the accompanying 9 protein items: Spike glycoprotein (GP), Small secreted glycol-protein,Second secreted Glycoprotein,Nucleoprotein (NP), RNA-subordinate RNA polymerase (L), Membrane-related protein (VP24), Minor nucleoprotein (VP30), Polymerase cofactor (VP35), and Matrix protein (VP40). The GP transcript can be altered, and the quality item can be handled by host protease, offering ascend to 4 elective types of

furin can sever the longest item interpreted from altered GP mRNA and create GP1,2, which comprises of 2 peptide chains associated by a disulfide bond, GP1 and GP2. GP1,2 is gathered on the layer of Ebolavirus and intercedes cell passage. GP1,2delta is the handled item after evacuation of the C-terminal transmembrane locale of GP1,2 by host ADAM17. Different results of the GP quality, sGP and ssGP are interpreted from the unedited mRNA and then again altered mRNA, respectively. These items share the N-terminal 295 buildups with GP1,2, however vary in their short tails (69 and 3 deposits, separately). GP1,2delta, sGP and ssGP may keep the killing antibodies from restricting GP1,2 on the infection surface, adding to the insusceptible avoidance of the infection. Not withstanding filling in as basic parts, the Ebolavirus proteins assume numerous jobs in the infection life cycle. GP intercedes cell section and layer combination between the infection and the host cell. NP encapsidates the genome and shields it from nucleases.VP30 is a translation hostile to eliminator and directs the switch among interpretation and replication.VP35 goes about as a cofactor of the polymerase, and VP40 may likewise assume a job in genome replication and interpretation. VP24 and VP35 take an interest in viral nucleocapsid assembly, and VP40 is basic for infection growing and gathering. What's more, GP, VP24, VP30, VP35 and VP40 associate with different host proteins to finish the viral life cycle and to stifle the host insusceptible reaction. In the present examination, we anticipate the 3D structure and utilitarian locales for Ebolavirus protein areas that are not yet portrayed. Also, we think about successions of Ebolavirus proteins' communicating accomplices from RESTV-safe primates with those from RESTV-powerless monkeys. Raised arrangement difference for GP and VP35's collaboration accomplices recommends that these 2 viral proteins might be in charge of host particularity in RESTV. At last, we think about the protein groupings from various Ebolavirus species to distinguish places that are moderated among human pathogenic species yet extraordinary in nonpathogenic (RESTV-explicit transformations). Mapping of these RESTV-explicit transformations and known utilitarian destinations to the 3D structures uncovers bunches of RESTV-explicit changes on the surfaces of GP, VP35 and VP24. These bunches don't cover with the known useful locales and may propose novel connection destinations with host proteins.Based on this review we decided to study physicochemical protperties of Ebolavirus along with Gene structural information and sequence homology to interpret significant aspects on Ebola virus. Ebola Virus Disease (EVD) is a rare and deadly disease in people and nonhuman primates. The viruses that cause EVD are located mainly in sub-Saharan Africa. People can get EVD through direct contact with an infected animal (bat or nonhuman primate) or a sick or dead person infected with Ebola virus. The U.S. Food and Drug Administration (FDA) has approved the Ebola vaccine rVSV-ZEBOV (tradename "Ervebo") for the prevention of EVD. The rVSV-ZEBOV vaccine has been found to be safe and protective against only the Zaire ebolavirus species of ebolavirus. Ebola virus disease (EVD), one of the deadliest viral diseases, was discovered in 1976 when two consecutive outbreaks of fatal hemorrhagic fever occurred in different parts of Central Africa. The first outbreak occurred in the Democratic Republic of Congo (formerly Zaire) in a village near the Ebola River, which gave the virus its name. The second outbreak occurred in what is now South Sudan, approximately 500 miles (850 km) away. Initially, public health officials assumed these outbreaks were a single event associated with an infected person who traveled between the two locations. However, scientists later discovered that the two outbreaks were caused by two genetically distinct viruses: Zaire ebolavirus and Sudan ebolavirus. After this discovery, scientists concluded that the virus came from two

different sources and spread independently to people in each of the affected areas. Viral and epidemiologic data suggest that Ebola virus existed long before these recorded outbreaks occurred. Factors like population growth, encroachment into forested areas, and direct interaction with wildlife (such as bushmeat consumption) may have contributed to the spread of the Ebola virus. Following the discovery of the virus, scientists studied thousands of animals, insects, and plants in search of its source (called reservoir among virologists, people who study viruses). Gorillas, chimpanzees, and other mammals may be implicated when the first cases of an EVD outbreak in people occur. However, they - like people - are "dead-end" hosts, meaning the organism dies following the infection and does not survive and spread the virus to other animals. Like other viruses of its kind, it is possible that the reservoir host animal of Ebola virus does not experience acute illness despite the virus being present in its organs, tissues, and blood. Thus, the virus is likely maintained in the environment by spreading from host to host or through intermediate hosts or vectors. African fruit bats are likely involved in the spread of Ebola virus and may even be the source animal (reservoir host). Scientists continue to search for conclusive evidence of the bat's role in transmission of Ebola. The most recent Ebola virus to be detected, Bombali virus, was identified in samples from bats collected in Sierra Leone. The use of contaminated needles and syringes during the earliest outbreaks enabled transmission and amplification of Ebola virus. During the first outbreak in Zaire (now Democratic Republic of Congo -DRC), nurses in the Yambuku mission hospital reportedly used five syringes for 300 to 600 patients a day. Close contact with infected blood, reuse of contaminated needles, and improper nursing techniques were the source for much of the human-tohuman transmission during early Ebola outbreaks. In 1989, Reston ebolavirus was discovered in research monkeys imported from the Philippines into the U.S. Later, scientists confirmed that the virus spread throughout the monkey population through droplets in the air (aerosolized transmission) in the facility. However, such airborne transmission is not proven to be a significant factor in human outbreaks of Ebola.4 The discovery of the Reston virus in these monkeys from the Philippines revealed that Ebola was no longer confined to African settings, but was present in Asia as well.By the 1994 Cote d'Ivoire outbreak, scientists and public health officials had a better understanding of how Ebola virus spreads and progress was made to reduce transmission through the use of face masks, gloves and gowns for healthcare personnel. In addition, the use of disposable equipment, such as needles, was introduced. During the 1995 Kikwit, Zaire (now DRC) outbreak, the international public health community played a strong role, as it was now widely agreed that containment and control of Ebola were paramount. Ebola virus disease (EVD) is a life-threatening viral disease with a fatality rate ranging from around 30% to 90%. The first EVD outbreak was reported in the 1970s in Zaire (now the Democratic Republic of the Congo). Until 2013, most outbreaks occurred in the Central Africa region, including Zaire, Sudan and Uganda. However, between March and October 2014, over 10 000 cases of EVD have been recorded in West Africa, such as in Guinea, Liberia, Sierra Leone, and Nigeria, and a few hospital or secondary infections of EVD have occurred in Spain and the United States of America. EVD is presently one of the world's most feared diseases. In this literature review, we describe the epidemiology, clinical features, diagnosis, and treatment of EVD.

The virus is thought to be initially acquired by exposure to body fluids or tissue from infected animals, such as bats and non-human primates; however, the natural reservoir and mode of transmission to humans has not been confirmed. Laboratory testing of reservoir competence shows that successful infection is possible in bats and rodents, but not in plants or arthropods. Animal to human transmission may occur during hunting and consumption of the reservoir species or infected nonhuman primates. The practice of butchering or eating bush meat or food contaminated with bat faeces (three species of tree roosting bats have been implicated as a reservoir) is also thought to contribute. Human to human transmission occurs through contact with body fluids from In early epidemics, the re-use of non-sterile infected patients. injections was responsible for many healthcare associated transmissions. However, although this remains a risk, most cases result from close physical contact or contact with body fluids (such as sweat, blood, faeces, vomit, saliva, genital secretions, urine, and breast milk) of infected patients. In a study of viral shedding in various body fluids, Ebola virus was isolated from saliva, breast milk, stool, tears, and semen up to 40 days after the onset of illness, confirming the possibility of delayed sexual transmission. Virus may be found in urine during recovery, and the duration of this phenomenon needs further study. Infection through inhalation is possible in non-human primates, but there is no evidence for airborne transmission in humans.Outside endemic areas, Ebola virus infection is rare and is usually imported.Travellers from affected areas, and laboratory scientists and others working with potentially infected materials and animals, are at high risk.

RESULTS AND DISCUSSION MODULE-1

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	63(8.5%)	52(7.0%)	60(8.1%)	53(7.2%)	54(7.3%)
	Arginine	(Arg)	31(4.2%)	27(3.7%)	39(5.3%)	33(4.5%)	29(3.9%)
	Asparagine	(Asn)	43(5.8%)	34(4.6%)	40(5.4%)	33(4.5%)	45(6.1%)
NUCLEO-PROTEIN	Aspartic acid	(Asp)	57(7.7%)	59(8.0%)	59(8.0%)	59(8.0%)	48(6.5%)
	Cysteine	(Cys)	03(0.4%)	03(0.4%)	03(0.4%)	03(0.4%)	03(0.4%)
	Glutamine	(Gln)	51(6.9%)	47(6.4%)	52(7.0%)	53(7.2%)	49(6.6%)
	Glutamic acid	(Glu)	56(7.6%)	58(7.9%)	59(8.0%)	59(8.0%)	63(8.5%)
	Glycine	(Gly)	37(5.0%)	53(7.2%)	42(5.7%)	41(5.5%)	37(5.0%)
	Histidine	(His)	25(3.4%)	25(3.4%)	28(3.8%)	30(4.1%)	30(4.1%)
	Iso-Leucine	(Ile)	38(5.1%)	29(3.9%)	33(4.5%)	29(3.9%)	34(4.6%)
	Leucine	(Leu)	62(8.4%)	77(10.4%)	74(10.0%)	67(9.1%)	64(8.7%)
	Lysine	(Lys)	37(5.0%)	36(4.9%)	31(4.2%)	38(5.1%)	41(5.5%)
	Methionine	(Met)	20(2.7%)	13(1.8%)	15(2.0%)	20(2.7%)	17(2.3%)
	Phenyl Alanine	(Phe)	25(3.4%)	24(3.3%)	25(3.4%)	26(3.5%)	26(3.5%)
	Proline	(Pro)	40(5.4%)	42(5.7%)	40(5.4%)	42(5.7%)	37(5.0%)
	Serine	(Ser)	47(6.4%)	49(6.6%)	44(6.0%)	48(6.5%)	51(6.6%)
	Threonine	(Thr)	41(5.5%)	39(5.3%)	32(4.3%)	38(5.1%)	49(6.9%)
	Tryptophan	(Tıp)	04(0.5%)	04(0.5%)	05(0.7%)	04(0.5%)	05(0.7%)
	Tyrosine	(Tyr)	22(3.0%)	22(3.0%)	24(3.2%)	21(2.8%)	21(2.8%)
	Valine	(Val)	37(5.0%)	45(6.1%)	34(4.6%)	42(5.7%)	36(4.9%)
Molecular weight			82905.24	81804.90	83452.62	83286.68	83308.50
Theoritical pI			4.90	4.73	4.91	4.98	5.13
Atomic composition			11487	11365	11557	11535	11541
Total number of positively charged residu	ies		68	63	70	71	70
Total number of Negatively charged resid	lues		113	117	118	118	111
Extinction coefficient assuming cystine re	sidues		54905M ⁻¹ cm ⁻¹	54905M ⁻¹ cm ⁻¹	63385M ⁻¹ cm ⁻¹	53415M ⁻¹ cm ⁻¹	58915M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			0.662	0.671	0.760	0.641	0.707
Extinction coefficient with out cystine resi	idues		54780M ⁻¹ cm ⁻¹	54780M ⁻¹ cm ⁻¹	63260M ⁻¹ cm ⁻¹	53290M ⁻¹ cm ⁻¹	58790M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			0.661	0.670	0.758	0.640	0.706
Instability Index			45.60	38.60	46.18	50.31	46.88
Aliphatic Index			75.82	80.75	77.93	74.32	73.15
Grand Average of Hydrophaticity			-0.642	-0.565	-0.688	-0.691	-0.714

Table-1:The above table describes different physico-chemical properties associated with the nucleo-protein of Ebola virus species, in which all forms of nucleo-protein in all species of the ebola virus species have same number and composition of the aminoacids on the whole but varieswhen compared with the individual aminoacids. When we calculated average isotope mass of the aminoacid in the protein and one watermolecule the total molecular weight of the protein is estimated to be in this order i.e;83452.62 >83308.50 >83286.68 >82905.24 >81804.90.i.e; Reston ebola virus with greater molecular weight and Sudan Ebolavirus with the smaller molecular weight.Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database.when we calculated the sums of different aminoacid contributions assuming them as independent with out considering the secondary and tertiary structures, we observed similar values of extinction coefficient for Bundibugyo and Sudan ebola virus with and with out assuming cysteine residues with different absorbance. Thenucleo-protein of sudan ebola virus is more stable when compared with the other forms of the virus species with value 38.60 as the value is less than 40 and Zaire Ebola virus is more unstable as it exceeds value greater than 40 .when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed 80.75(Sudan Ebolavirus) > 77.93(Reston Ebolavirus) > 75.82 (Bundibugyo Ebolavirus)>74.32 (Zaire Ebolavirus) >73.15 (Tai forest Ebola virus) and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the Sudan Ebolavirus(-0.565) is greater and for the TaiforestEbolavirus(-0.714)is-less

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	25(7.3%)	31(9.4%)	23(7.0%)	27(7.9%)	27(7.9%)
	Arginine	(Arg)	16(4.7%)	13(4.0%)	13(4.0%)	18(5.3%)	18(5.3%)
	Asparagine	(Asn)	10(2.9%)	12(3.6%)	14(4.3%)	14(4.1%)	15(4.4%)
POLYMERASE COMPLEX	Aspartic acid	(Asp)	18(5.3%)	20(6.1%)	22(6.7%)	17(5.0%)	21(6.2%)
PROTEIN	Cysteine	(Cys)	07(2.1%)	05(1.5%)	07(2.1%)	08(2.4%)	08(2.3%)
	Glutamine	(Gln)	18(5.3%)	18(5.5%)	15(4.6%)	23(6.8%)	20(5.9%0
	Glutamic acid	(Glu)	20(5.9%)	19(5.8%)	17(5.2%)	20(5.9%)	21(6.2%)
	Glycine	(Gly)	19(5.6%)	17(5.2%)	16(4.9%)	20(5.9%)	18(5.3%)
	Histidine	(His)	07(2.1%)	07(2.1%)	05(1.5%)	07(2.1%)	08(2.3%)
	Iso-Leucine	(Ile)	27(7.9%)	27(8.2%)	23(7.0%)	23(6.8%)	28(8.2%)
	Leucine	(Leu)	28(8.2%)	23(7.0%)	29(8.8%)	25(7.4%)	28(8.2%)
	Lysine	(Lys)	21(6.2%)	26(7.9%)	26(7.9%)	16(4.7%)	19(5.6%)
	Methionine	(Met)	07(2.1%)	05(1.5%)	09(2.7%)	08(2.4%)	07(2.1%)
	Phenyl Alanine	(Phe)	09(2.6%)	09(2.7%)	07(2.1%)	09(2.6%)	09(2.6%)
	Proline	(Pro)	26(7.6%)	23(7.0%)	24(7.3%)	24(7.1%)	26(7.6%)
	Serine	(Ser)	26(7.6%)	25(7.6%)	26(7.9%)	26(7.6%)	23(6.7%)
	Threonine	(Thr)	30(8.8%)	20(6.1%)	23(7.0%)	28(8.2%)	24(7.0%)
	Tryptophan	(Trp)	03(0.9%)	03(0.9%)	03(0.9%)	03(0.9%)	03(0.9%)
	Tyrosine	(Tyr)	05(1.5%)	07(2.1%)	09(2.7%)	06(1.8%)	05(1.5%)
	Valine	(Val)	19(5.6%)	19(5.8%)	18(5.5%)	18(5.3%)	13(3.8%)
Molecular weight	•		37399.85	36116.21	36409.75	37362.36	37732.92
Theoritical pI			6.67	7.05	6.95	6.19	5.94
Atomic composition			5286	5104	5135	5226	5296
Total number of positively charged residu	ies		37	39	39	34	37
Total number of Negatively charged resid	lues		38	39	39	37	42
Extinction coefficient assuming cystine re	sidues		24325M ⁻¹ cm ⁻¹	27180M ⁻¹ cm ⁻¹	30285M ⁻¹ cm ⁻¹	25940M ⁻¹ cm ⁻¹	24450M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			0.650	0.753	0.832	0.694	0.648
Extinction coefficient with out cystine residues			23950M ⁻¹ cm ⁻¹	26930M ⁻¹ cm ⁻¹	29910M ⁻¹ cm ⁻¹	25440M ⁻¹ cm ⁻¹	23950M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			0.640	0.746	0.821	0.681	0.635
Instability Index			50.17	45.04	46.31	47.32	46.50
Aliphatic Index			86.39	85.44	84.50	78.35	83.02
Grand Average of Hydrophaticity			-0.290	-0.369	-0.380	-0.409	-0.438

Table-2: The different physico-chemical properties of polymerase complex protein of the ebola virus is described in the above table in which, the total number shows approximation in its value(Similarity in total number of Amino acids showing similarity in two to three amino acid number)but differs in the individual amino acids.Average isotope mass on protein and one water molecule with respect to each aminoacid is calculated ,then the total molecular weight of the protein is obtained in this order i .e;37732.92 > 37399.85>37362.36 >36409.75 >36116.21. By this we can say that Tai forest Ebola virus having greater molecular weight and Sudan Ebola virus with smaller molecular weight. Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the databaseAssuming the different independent amino acid contributions with out considering the secondary and tertiary structures, we observed different values of Extinction coefficient with different absorbance values in both cases of assuming and non assuming cysteine residues. All the Polymerase complex proteins in all the Ebola virus species is not stable and this can be justified based upon the values we got i.e; all the values obtained is greater than 40. When the positive factor which explains the increment phenomenon of the globular protein and volume occupied by the aliphatic side chains is determined the values are 78.35 (Zaire Ebolavirus)> 83.02(Tai forest Ebolavirus)>84.50 (Reston Ebolavirus) >85.44(Sudan Ebolavirus) >86.39(Bundibugyo Ebolavirus). The repelling capacity of the protein in Bundibugyo Ebolavirus(-0.290) is higher and the repelling capacity of protein in the Tai forest Ebola virus(-0.438)is less

			Tai forest Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus
Number and composition of amino						
acids	Alanine	(Ala)	19(5.8%)	21(6.4%)	23(6.9%)	22(6.7%)
	Arginine	(Arg)	12(3.7%)	10(3.1%)	11(3.3%)	11(3.4%)
MATRIX - PROTEIN	Asparagine	(Asn)	16(4.9%)	11(3.4%)	13(3.9%)	14(4.3%)
	Aspartic acid	(Asp)	18(5.5%)	19(5.8%)	20(6.0%)	17(5.2%)
	Cysteine	(Cys)	02(0.6%)	02(0.6%)	02(0.6%)	02(0.6%)
	Glutamine	(Gln)	12(3.7%)	15(4.6%)	14(4.2%)	11(3.4%)
	Glutamic acid	(Glu)	08(2.5%)	07(2.1%)	06(1.8%)	09(2.8%)
	Glycine	(Gly)	19(5.8%)	20(6.1%)	19(5.7%)	21(6.4%)
	Histidine	(His)	07(2.1%)	08(2.5%)	09(2.7%)	07(2.1%)
	Iso-Leucine	(Ile)	26(8.0%)	24(7.4%)	25(7.6%)	27(8.3%)
	Leucine	(Leu)	35(10.7%)	35(10.7%)	36(10.9%)	33(10.1%)
	Lysine	(Lys)	16(4.9%)	20(6.1%)	18(5.4%)	18(5.5%)
	Methionine	(Met)	11(3.4%)	11(3.4%)	08(2.4%)	08(2.5%)
	Phenyl Alanine	(Phe)	09(2.8%)	09(2.8%)	07(2.1%)	10(3.1%)
	Proline	(Pro)	37(11.3%)	36(11.0%)	40(12.1%)	37(11.3%)
	Serine	(Ser)	22(6.7%)	23(7.1%)	22(6.6%)	22(6.7%)
	Threonine	(Thr)	31(9.5%)	23(7.1%)	23(6.9%)	29(8.9%)
	Tryptophan	(Trp)	02(0.6%)	02(0.6%)	02(0.6%)	02(0.6%)
	Tyrosine	(Tyr)	07(2.1%)	08(2.5%)	08(2.4%)	06(1.8%)
	Valine	(Val)	17(5.2%)	22(6.7%)	25(7.6%)	20(6.1%)
Molecular weight	•		35525.19	35475.35	35820.66	35182.83
Theoritical pI			8.44	8.91	8.73	8.76
Atomic composition			5056	5064	5123	5026
Total number of positively charged resid	ues		28	30	29	29
Total number of Negatively charged resi	dues		26	26	26	26
Extinction coefficient assuming cystine r	esidues		21555M ⁻¹ cm ⁻¹	23045M ⁻¹ cm ⁻¹	23045M ⁻¹ cm ⁻¹	20065M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			0.607	0.650	0.643	0.570
Extinction coefficient with out cystine re-	sidues		21430M ⁻¹ cm ⁻¹	22920M ⁻¹ cm ⁻¹	22920M ⁻¹ cm ⁻¹	19940M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			0.603	0.646	0.640	0.567
Instability Index			40.13	41.76	41.41	40.39
Aliphatic Index			93.93	96.60	100.73	96.32
Grand Average of Hydrophaticity			-0.117	-0.063	-0.048	-0.052

Table-3: The matrix protein of all Ebola virus species shows approximation in the values illustrating total number and composition of the amino acids but completely varies in the individual amino acids.On the protein and Water molecule the average isotope mass with respect to each amino acid is calculated and the values are obtained to be 35820.66>35525.19 >35475.35 >35458.31 >35182.83 i.e;Reston Ebolavirus with the greater molecular weight and Zaire Ebolavirus with smaller molecular weight. Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the databaseWithout considering the secondary and tertiary structures when independent aminoacid contributions are studied we observed different values of the extinction coefficient with the different values of the absorbance in both the cases i.e; assuming and non assuming the cysteine residues. The matrix protein of the all the species of the Ebola virus are not stable as the values are greater than 40. The increment phenomeneon of the globular protein explaining the positive factor and volume occupied by the aliphatic side chains are studied then the obtained values are in this order100.73 (Reston Ebolavirus) >96.63 (Bundibugyo Ebolavirus)>96.60(Sudan Ebolavirus) > 96.32(Zaire Ebolavirus)>93.93(Taiforest Ebolavirus).The Protein repelling capacity in the Bundibugyo Ebolavirus(-0.037) is greater and the repelling capacity of the Tai forest Ebola virus(-0.117) is less.

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	14(4.6%)	20(6.3%)	15(4.5%)	16(5.4%)	17(5.6%)
	Arginine	(Arg)	14(4.6%)	21(6.6%)	20(6.0%)	17(5.7%)	15(5.0%)
	Asparagine	(Asn)	18(6.0%)	15(4.7%)	19(5.7%)	13(4.4%)	17(5.6%)
SECOND SECRETED GLYCO	Aspartic acid	(Asp)	12(4.0%)	16(5.0%)	13(3.9%)	13(4.4%)	13(4.3%)
FROTEIN	Cysteine	(Cys)	05(1.7%)	05(1.6%)	06(1.8%)	05(1.7%)	06(2.0%)
	Glutamine	(Gln)	08(2.6%)	12(3.8%)	11(3.3%)	09(3.0%)	07(2.3%)
	Glutamic acid	(Glu)	17(5.6%)	17(5.3%)	18(5.4%)	18(6.1%)	16(5.3%)
	Glycine	(Gly)	21(7.0%)	21(6.6%)	24(7.3%)	24(8.1%)	21(7.0%)
	Histidine	(His)	08(2.6%)	07(2.2%)	07(2.1%)	05(1.7%)	08(2.6%)
	Iso-Leucine	(Ile)	11(3.6%)	16(5.0%)	11(3.3%)	14(4.7%)	14(4.6%)
	Leucine	(Leu)	25(8.3%)	29(9.1%)	34(10.3%)	25(8.4%)	25(8.3%)
	Lysine	(Lys)	18(6.0%)	16(5.0%)	19(5.7%)	16(5.4%)	19(6.3%)
	Methionine	(Met)	03(1.0%)	02(0.6%)	04(1.2%)	01(0.3%)	03(1.0%)
	Phenyl Alanine	(Phe)	21(7.0%)	21(6.6%)	17(5.1%)	20(6.7%)	22(7.3%)
	Proline	(Pro)	20(6.6%)	18(5.7%)	23(6.9%)	17(5.7%)	18(6.0%)
	Serine	(Ser)	16(5.3%)	22(6.9%)	25(7.6%)	20(6.7%)	17(5.6%)
	Threonine	(Thr)	27(8.9%)	23(7.2%)	27(8.2%)	26(8.8%)	25(8.3%)
	Tryptophan	(Trp)	06(2.0%)	07(2.2%)	08(2.4%)	06(2.0%)	06(2.0%)
	Tyrosine	(Tyr)	11(3.6%)	11(3.5%)	10(3.0%)	11(3.7%)	09(3.0%)
	Valine	(Val)	27(8.9%)	19(6.0%)	20(6.0%)	21(7.1%)	24(7.9%)
Molecular weight			34184.97	36146.05	37352.50	33391.87	34082.99
Theoritical pI			8.49	8.71	9.14	8.19	8.81
Atomic composition			4793	5065	5235	4681	4786
Total number of positively charged residu	es		32	37	39	33	34
Total number of Negatively charged resid	ues		29	33	31	31	29
Extinction coefficient assuming cystine residues			49640M ⁻¹ cm ⁻¹	55140M ⁻¹ cm ⁻¹	59275M ⁻¹ cm ⁻¹	49640M ⁻¹ cm ⁻¹	46785M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			1.452	1.525	1.587	1.487	1.373
Extinction coefficient with out cystine resi	dues		49390M ⁻¹ cm ⁻¹	54890M ⁻¹ cm ⁻¹	58900M ⁻¹ cm ⁻¹	49390M ⁻¹ cm ⁻¹	46410M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			1.445	1.519	1.577	1.479	1.362
Instability Index			29.22	37.58	31.45	31.11	27.34
Aliphatic Index			77.05	78.81	75.08	77.10	79.04
Grand Average of Hydrophaticity			-0.275	-0.339	-0.440	-0.289	-0.220

Table-4:The second Secreted glycol-protein shows approximation in the total number and the composition of the aminoacid and difference when compared individual aminoacids. The average isotope mass on the protein and water molecule are examined and results are obtained in this order i.e;37352.50 >36146.05 >34184.97 >34082.99 > 3339187.By these studies we concluded that Reston Ebolavirus is having higher molecular weight and Zaire Ebolavirus with small molecular weight. Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the databaseWhen independent aminoacid contributions are studied with out considering the secondary and tertiary structure we observed different values of the extinction coefficient with different absorbance both assuming and not assuming the cysteine residues. When we studied the protein stability the secondary secreted protein of all the Ebola species , every organism shows its stability and this can be justified based on the values obtained and all the values obtained are less than 40. When the positive factor explaining the increment phenomenon of the globular proteins and aliphatic side chains are studied the values are obtained in this order .i.e;79.04(Tai forest Ebolavirus) > 78.81(Sudan Ebolavirus) > 77.10(Zaire Ebolavirus) > 77.05(Bundibugyo Ebolavirus) > 75.08(Reston Ebolavirus). The repelling capacity of the protein in the Taiforest Ebolavirus(-0.220) is greater and in the Reston Ebola virus(-0.440)isless

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	17(4.6%)	18(4.8%)	16(4.4%)	17(4.7%)	17(4.7%)
	Arginine	(Arg)	23(6.2%)	24(6.5%)	23(6.3%)	21(5.8%)	24(6.6%)
SMALL SECRETED GLYCO	Asparagine	(Asn)	17(4.6%)	17(4.6%)	17(4.6%)	13(3.6%)	17(4.7%)
PROTEIN	Aspartic acid	(Asp)	12(3.2%)	15(4.0%)	14(3.8%)	13(3.6%)	13(3.6%)
	Cysteine	(Cys)	08(2.1%)	08(2.2%)	08(2.2%)	08(2.2%)	09(2.5%)
	Glutamine	(Gln)	18(4.8%)	17(4.6%)	16(4.4%)	17(4.7%)	17(4.7%)
	Glutamic acid	(Glu)	19(5.1%)	23(6.2%)	20(5.4%)	22(6.0%)	17(4.7%)
	Glycine	(Gly)	22(5.9%)	25(6.7%)	23(6.3%)	26(7.1%)	21(5.8%)
	Histidine	(His)	08(2.1%)	10(2.7%)	08(2.2%)	04(1.1%)	07(1.9%)
	Iso-Leucine	(Ile)	13(3.5%)	19(5.1%)	13(3.5%)	16(4.4%)	15(4.1%)
	Leucine	(Leu)	29(7.8%)	33(8.9%)	34(9.3%)	34(9.3%)	30(8.2%)
	Lysine	(Lys)	22(5.9%)	22(5.9%)	23(6.3%)	25(6.9%)	23(6.3%)
	Methionine	(Met)	03(0.8%)	04(1.1%)	05(1.4%)	01(0.3%)	03(0.8%)
	Phenyl Alanine	(Phe)	23(6.2%)	21(5.6%)	20(5.4%)	22(6.0%)	24(6.6%)
	Proline	(Pro)	30(8.0%)	23(6.2%)	27(7.4%)	20(5.5%)	25(6.8%)
	Serine	(Ser)	23(6.2%)	26(7.0%)	26(7.1%)	25(6.9%)	24(6.6%)
	Threonine	(Thr)	37(9.9%)	25(6.7%)	34(9.3%)	34(9.3%)	35(9.6%)
	Tryptophan	(Trp)	08(2.1%)	08(2.2%)	09(2.5%)	08(2.2%)	08(2.2%)
	Tyrosine	(Tyr)	13(3.5%)	14(3.8%)	10(2.7%)	12(3.3%)	11(3.0%)
	Valine	(Val)	28(7.5%)	20(5.4%)	21(5.7%)	26(7.1%)	25(6.8%)
Molecular weight	•		42471.48	42584.49	41744.64	41175.11	41655.71
Theoritical pI			9.41	8.98	9.31	9.20	9.55
Atomic composition			5959	5960	5852	5809	5854
Total number of positively charged residu	ies		45	46	46	46	47
Total number of Negatively charged resid	lues		31	38	34	35	30
Extinction coefficient assuming cystine re	sidues		63870M ⁻¹ cm ⁻¹	65360M ⁻¹ cm ⁻¹	64900M ⁻¹ cm ⁻¹	62380M ⁻¹ cm ⁻¹	60890M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			1.504	1.535	1.555	1.515	1.462
Extinction coefficient with out cystine res	idues		63370M ⁻¹ cm ⁻¹	64860M ⁻¹ cm ⁻¹	64400M ⁻¹ cm ⁻¹	61880M ⁻¹ cm ⁻¹	60390M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			1.492	1.523	1.543	1.503	1.450
Instability Index			39.79	39.34	31.30	34.79	34.57
Aliphatic Index			70.24	74.95	70.90	78.96	72.60
Grand Average of Hydrophaticity			-0.440	-0.469	-0.494	-0.321	-0.398

Table-5:The Small Secreted Glyco-Protein although shows approximation in total number and composition of aminoacids, but varies when compared to individual aminoacids. In the protein and one water molecule when we calculated the average isotope mass, the total molecular weight of the protein the order is obtained in this way i.e;42584.49 >42471.48>41744.64 > 41655.71 >41175.11.Hence by this we can say that the molecular weight of the sudan Ebolavirus is greater and the molecular weight of the Zaire Ebolavirus is Smaller. Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database When the contributions of the independent aminoacids are studied with out considering the secondary and tertiary structure we observed different values of the extinction coefficient along with their absorbance values both with assuming and with out assuming cysteine residues. The small secreted glycoprotein in all species of the Ebola virus is stable as it has value less than 40. when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed the values in this order i.e;78.96 (Zaire Ebolavirus) >74.95(Sudan Ebolavirus) > 72.60(Taiforest Ebolavirus) >70.90 (Reston Ebolavirus)> 70.24(Bundibugyo Ebolavirus).and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the more(-0.321) Ebolavirus(-0.494) Zaire Ebolavirus is and Reston is less

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	34(5.0%)	43(6.4%)	41(6.1%)	48(7.1%)	41(6.1%)
	Arginine	(Arg)	35(5.2%)	33(4.9%)	28(4.1%)	33(4.9%)	28(4.1%)
	Asparagine	(Asn)	43(6.4%)	38(5.6%)	43(6.4%)	37(5.5%)	40(5.9%)
SPIKE GLYCO-PROTEIN	Aspartic acid	(Asp)	34(5.0%)	29(4.3%)	30(4.4%)	35(5.2%)	30(4.4%)
	Cysteine	(Cys)	12(1.8%)	13(1.9%)	13(1.9%)	12(1.8%)	13(1.9%)
	Glutamine	(Gln)	26(3.8%)	28(4.1%)	31(4.6%)	27(4.0%)	25(3.7%)
	Glutamic acid	(Glu)	38(5.6%)	40(5.9%)	35(5.2%)	36(5.3%)	37(5.5%)
	Glycine	(Gly)	40(5.9%)	51(7.5%)	49(7.2%)	53(7.8%)	47(7.0%)
	Histidine	(His)	20(3.0%)	15(2.2%)	15(2.2%)	18(2.7%)	18(2.7%)
	Iso-Leucine	(Ile)	39(5.8%)	48(7.1%)	39(5.8%)	42(6.2%)	40(5.9%)
	Leucine	(Leu)	52(7.7%)	60(8.9%)	57(8.4%)	51(7.5%)	54(8.0%)
	Lysine	(Lys)	26(3.8%)	27(4.0%)	28(4.1%)	30(4.4%)	31(4.6%)
	Methionine	(Met)	06(0.9%)	06(0.9%)	10(1.5%)	04(0.6%)	07(1.0%)
	Phenyl Alanine	(Phe)	29(4.3%)	24(3.6%)	22(3.2%)	30(4.4%)	32(4.7%)
	Proline	(Pro)	56(8.3%)	46(6.8%)	51(7.5%)	35(5.2%)	49(7.2%)
	Serine	(Ser)	36(5.3%)	47(7.0%)	55(8.1%)	48(7.1%)	41(6.1%)
	Threonine	(Thr)	81(12.0%)	70(10.4%)	65(9.6%)	73(10.8%)	77(11.4%)
	Tryptophan	(Trp)	14(2.1%)	14(2.1%)	14(2.1%)	14(2.1%)	14(2.1%)
	Tyrosine	(Tyr)	15(2.2%)	16(2.4%)	17(2.5%)	15(2.2%)	12(1.8%)
	Valine	(Val)	40(5.9%)	28(4.1%)	34(5.0%)	35(5.2%)	40(5.9%)
Molecular weight	• •		75689.18	74594.18	74416.73	74464.46	74676.43
Theoritical pI			6.01	5.97	5.96	6.16	6.16
Atomic composition			10556	10434	10365	10375	10441
Total number of positively charged reside	ues		61	60	56	63	59
Total number of Negatively charged resid	lues		72	69	65	71	67
Extinction coefficient assuming cystine re	esidues		100100M ⁻¹ cm ⁻¹	101590M ⁻¹ cm ⁻¹	103080M ⁻¹ cm ⁻¹	100100M ⁻¹ cm ⁻¹	95630M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			1.323	1.362	1.385	1.344	1.281
Extinction coefficient with out cystine res	idues		99350M ⁻¹ cm ⁻¹	100840M ⁻¹ cm ⁻¹	102330M ⁻¹ cm ⁻¹	99350M ⁻¹ cm ⁻¹	94880M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			1.313	1.352	1.375	1.334	1.271
Instability Index			38.53	43.39	42.36	38.36	37.21
Aliphatic Index			74.69	80.68	75.92	75.77	77.46
Grand Average of Hydrophaticity			-0.466	-0.352	-0.404	-0.380	-0.320

Table-6: The above table describes different physico-chemical properties associated with the Spike glycoProtein of Ebola virus species, in which all forms of spike glycol-protein in all species of the ebola virus species have same number and composition of the aminoacids(approximate values) on the whole but varies when compared with the individual aminoacids. When we calculated average isotope mass of the aminoacid in the protein and one watermolecule the total molecular weight of the protein is estimated to be in this order i.e;75689.18 >7467.43 >74594.18 >74464.46 >74416.73,by this we concluded that the Bundibugyo Ebolavirus having greater molecular weight and Reston Ebolavirus with smaller molecular weight.Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database.when we calculated the sums of different aminoacid contributions assuming them as independent with out considering the secondary and tertiary structures, we observed different values of extinction coefficient with and with out assuming cysteine residues with different absorbance. The spike glycol-protein of the sudan ebol virus and reston Ebolavirus is more unstable when compared with the other forms of the virus species as values are greater than 40 when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed 80.68(Sudan Ebolavirus) >77.46(Tai Forest Ebolavirus) >75.92(Reston Ebolavirus) >75.77 (Zaire Ebolavirus)>74.69(Bundibugyo Ebolavirus)and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the Taiforest Ebolavirus(-0.320) is more and for Bundibugyo Ebolavirus(-0.466), it is less.

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	19(7.6%)	15(6.0%)	15(6.0%)	16(6.4%)	20(8.0%)
	Arginine	(Arg)	10(4.0%)	11(4.4%)	11(4.4%)	10(4.0%)	08(3.2%)
	Asparagine	(Asn)	13(5.2%)	16(6.4%)	14(5.6%)	17(6.8%)	13(5.2%)
MEMBRANE ASSOCIATED	Aspartic acid	(Asp)	10(4.0%)	09(3.6%)	10(4.0%)	09(3.6%)	09(3.6%)
PROTEIN	Cysteine	(Cys)	01(0.4%)	01(0.4%)	01(0.4%)	01(0.4%)	01(0.4%)
	Glutamine	(Gln)	14(5.6%)	10(4.0%)	12(4.8%)	12(4.8%)	15(6.0%)
	Glutamic acid	(Glu)	10(4.0%)	11(4.4%)	08(3.2%)	10(4.0%)	10(4.0%)
	Glycine	(Gly)	11(4.4%)	11(4.4%)	13(5.2%)	13(5.2%)	13(5.2%)
	Histidine	(His)	07(2.8%)	06(2.4%)	06(2.4%)	07(2.8%)	06(2.4%)
	Iso-Leucine	(Ile)	17(6.8%)	18(7.2%)	17(6.8%)	19(7.6%)	17(6.8%)
	Leucine	(Leu)	38(15.1%)	33(13.1%)	36(14.3%)	37(14.7%)	39(15.5%)
	Lysine	(Lys)	16(6.4%)	13(5.2%)	13(5.2%)	15(6.0%)	17(6.8%)
	Methionine	(Met)	08(3.2%)	09(3.6%)	09(3.6%)	09(3.6%)	08(3.2%)
	Phenyl Alanine	(Phe)	11(4.4%)	10(4.0%)	13(5.2%)	11(4.4%)	09(3.6%)
	Proline	(Pro)	09(3.6%)	13(5.2%)	12(4.8%)	09(3.6%)	10(4.0%)
	Serine	(Ser)	20(8.0%)	19(7.6%)	21(8.4%)	21(8.4%)	18(7.2%)
	Threonine	(Thr)	17(6.8%)	18(7.2%)	18(7.2%)	17(6.8%)	20(8.0%)
	Tryptophan	(Tıp)	05(2.0%)	05(2.0%)	05(2.0%)	05(2.0%)	05(2.0%)
	Tyrosine	(Tyr)	02(0.8%)	05(2.0%)	03(1.2%)	03(1.2%)	02(0.8%)
	Valine	(Val)	13(5.2%)	18(7.2%)	14(5.6%)	10(4.0%)	11(4.4%)
Molecular weight			28163.88	28276.97	28168.88	28218.85	27887.58
Theoritical pI			9.49	9.18	9.55	9.49	9.46
Atomic composition			4031	4034	4019	4023	3998
Total number of positively charged residu	ies		26	24	24	25	25
Total number of Negatively charged resid	lues		20	20	18	19	19
Extinction coefficient assuming cystine re	sidues		30480M ⁻¹ cm ⁻¹	34950M ⁻¹ cm ⁻¹	31970M ⁻¹ cm ⁻¹	31970M ⁻¹ cm ⁻¹	30480M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			1.082	1.236	1.135	1.133	1.093
Extinction coefficient with out cystine res	idues		30480M ⁻¹ cm ⁻¹	34950M ⁻¹ cm ⁻¹	31970M ⁻¹ cm ⁻¹	31970M ⁻¹ cm ⁻¹	30480M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			1.082	1.236	1.135	1.133	1.093
Instability Index			35.69	24.36	39.95	36.51	34.47
Aliphatic Index			108.05	106.02	104.50	104.94	107.69
Grand Average of Hydrophaticity			0.040	0.049	0.078	-0.013	0.028

Table-1: The above table describes different physico-chemical properties associated with the membrane associated protein of Ebola virus species, in which allforms of membrane associated protein in all species of the ebola virus species have same number and composition of the aminoacids(approximate values) on the whole but varies when compared with the individual aminoacids. When we calculated average isotope mass of the aminoacid in the protein and one watermolecule the total molecular weight of the protein is estimated to be in this order i.e;28276.97 >28218.85 >28168.88>28163.88 >27887.58 .By this we can say that Sudan Ebolavirus has greater molecular weight and Taiforest Ebolavvirus has smaller molecular weight.Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database.when we calculated the sums of different aminoacid contributions assuming them as independent with out considering the secondary and tertiary structures, we observed similar values of extinction coefficient and absorbance in all species of Ebola virus with and with out assuming cysteine residues. The membrane associated protein of all virus species is more stable.when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed the values in this order i.e;108.05(Bundibugyo Ebolavirus) >107.69(Taiforest Ebolavirus) > 106.02(Sudan Ebolavirus)> 104.94 (Zaire Ebolavirus) > 10.50(Reston Ebolavirus) and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the Zaire Ebolavirus(-0.013) is smaller and Reston Ebolavirus(0.078) is more

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	14(4.8%)	20(6.9%)	19(6.6%)	21(7.3%)	16(5.5%)
	Arginine	(Arg)	26(9.0%)	23(8.0%)	23(8.0%)	25(8.7%)	23(8.0%)
	Asparagine	(Asn)	05(1.7%)	10(3.5%)	13(4.5%)	06(2.1%)	06(2.1%)
MINOR NUCLEORROTERI	Aspartic acid	(Asp)	19(6.6%)	18(6.2%)	18(6.3%)	16(5.6%)	15(5.2%)
MINOR-NUCLEOPROTEIN	Cysteine	(Cys)	07(2.4%)	06(2.1%)	07(2.4%)	08(2.8%)	08(2.8%)
	Glutamine	(Gln)	18(6.2%)	16(5.6%)	17(5.9%)	18(6.2%)	17(5.9%)
	Glutamic acid	(Glu)	18(6.2%)	16(5.6%)	16(5.6%)	21(7.3%)	19(6.6%)
	Glycine	(Gly)	13(4.5%)	14(4.9%)	10(3.5%)	13(4.5%)	12(4.2%)
	Histidine	(His)	09(3.1%)	05(1.7%)	09(3.1%)	09(3.1%)	08(2.8%)
	Iso-Leucine	(Ile)	12(4.2%)	06(2.1%)	13(4.5%)	10(3.5%)	13(4.5%)
	Leucine	(Leu)	35(12.1%)	36(12.5%)	35(12.2%)	32(11.1%)	33(11.4%)
	Lysine	(Lys)	14(4.8%)	16(5.6%)	14(4.9%)	15(5.2%)	16(5.5%)
	Methionine	(Met)	03(1.0%)	02(0.7%)	04(1.4%)	03(1.0%)	05(1.7%)
	Phenyl Alanine	(Phe)	09(3.1%)	10(3.5%)	08(2.8%)	08(2.8%)	08(2.8%)
	Proline	(Pro)	13(4.5%)	14(4.9%)	15(5.2%)	15(5.2%)	13(4.5%)
	Serine	(Ser)	33(11.4%)	31(10.8%)	32(11.1%)	27(9.4%)	35(12.1%)
	Threonine	(Thr)	22(7.6%)	23(8.0%)	16(5.6%)	19(6.6%)	18(6.2%)
	Tryptophan	(Trp)	04(1.4%)	04(1.4%)	04(1.4%)	04(1.4%)	04(1.4%)
	Tyrosine	(Tyr)	04(1.4%)	03(1.0%)	03(1.0%)	04(1.4%)	04(1.4%)
	Valine	(Val)	11(3.8%)	15(5.2%)	11(3.8%)	14(4.9%)	16(5.5%)
Molecular weight			32839.07	32107.22	32400.65	32520.80	32600.14
Theoritical pI			8.46	8.89	8.46	8.40	8.76
Atomic composition			4600	4509	4538	4555	4582
Total number of positively charged resid	dues		40	39	37	40	39
Total number of Negatively charged res	idues		37	34	34	37	34
Extinction coefficient assuming cystine 1	residues		28335M ⁻¹ cm ⁻¹	26845M ⁻¹ cm ⁻¹	26845M ⁻¹ cm ⁻¹	28460M ⁻¹ cm ⁻¹	28460M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			0.863	0.836	0.829	0.875	0.873
Extinction coefficient with out cystine re	esidues		27960M ⁻¹ cm ⁻¹	26470M ⁻¹ cm ⁻¹	26470M ⁻¹ cm ⁻¹	27960M ⁻¹ cm ⁻¹	27960M ⁻¹ cm ⁻¹
Absorbance with out cystine residues			0.851	0.824	0.817	0.860	0.858
Instability Index			59.23	48.85	53.74	52.08	57.49
Aliphatic Index			79.31	78.92	82.96	78.26	83.67
Grand Average of Hydrophaticity			-0.624	-0.551	-0.571	-0.607	-0.464

Table-1: The above table describes different physico-chemical properties associated with the minor nucleo- protein of Ebola virus species, in which allforms of minor nucleo protein in all species of the ebola virus species have same number and composition of the aminoacids(approximate values) on the whole but varies when compared with the individual aminoacids. When we calculated average isotope mass of the aminoacid in the protein and one water molecule the total molecular weight of the protein is estimated to be in this order i.e;32839.07 >32600.14 >32520.80 >21400.65 >32107.22.By this we can say that Bundibugyo Ebolavirus has greater molecular weight and Sudan Ebolavirus has smaller molecular weight.Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database.when we calculated the sums of different aminoacid contributions assuming them as independent with out considering the secondary and tertiary structures, we observed different values of extinction coefficient and absorbance in all species of Ebola virus with and with out assuming cysteine residues. The Minor Nucleo-protein of all virus species is more unstable, when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed the values in this order i.e;83.67(Taiforest Ebolavirus) >82.96(Reston Ebolavirus) >79.31 (Bundibugyo Ebolavirus)>78.92(Sudan Ebolavirus)>78.26 (Zaire Ebolavirus)and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the Taiforest Ebolavirus(-0.464) is greater and the value of the Bundibugyo Ebolavirus(-0.624) is less

			Bundibugyo Ebola virus	Sudan Ebola virus	Reston Ebola virus	Zaire Ebola virus	Tai forest ebola virus
Number and composition of amino							
acids	Alanine	(Ala)	121(5.5%)	122(5.5%)	115(5.2%)	119(5.4%)	127(5.7%)
	Arginine	(Arg)	113(5.1%)	131(5.9%)	113(5.1%)	118(5.3%)	119(5.4%)
	Asparagine	(Asn)	109(4.9%)	114(5.2%)	126(5.7%)	106(4.8%)	113(5.1%)
PNA DEPENDENT PNA	Aspartic acid	(Asp)	104(4.7%)	98(4.4%)	107(4.8%)	103(4.7%)	98(4.4%)
POLYMERASE	Cysteine	(Cys)	44(2.0%)	45(2.0%)	43(1.9%)	43(1.9%)	46(2.1%)
	Glutamine	(Gln)	102(4.6%)	91(4.1%)	103(4.7%)	107(4.8%)	97(4.4%)
	Glutamic acid	(Glu)	107(4.8%)	106(4.8%)	105(4.7%)	109(4.9%)	106(4.8%)
	Glycine	(Gly)	102(4.6%)	107(4.8%)	108(4.9%)	101(4.6%)	103(4.7%)
	Histidine	(His)	70(3.2%)	72(3.3%)	75(3.4%)	76(3.4%)	79(3.6%)
	Iso-Leucine	(Ile)	148(6.7%)	153(6.9%)	144(6.5%)	147(6.6%)	151(6.8%)
	Leucine	(Leu)	255(11.5%)	258(11.7%)	269(12.2%)	250(11.3%)	264(11.9%)
	Lysine	(Lys)	121(5.5%)	101(4.6%)	116(5.2%)	113(5.1%)	107(4.8%)
	Methionine	(Met)	28(1.3%)	38(1.7%)	34(1.5%)	38(1.7%)	25(1.1%)
	Phenyl Alanine	(Phe)	106(4.8%)	97(4.4%)	102(4.6%)	116(5.2%)	100(4.5%)
	Proline	(Pro)	105(4.8%)	110(5.0%)	98(4.4%)	102(4.6%)	107(4.8%)
	Serine	(Ser)	191(8.6%)	186(8.4%)	184(8.3%)	184(8.3%)	188(8.5%)
	Threonine	(Thr)	143(6.5%)	153(6.9%)	132(6.0%)	154(7.0%)	151(6.8%)
	Tryptophan	(Trp)	30(1.4%)	29(1.3%)	30(1.4%)	29(1.3%)	29(1.3%)
	Tyrosine	(Tyr)	93(4.2%)	89(4.0%)	97(4.4%)	87(3.9%)	85(3.8%)
	Valine	(Val)	118(5.3%)	110(5.0%)	111(5.0%)	110(5.0%)	115(5.2%)
Molecular weight		251649.28	251294.24	252549.04	252724.47	250746.25	
Theoritical pI			8.64	8.77	8.48	8.55	8.62
Atomic composition			35452	35386	35520	35538	35339
Total number of positively charged residues			234	232	229	231	226
Total number of Negatively charged residues			211	204	212	212	204
Extinction coefficient assuming cystine residues			306320M ⁻¹ cm ⁻¹	294860M ⁻¹ cm ⁻¹	312155M ⁻¹ cm ⁻¹	291755M ⁻¹ cm ⁻¹	289025M ⁻¹ cm ⁻¹
Absorbance assuming cystine residues			1.217	1.173	1.236	1.154	1.153
Extinction coefficient with out cystine residues			303570M ⁻¹ cm ⁻¹	292110M ⁻¹ cm ⁻¹	309530M ⁻¹ cm ⁻¹	289130M ⁻¹ cm ⁻¹	286150M ⁻¹ cm ⁻¹
Absorbance with out cystine residues		1.206	1.162	1.226	1.144	1.141	
Instability Index		39.74	42.07	41.60	41.34	40.33	
Aliphatic Index		92.08	92.48	92.57	89.80	94.07	
Grand Average of Hydrophaticity		-0.218	-0.206	-0.242	-0.230	-0.191	

Table-1: The above table describes different physico-chemical properties associated with the RNA dependent RNA Polymerase protein of Ebola virus species, in which allforms of RNA dependent RNA Polymerase in all species of the ebola virus species have same number and composition of the aminoacids(approximate values) on the whole but varies when compared with the individual aminoacids. When we calculated average isotope mass of the aminoacid in the protein and one water molecule the total molecular weight of the protein is estimated to be in this order i.e;252724.47 >252549.04>251649.28 >251294.24 >250746.25 i.e; Zaire Ebolavirus with greater molecular weight and Taiforest Ebola virus with small molecular weight..Compute pI/Mw algorithmis mainly used to enhance a region in a 2-D gel to which an a protein which is unmodified should allowed to run, and point a region in which modified form of protein should be found if the modifications are documented in the database.when we calculated the sums of different aminoacid contributions assuming them as independent with out considering the secondary and tertiary structures, we observed different values of extinction coefficient and absorbance in all species of Ebola virus with and with out assuming cysteine residues. The RNA dependent RNA polymerase of Bundibugyo Ebolavirus is more stablewhen compared to other virus species, when we determined the positive factor which explains the increment phenomenon of the globular proteins and volume occupied relatively by the aliphatic side chains we observed the values in this order i.e;94.07(Taiforest Ebolavirus)>92.57(Reston Ebolavirus) > 92.48 (Sudan Ebolavirus)>92.08 (Bundibugyo Ebolavirus)>89.80(Zaire Ebolavirus) and when we studied the phenomenon of the protein that is exhibiting the ability of repelling from the water, the hydrophobicity value of the Taiforest Ebolavirus(-0.191) is greater and the value of the Reston Ebolavirus(-0.242) is less

MODULE-2

MULTIPLE SEQUENCE ALIGNMENT

MATRIX PROTEIN

Sudan Reston TaiForest Bundibugyo Zaire	MRRVTVPTAPPAYADIGYPMSMLPIKSSRAVSGIQQKQEVLPGMDTPSNSMRPVADDNID 60 MRRGVLPTAPFAYNDIAYPMSILPTRPSVIVNETKSDVLAVPGADVPSNSMRPVADDNID 60 MRRILPTAPFEYMEAVYPMRTMNSGADNTASGPNYTTGVMTNDTPSNSLRPVADDNID 60 MRRAILPTAPPEYIEAVYPMRTVSTSINSTASGPNFPAPDVMMSDTPSNSLRPIADDNID 60 0
Sudan Reston TaiForest Bundibugyo Zaire	HTSHTPNGVASAFILEATVNVISGPKVLMKQIPIWLPLGIADQKTYSFDSTTAAIMLASY 120 HSSHTPSGVASAFILEATVNVISGTKVLMKQIPIWLPLGVADQKIYSFDSTTAAIMLASY 120 HPSHTPNSVASAFILEAMVNVISGPKVLMKQIPIWLPLGVSDQKTYSFDSTTAAIMLASY 120 HPSHTPTSVSSAFILEAMVNVISGPKVLMKQIPIWLPLGVADQKTYSFDSTTAAIMLASY 120 SAFILEAMVNVISGPKVLMKQIPIWLPLGVADQKTYSFDSTTAAIMLASY 50 ******* ****** ******************
Sudan Reston TaiForest Bundibugyo Zaire	TITHFGKANNPLVRVNRLGQGIPDHPLRLLRMGNQAFLQEFVLPPVQLPQYFTFDLTALK180 TVTHFGKISNPLVRVNRLGPGIPDHPLRLLRLGNQAFLQEFVLPPVQLPQYFTFDLTALK180 TITHFGKTSNPLVRINRLGPGIPDHPLRLRIGNQAFLQEFVLPPVQLPQYFTFDLTALK180 TITHFGKATNPLVRVNRLGPGIPDHPLRLLRIGNQAFLQEFVLPPVQLPQYFTFDLTALK180 *:****
Sudan Reston TaiForest Bundibugyo Zaire	LVTQPLPAATWTDETPSNLSGALRPGLSFHPKLRPVLLPGKTGKKGHVSDLTAPDKIQTI240 LITQPLPAATWTDETPAGAVNALRPGLSLHPKLRPILLPGKTGKKGHASDLTSPDKIQTI240 LITQPLPAATWTDETPAVSTGTLRPGISFHPKLRPILLPGKTGKKGSNSDLTSPDKIQAI240 LITQPLPAATWTDDTPTGPTGILRPGISFHPKLRPILLPGKTGKKGNSADLTSPDKIQAI240 LITQPLPAATWTDDTPTGSNGALRPGISFHPKLRPILLPNKSGKKGNSADLTSPEKIQAI170 *:***********************************
Sudan Reston TaiForest Bundibugyo Zaire	VNLMQDFKIVPIDPAKSIIGIEVPELLVHKLTGKKMSQKNGQPIIPVLLPKYIGLDPISP300 MNAIPDLKIVPIDPTKNIVGIEVPELLVQRLTGKKPQFKNGQPIIPVLLPKYVGLDPISP300 MNFLQDLKIVPIDPTKNIMGIEVPELLVHRLTGKKTTTKNGQPIIPILLPKYIGLDPISQ300 MNFLQDLKIVPIDPAKNIMGIEVPELLVHRLTGKKTTKNGQPIIPILLPKYIGMDPISQ300 MTSLQDFKIVPIDPTKNIMGIEVPETLVHKLTGKKVTSKNGQPIIPILLPKYIGLDPVAP230 *:*:****
Sudan Reston TaiForest Bundibugyo Zaire	GDLTMVITPDYDDCHSPASCSYLSEK 326 GDLTMVITQDCDSCHSPASHPYHMDKQNSYQ 331 GDLTMVITQDCDSCHSPASLPPVNEK 326 GDLTMVITQDCDTCHSPASLPPVNEK 326 GDLTMVITQDCDTCHSPASLPAVIEK 326 GDLTMVITQDCDTCHSPASLPAVIEK 326 STATE ********
	MEMBRANE ASSOCIATED PROTEIN
Sudan Reston Zaire Taiforest Bundibugyo	MAKATGRYNLVTPKRELEQGVVFSDLCNFLVTPTVQGWKVYWAGLEFDVNQKGITLLNRL 60 MAKATGRYNLVPPKKDMEKGVIFSDLCNFLITQTLQGWKVYWAGIEFDVSQKGMALLTRL 60 MAKATGRYNLISPKKDLEKGVVLSDLCNFLVSQTIQGWKVYWAGIEFDVTHKGMALLHRL 60 MAKATGRYNLISPKKDLEKGLVLNDLCTLSVAQTVQGWKVTWAGIEFDVTQKGMALLHRL 60 MAKATGRYNLVSPKKDLERGLVLSDLCTFLVDQTIQGWRVTWVGIEFDIAQKGMALLHRL 60

Sudan Reston Zaire Taiforest Bundibugyo	KVNDFAPAWAMTRNLFPHLFKNQQSEVQTPIWALRVILAAGILDQLMDHSLIEPLSGALN 120 KTNDFAPAWAMTRNLFPHLFQNPNSVIQSPIWALRVILAAGIQDQLLDHSLVEPLTGALG 120 KTNDFAPAWSMTRNLFPHLFQNPNSTIESPLWALRVILAAGIQDQLIDQSLIEPLAGALG 120 KTSDFAPAWSMTRNLFPHLFQNPNSTIESPLWALRVILAAGIQDQLIDQSLIEPLAGALG 120 KTADFAPAWSMTRNLFPHLFQNSNSTIESPLWALRVILAAGIQDQLIDQSLVEPLAGALS 120 *. ******:***********
Sudan Reston Zaire Taiforest Bundibugyo	LIADWLLTTSTNHFNMRTQRVKDQLSMRMLSLIRSNIINFINKLETLHVVNYKGLLSSVE 180 LISDWLLTTTSTHFNLRTRSVKDQLSLRMLSLIRSNILQFINKLDALHVVNYNGLLSSIE 180 LISDWLLTTNTNHFNMRTQRVKEQLSLKMLSLIRSNILKFINKLDALHVVNYNGLLSSIE 180 LIADWLLTTGTNHFQMRTQQAKEQLSLKMLSLVRSNILKFINQLDALHVVNYNGLLSSIE 180 LVSDWLLTTNTNHFQMRTQHAKEQLSLKMLSLVRSNILKFISQLDALHVVNYNGLLSSIE 180 *::****** :.**::**: .*:***:
Sudan Reston Zaire Taiforest Bundibugyo	IGTPSYAIIITRTNMGYLVEVQEPDKSAMDIRHPGPVKFSLLHESTLKPVATPKPSSITS 240 IGTSTHTIIITRTNMGFLVEVQEPDKSAMNSKRPGPVKFSLLHESAFKPFTRVPQSGMQS 240 IGTQNHTIIITRTNMGFLVELQEPDKSAMNRMKPGPAKFSLLHESTLKAFTQGSSTRMQS 240 IGTKSHTIIITRTNMGFLVELQEPDKSAMNTRKPGPVKFSLLHESTLKTLAKKPATQMQA 240 IGTRNHTIIITRTNMGFLVELQEPDKSAMNQKKPGPVKFSLLHESTFKALIKKPATKMQA 240 *** .::********************************
Sudan Reston Zaire Taiforest Bundibugyo	LIMEFNSSLAI 251 LIMEFNSLLAI 251 LILEFNSSLAI 251 LILEFNSSLAI 251 LILEFNSSLAI 251 LILEFNSSLAI 251 **:**** ***

MINOR-NUCLEO PROTEIN

Reston Sudan Zaire Taiforest Bundibugyo	MEHSRERGRSSNMRHNSREPYENPSRSRSLSRDPNQVDRRQPRSASQIRVPNLFHRKKTD 60 MERGRERGRSRNSRADQQNSTGPQFRTRSISRDKTTTDYRSSRSTSQVRVPTVFHKKGTG 60 MEASYERGRPRAARQHSRDGHDHHVRARSSSRENYRGEYRQSRSASQVRVPTVFHKKRVE 60 MEVVHERGRSRISRQNTRDGPSHLVRARSSSRASYRSEYHTPRSASQIRVPTVFHRKKTD 60 MDSFHERGRSRTIRQSARDGPSHQVRTRSSSRDSHRSEYHTPRSSSQVRVPTVFHRKRTD 60 *: **** * :: *:** ** :: **:**:**:
Reston Sudan Zaire Taiforest Bundibugyo	ALIVPPAPKDICPTLKKGFLCDSKFCKKDHQLDSLNDHELLLLIARRTCGIIESNSQITS 120 TLTVPPAPKDVCPTLRKGFLCDSNFCKKDHQLESLTDRELLLLIARKTCGSTDSSLNIAA 120 PLTVPPAPKDICPTLKKGFLCDSSFCKKDHQLESLTDRELLLIARKTCGSVEQQLNITA 120 LLTVPPAPKDVCPTLKKGFLCDSNFCKKDHQLESLTDRELLLIARKTCGSTEQQLSIVA 120 SLTVPPAPKDICPTLRKGFLCDSNFCKKDHQLESLTDRELLLIARKTCGSLEQQLNITA 120 * *******:****:***********************
Reston Sudan Zaire Taiforest Bundibugyo	PKDMRLANPTAEDFSQGNSPKLTLAVLLQIAEHWATRDLRQIEDSKLRALLTLCAVLTRK180 PKDLRLANPTADDFKQDGSPKLTLKLLVETAEFWANQNINEVDDAKLRALLTLSAVLVRK180 PKDSRLANPTADDFQQEEGPKITLLTLIKTAEHWARQDIRTIEDSKLRALLTLCAVMTRK180 PKDSRLANPIAEDFQQKDGPKVTLSMLIETAEYWSKQDIKNIDDSRLRALLTLCAVMTRK180 PKDTRLANPIADDFQQKDGPKITLLTLLETAEYWSKQDIKGIDDSRLRALLTLCAVMTRK180 *** ***** *:**.* .**:** *:: **.*: :::. ::*::*******
Reston Sudan Zaire Taiforest Bundibugyo	FSKSQLGLLCETHLRHEGLGQDQADSVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFIS240 FSKSQLSQLCESHLRRENLGQDQAESVLEVYQRLHSDKGGAFEAALWQQWDRQSLTMFIS240 FSKSQLSLLCETHLRREGLGQDQAEFVLEVYQRLHSDKGGSFEAALWQQWDRQSLIMFIT240 FSKSQLSLLCESHLRREGLGQDQSESVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFIT240 FSKSQLSLLCESHLRREGLGQDQSESVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFIT240
	***** *********************************
Reston Sudan Zaire Taiforest Bundibugyo	AFLNIALQIPCESSSVVVSGLATLYPAQDNSTPSEATNDTTWSSTVE287AFLHVALQLSCESSTVVISGLRLLAPPSVNEGLPPAPGEYTWSEDSTT-288AFLNIALQIPCESSAVVVSGLRTLVPQSDNEEASTNPGTCSWSDEGTP-288AFLNIALQIPCESSSVVISGLRMLIPQSEATEVVTPSETCTWSEGGSH289AFLNIALQIPCESSSVVISGLRLLVPQSEDTETSTYTETRAWSEEGGPH289***::***: ****:*** * * * .:**.
	NUCLEO-PROTEIN
Sudan Reston Zaire Taiforest Bundibugyo	MDKRVRGSWALGGQSEVDLDYHKILTAGLSVQQGIVRQRVIPVYVVSDLEGICQHIIQAF60 MDRGTRRIWVSQNQGDTDLDYHKILTAGLTVQQGIVRQKIISVYLVDNLEAMCQLVIQAF60 MDSRPQKIWMAPSLTESDMDYHKILTAGLSVQQGIVRQRVIPVYQVNNLEEICQLIIQAF60 MESRAHKAWMTHTASGFETDYHKILTAGLSVQQGIVRQRVIQVHQVTNLEEICQLIIQAF60 MDPRPIRTWMHNTSEVEADYHKILTAGLSVQQGIVRQRVIPVYQISNLEEVCQLIIQAF60 *: * : * : : ********
Sudan Reston Zaire Taiforest Bundibugyo	EAGVDFQDNADSFLLLLCLHHAYQGDHRLFLKSDAVQYLEGHGFRFEVREKENVHRLDEL 120 EAGIDFQENADSFLLMLCLHHAYQGDYKLFLESNAVQYLEGHGFKFELRKKDGVNRLEEL 120 EAGVDFQESADSFLLMLCLHHAYQGDYKLFLESGAVKYLEGHGFRFEVKKRDGVKRLEEL 120 EAGVDFQESADSFLLMLCLHHAYQGDYKQFLESNAVKYLEGHGFRFEVRKKEGVKRLEEL 120 ***:***:.******:**********************
Sudan Reston Zaire Taiforest Bundibugyo	LPNVTGGKNLRRTLAAMPEEETTEANAGQFLSFASLFLPKLVVGEKACLEKVQRQIQVHA 180 LPAATSGKNIRRTLAALPEEETTEANAGQFLSFASLFLPKLVVGEKACLEKVQRQIQVHA 180 LPAVSSGKNIKRTLAAMPEEETTEANAGQFLSFASLFLPKLVVGEKACLEKVQRQIQVHA 180 LPAASSGKSIRRTLAAMPEEETTEANAGQFLSFASLFLPKLVVGEKACLEKVQRQIQVHS 180 LPAASSGKNIKRTLAAMPEEETTEANAGQFLSFASLFLPKLVVGEKACLEKVQRQIQVHA 180 ****.::*****
Sudan Reston Zaire Taiforest Bundibugyo	EQGLIQYPTSWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDTVISNSVAQAR240 EQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKYLLIHQGMHMVAGHDANDAVIANSVAQAR240 EQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVISNSVAQAR240 EQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVIANSVAQAR240 EQGLIQYPTSWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVIANSVAQAR240 *********
Sudan Reston Zaire Taiforest Bundibugyo	FSGLLIVKTVLDHILQKTDLGVRLHPLARTAKVKNEVSSFKAALGSLAKHGEYAPFARLL300 FSGLLIVKTVLDHILQKTDQGVRLHPLARTAKVRNEVNAFKAALSSLAKHGEYAPFARLL300 FSGLLIVKTVLDHILQKTERGVRLHPLARTAKVKNEVNSFKAALSSLAKHGEYAPFARLL300 FSGLLIVKTVLDHILQKTEHGVRLHPLARTAKVKNEVNSFKAALSSLAQHGEYAPFARLL300 FSGLLIVKTVLDHILQKTEHGVRLHPLARTAKVKNEVSSFKAALASLAQHGEYAPFARLL300 ******************
Sudan Reston Zaire Taiforest Bundibugyo	NLSGVNNLEHGLYPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQQYAET 360 NLSGVNNLEHGLYPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQQYAES 360 NLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQXYAES 360 NLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQKYAES 360 NLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQKYAES 360 ***********

Sudan Reston Zaire Taiforest Bundibugyo	RELDNLGLDEQEKKILMSFHQKKNEISFQQTNAMVTLRKERLAKLTEAITTASKIKVGDR 420 RELDSLGLDDQERRILMNFHQKKNEISFQQTNAMVTLRKERLAKLTEAITLASRPNLGSR 420 RELDHLGLDDQEKKILMNFHQKKNEISFQQTNAMVTLRKERLAKLTEAITAASLPKTSGH 420 RELDHLGLDDQEKKILKDFHQKKNEISFQQTTAMVTLRKERLAKLTEAITSTSLLKTGKQ 420 RELDHLGLDDQEKKILKDFHQKKNEISFQQTTAMVTLRKERLAKLTEAITSTSILKTGRR 420 **** ****:**::** .*********************
Sudan Reston Zaire Taiforest Bundibugyo	YPDDNDIPFPGPIYDETHPNPSDDNPDDSRDTTIPGGVVDPYDDESNNYPDYEDSAEGTT 480 QDDGNEIPFPGPISNNPDQDHLEDDPRDSRDTIIPNGAIDPEDGDFENYNGYHDDEVGTA 480 YDDDDDIPFPGPINDDDNPGHQDDDPTDSQDTTIPDVVVDPDDGSYGEYQSYSENGMNAP 480 YDDDNDIPFPGPINDNENSEQQDDDPTDSQDTTIPDVIDPDDGRYNNYGDYPSETANAP 480 YDDDNDIFFPGPINDNENSGQNDDPTDSQDTTIPDVIDPNDGGYNNYSDYANDAASAP 480 *.::******* :: . :*:* **:** **. :** *. :* .* .*
Sudan Reston Zaire Taiforest Bundibugyo	GDLDLFNLDDDDDDSQPGPPDRGQSKERAARTHGLQ-DPTLDGAKKVPELTPG532 GDLVLFDLDDHEDDNKAFEPQDSSPQSQREIERERLIHPPPGNNKD526 DDLVLFDLDEDDEDTKPVPNRSTKGGQQKNSQKGQHIEGRQTQSRPIQNVPGP-533 EDLVLFDLEDGDEDDHRPSSSENNNKHSLTGTDSNKTSNWNRPTNMPKKDS-533 DDLVLFDLEDGDEDDADNPAQNTPEKNDRPATTKLRNGQDQDGNQGETASPRVAP-533 ** **:*:: :: : : : : : : : : : : : : :
Sudan Reston Zaire Taiforest Bundibugyo	SHQPGNLHITKP-GSNTNQPQGNMSSTLQSMTFIQEESEPDDQKDDDESLTSLD 586 DNRASDNNQQSADSEEQGGQYNWHRGPERTTANRRLSPVHEEDTLMDQGDDDPSSLPPLE 586 HRTIHHASAPLTDNDRRNEPSGSTSPRMLTFINEEADPLDDADDETSSLPPLE 586 TQNNDNPAQRAQEYARDNIQDTPTPHRALTPISEETGSNGHNEDDIDSIPPLE 586 NQYRDKPMPQVQDRSENHDQTLQTQSRVLTFISEEADPSDHNDGDNESIPPLE 586 . : ::*: ** :: .*: *:
Sudan Reston Zaire Taiforest Bundibugyo	SEGDEDVESVSGENNPTVAPPAPVYKDTGVDTNQQNGPSNAVDGQGSESEALPINPEKGS 646 SDDDDASSSQQDPDYTAVAPPAPVYRSAEAHEPPHKSSNEPAETSQLNEDPDIGQSKSMQ 646 SDDEEQDRDGTSNRTPTVAPPAPVYRDHSEKKELPQDEQQDQDHTQEARNQDSDNTQSEH 646 SDEENNTETTITTKNTTAPPAPVYRSNSEKEPLPQEKSQKQPNQVSGSENTDNKPHSEQ 646 SDDEGSTDTTAAETKPATAPPAPVYRSISVDDSVPSENIPAQSNQTNNEDNVRNNAQSEQ 646 *: : : :::::::::::::::::::::::::::::::
Sudan Reston Zaire Taiforest Bundibugyo	ALEETYYHLLKTQGPFEAINYYHLMSDEPIAFSTESGKEYIFPDSLEEAYPPWLSEKEAL 706 KLEETYHHLLRTQGPFEAINYYHMMKDEPVIFSTDDGKEYTYPDSLEEAYPPWLTEKERL 706 SFEEMYRHILRSQGPFDAVLYYHMMKDEPVVFSTSDGKEYTYPDSLEEEYPPWLTEKEAM 706 SVEEMYRHILQTQGPFDAILYYHMMKEEPIIFSTSDGKEYTYPDSLEDEYPPWLSEKEAL 706 SIAEMYQHILKTQGPFDAILYYHMMKEEPIIFSTSDGKEYTYPDSLEDEYPPWLSEKEAM 706 . * * *:*::****
Sudan Reston Zaire Taiforest Bundibugyo	EKENRYLVIDGQQFLWPVMSLQDKFLAVLQHD- 738 DKENRYIYINNQQFFWPVMSPRDKFLAILQHHQ 739 NEENRFVTLDGQQFYWPVMNHKNKFMAILQHHQ 739 NEDNRFITMDDQQFYWPVMNHRNKFMAILQHHK 739 NEDNRFITMDGQQFYWPVMNHRNKFMAILQHHR 739
	POLYMERASE COMPLEX PROTEIN
Reston Sudan Zaire Taiforest Bundibugyo	MYNNKLKVCSGPETTGWISEQLMTGKIPVTDIFIDIDNKPDQMEVRLK48 MQQDRTYRHHGPEVSGWFSEQLMTGKIPLTEVFVDVENKPSPAPITII48 -MTTRTKGRGHTAATTQNDRMPGPELSGWISEQLMTGRIPVSDIFCDIENNPGLCYASQM59 MISTRAAAINDPSLPIRNQCTRGPELSGWISEQLMTGKIPVHEIFNDTEPHISSGSDCLP60 MTSNRARVTYNPPPTTTGTRSCGPELSGWISEQLMTGKIPITDIFNEIETLPSISPSIHS60 *** :**:*******:*:::::::::::::::::::::
Reston Sudan Zaire Taiforest Bundibugyo	PSSRSSTRTCTSSSQTEVNYVPLLKKVEDTLTMLVNATSRQNAAIEALENRLSTLESSLK108 SKNPKTTRKSDKQVQTDDASSLLTEEVKAAINSVISAVRRQTNAIESLEGRVTTLEASLK108 QQTKPNPKTRNSQTQTDPICNHSFEEVVQTLASLATVVQQQTIASESLEQRITSLENGLK119 RPKNTAPRTRNTQTDPVCNHNFEDVTQALTSLTNVIQKQALNLESLEQRIIDLENGLK120 KIKTPSVQTRSVQTQTDPNCNHDFAEVVKMLTSLTLVVQKQTLATESLEQRIIDLEGSLK120 **::*****
Reston Sudan Zaire Taiforest Bundibugyo	PIQDMGKVISSLNRSCAEMVAKYDLLVMTTGRATSTAAAVDAYWKEHKQPPPGPALYEEN168 PVQDMAKTISSLNRSCAEMVAKYDLLVMTTGRATATAAATEAYWNEHGQAPPGPSLYEDD168 PVYDMAKTISSLNRVCAEMVAKYDLLVMTTGRATATAAATEAYWAEHGQPPPGPSLYEES179 PMYDMAKVISALNRSCAEMVAKYDLLVMTTGRATATAAATEAYWAEHGQPPPGPSLYEES180 PVSEITKIVSALNRSCAEMVAKYDLLVMTTGRATATAAATEAYWAEHGRPPGPSLYEED180 *: :: * :*:*** ***********************
Reston Sudan Zaire Taiforest Bundibugyo	ALKGKIDDPNSYVPDAVQEAYKNLDSTSTLTEENFGKPYISAKDLKEIMYDHLPGFGTAF 228 AIKAKLKDPNGKVPESVKQAYINLDSTSALNEENFGRPYISAKDLKEIIYDHLPGFGTAF 228 AIRGKIESRDETVPQSVREAFNNLNSTTSLTEENFGKPDISAKDLRNIMYDHLPGFGTAF 239 AIRGKINKQEDKVPKEVQEAFRNLDSTSSLTEENFGKPDISAKDLRDIMYDHLPGFGTAF 240 AIRTKIGKQGDMVFKEVQEAFRNLDSTALLTEENFGKPDISAKDLRNIMYDHLPGFGTAF 240 *:: *: . **. *::*: **:**: *.******
Reston Sudan Zaire Taiforest Bundibugyo	HQLVQVICKIGKDNNLLDTIHAEFQASLADGDSPQCALIQITKRVPIFQDVPPPIIHIRS 288 HQLVQVICKIGKDNNILDIIHAEFQASLAEGDSPQCALIQITKRIPAFQDASPPIVHIKS 288 HQLVQVICKLGKDSNSLDIIHAEFQASLAEGDSPQCALIQITKRVPIFQDAPPVIHIRS 299 HQLVQVICKLGKDNSALDIIHAEFQASLAEGDSPQCALIQITKRIPIFQDAPPVIHIRS 300 HQLVQVICKLGKDNSSLDVIHAEFQASLAEGDSPQCALIQITKRIPIFQDAAPPVIHIRS 300 *********:***** ********************
Reston Sudan Zaire Taiforest Bundibugyo	RGDIPRACQKSLRPAPPSPKIDRGWVCLFKMQDGKTLGLKI329RGDIPRACQKSLRPVPPSPKIDRGWVCIFQFQDGKALGLKI329RGDIPRACQKSLRPVPPSPKIDRGWVCVFQLQDGKTLGLKI340RGDIPRACQKSLRPVPPSPKIDRGWVCIFQLQDGKTLGLKI341RGDIPRACQKSLRPVPPSPKIDRGWVCIFQLQDGKTLGLKI341***********************************

SECOND SECRETED GLYCO PROTEIN

Taiforest Bundibugyo Zaire Reston Sudan	-MGASGILQLPRERFRKTSFFVWVIILFHKVFSIPLGVVHNNTLQVSDIDKFVCRDKLSS 59 -MVTSGILQLPRERFRKTSFFVWVIILFHKVFPIPLGVVHNNTLQVSDIDKLVCRDKLSS 59 -MGVTGILQLPRDRFKRTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSS 59 MGSGYQLLQLPRERFRKTSFLWVIILFQRASIMPLGIVTNSTLKATEIDQLVCRDKLSS 60 -MGGLSLLQLPRDKFRKSSFFVWVIILFQKAFSMPLGVVTNSTLEVTEIDQLVCKDHLAS 59 :*****::*::**::*******::::*******
Taiforest Bundibugyo Zaire Reston Sudan	TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGS 119 TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGS 119 TNQLRSVGLNLEGNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGS 119 TSQLKSVGLNLEGNGIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS 120 TDQLKSVGLNLEGSGVSTDIPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKPDGS 119 *.**:*********************************
Taiforest Bundibugyo Zaire Reston Sudan	ECLPEAPEGVRDFPRCRYVHKVSGTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEG179 ECLPEAPEGVRGFPRCRYVHKVSGTGPCPEGYAFHKEGAFFLYDRLASTIIYRSTTFSEG179 ECLPAAPDGIRGFPRCRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEG179 ECLPLPPDGVRGFPRCRYVHKVQGTGPCPGDLAFHKNGAFFLYDRLASTVIYRGTTFAEG180 ECLPPPPDGVRGFPRCRYVHKAQGTGPCPGDYAFHKDGAFFLYDRLASTVIYRGVNFAEG179 **** *:*:*.****************************
Taiforest Bundibugyo Zaire Reston Sudan	VIAFLILPKARKDFFQSPPLHEPANMTTDPSSYYHTTTINYVVDNFGTNTTEFLFQVDHL239 VVAFLILPETKKDFFQSPPLHEPANMTTDPSSYYHTVTLNYVADNFGTNMTNFLFQVDHL239 VVAFLILPQAKKDFFSSHPLREPVNATEDPSSGYYSTTIRYQATGFGTNETEYLFEVDNL239 VVAFLILSEPKKHFWKATPAHEPVNTTDDSTSYYMTLTLSYEMSNFGGNESNTLFKVDNH240 VIAFLILAKPKETFLQSPPIREAVNYTENTSSYYATSYLEYEIENFGAQHSTTLFKIDNN239 *:***** : :: * .: * :: * :: * :: * :: *

Taiforest Bundibugyo Zaire Reston Sudan	TYVQLEARFTPQFLVLLNETIYSDNRRSNTTGKLI TYVQLEPRFTPQFLVQLNETIYTNGRRSNTTGKLI TYVQLESRFTPQFLQLNETIYTSGKRSNTTGKLI TYVQLDRPHTPQFLVQLNETLRRNNRLSNSTGRLI TFVRLDRPHTPQFLFQLNDTIHLHQQLSNTTGRLI *:*:*: .*****. **:*: : **:** *	UKINPTVDTSMGEWAFWENKKLHKN 299 UKVNPTVDTGVGEWAFWENKKLHKN 299 UKVNPEIDTTIGEWAFWETKKPH297 UWTLDPKIEPDVGEWAFWETKKLFPT 300 UWTLDANINADIGEWAFWENKKSLRT 299 *.:: :: :********
Taiforest	PFK	302
Bundibugyo	PFK	302
Zaire		297
Reston	TSWRKLAFPNSINPHQQLLRSEPGGNCPRKN	331
Sudan	TTWRRAVFRSFIAQRDRRR	318

SMALL SECRETED GLYCO PROTEIN

Taiforest Bundibugyo Zaire Reston Sudan	-MGASGILQLFRERFRKTSFFVWVIILFHKVFSIPLGVVHNNTLQVSDIDKFVCRDKLSS59 -MVTSGILQLFRERFRKTSFFVWVIILFHKVFFIPLGVVHNNTLQVSDIDKLVCRDKLSS59 -MGVTGILQLFRDRFKRTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSS59 MGSGYQLLQLFRERFRKTSFLVWVIILFQRAISMPLGVVTNSTLKATEIDQLVCRDKLSS56 -MGGLSLLQLFRDKFRKSSFFVWVIILFQKAFSMPLGVVTNSTLEVTEIDQLVCKDHLAS59 :****::::*::**::**
Taiforest Bundibugyo Zaire Reston Sudan	TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGS 119 TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGS 119 TNQLRSVGLNLEGNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGS 119 TSQLKSVGLNLEGNGIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS 120 TDQLKSVGLNLEGSGVSTDIPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS 119 *.**:*********************************
Taiforest Bundibugyo Zaire Reston Sudan	ECLPEAPEGVRDFPRCRYVHKVSGTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEG 179 ECLPEAPEGVRGFPRCRYVHKVSGTGPCPEGYAFHKEGAFFLYDRLASTIIYRSTTFSEG 179 ECLPAPDGIRGFPRCRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEG 179 ECLPLPDGVRGFPRCRYVHKVQGTGPCPGDLAFHKDGAFFLYDRLASTVIYRGTTFAEG 180 ECLPPPDGVRGFPRCRYVHKAQGTGPCPGDLAFHKDGAFFLYDRLASTVIYRGTTFAEG 187 **** *:*.******************************
Taiforest Bundibugyo Zaire Reston Sudan	VIAFLILPKARKDFFQSPPLHEPANMTTDPSSYYHTTTINYVVDNFGTNTTEFLFQVDHL 239 VVAFLILPETKKDFFQSPPLHEPANMTTDPSSYYHTVTLNYVADNFGTNMTNFLFQVDHL 239 VVAFLILPQAKKDFFSSHPLREPVNATEDPSSGYYSTTIRYQATGFGTNETEYLFEVDNL 239 VVAFLILSEPKKHFWKATPAHEPVNTTDDSTSYYMTTLSYEMSNFGGNESNTLFKVDNH 240 VIAFLILAKPKETFLQSPPIREAVNYTENTSSYYATSYLEYEIENFGAQHSTTLFKIDNN 239 *:***** : :: * :: * :: * :: * :: * ::
Taiforest Bundibugyo Zaire Reston Sudan	TYVQLEARFTPQFLVLLNETIYSDNRRSNTTGKLIWKINPTVDTSMGEWAFWENKKTSQK 299 TYVQLEPRFTPQFLVQLNETIYTNGRRSNTTGTLIWKVNPTVDTGVGEWAFWENKKTSQK 299 TYVQLESRFTPQFLQLNETIYTSGKRSNTTGKLIWKVNPFIDTTIGEWAFWENKKTSL2 29 TYVQLDRPHTPQFLVQLNETLRRNNRLSNSTGRLTWTLDPKIEPDVGEWAFWENKKTFPN 300 TFVRLDRPHTPQFLFQLNDTIHLHQQLSNTTGRLIWTLDANINADIGEWAFWENKKISPN 299 *:*:*: .*****. **:*: : : **:** * *.:: :: :******.**
Taiforest Bundibugyo Zaire Reston Sudan	$\begin{array}{l} \texttt{PFQVKSCLSYLYQKPRTRSLTRQRRSLLPSPFTTTQPKTTKNWFQRIPLQWFRCKTSRER 359} \\ \texttt{PFQVKSCLSYLYQEPRIQAATRRRSLPPASPTTKPRTKTWFQRIPLQWFRCTVKEGK 359} \\ \texttt{KFAVKSCLSQLYQTEPKTSVVRVRRELLPTQPFTQQLKTTKSWLQKIPLQWFRCTVKEGK 359} \\ \texttt{NFMEKTCISKFHQPTFTTPQIRARRELSKEKLATTHPPTTPSWFQRIPLQWFQCSLQDGQ 360} \\ \texttt{NYVEKSCLSKLYRSTRQKTMMRHRRELQREESFGPFGSIRTWFQRIPLQWFHCTYQKGK 359} \end{array}$

	: *:*:* :::	* * * *	*	:	* * * * * * * * * * *
Taiforest	TQCQPQ	365			
Bundibugyo	TQCRPHPQTQSPQL	373			
Zaire	LQCRI	364			
Reston	RKCRPKV	367			
Sudan	QHCRLRIRQKVEE-	372			
	:*:				

SPIKE GLYCO-PROTEIN

Zaire Taiforest Bundibugyo Reston Sudan	-MGVTGILQLPRDRFKRTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSS 59 -MGASGILQLPRERFRKTSFFLWVIILFHKVFSIPLGVVHNNTLQVSDIDKFVCRDKLSS 59 -MVTSGILQLPRERFRKTSFFVWVIILFHKVFFIPLGVVHNNTLQVSDIDKLVCRDKLSS 59 MGSGYQLLQLPREFRKTSFLVWVIILFQRAISMPLGIVTNSTLKATEIDQLVCRDKLSS 60 -MGGLSLLQLPRDKFRKSSFFVWVIILFQKAFSMPLGVVTNSTLEVTEIDQLVCKDHLAS 59 :*****::*::***::*******:::: :****: *.***::*:
Zaire Taiforest Bundibugyo Reston Sudan	TNQLRSVGLNLEGNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGS119 TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGS119 TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGS119 TSQLKSVGLNLEGNGIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS120 TDQLKSVGLNLEGSGVSTDIPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS119 *.**:**************
Zaire Taiforest Bundibugyo Reston Sudan	ECLPAAPDGIRGFPRCRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEG179 ECLPEAPEGVRDFPRCRYVHKVSGTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEG179 ECLPEAPEGVRGFPRCRYVHKVSGTGPCPEGYAFHKEGAFFLYDRLASTIIYRSTTFSEG179 ECLPLPPDGVRGFPRCRYVHKVQGTGPCPGDLAFHKNGAFFLYDRLASTVIYRGTTFAEG180 ECLPPPPDGVRGFPRCRYVHKAQGTGPCPGDYAFHKDGAFFLYDRLASTVIYRGVNFAEG179 **** *:*:*
Zaire Taiforest Bundibugyo Reston Sudan	VVAFLILPQAKKDFFSSHPLREPVNATEDPSSGYYSTTIRYQATGFGTNETEYLFEVDNL 239 VIAFLILPKARKDFFQSPPLHEPANMTTDPSSYYHTTTINYVVDNFGTNTTEFLFQVDHL 239 VVAFLILPETKKDFFQSPPLHEPANMTTDPSSYYHTVTLNYVADNFGTNMTNFLFQVDHL 239 VVAFLILSEPKKHFWKATPAHEPVNTTDDSTSYYMTLLSYEMSNFGGNESNTLFKVDNH 240 VIAFLILAKPKETFLQSPPIREAVNYTENTSSYYATSYLEYEIENFGAQHSTTLFKIDNN 239 *:***** : :: * .: * :: * :: * :: * :: *
Zaire Taiforest Bundibugyo Reston Sudan	TYVQLESRFTPQFLLQLNETIYTSGKRSNTTGKLIWKVNPEIDTTIGEWAFWETKKNLTR 299 TYVQLEARFTPQFLVLLNETIYSDNRRSNTTGKLIWKINPTVDTSMGEWAFWENKKNFTK 299 TYVQLEPRFTPQFLVQLNETIYTNGRRSNTTGGLIWKVNPTVDTGVGEWAFWENKKNFTK 299 TYVQLDRPHTPQFLVQLNETLRRNNRLSNSTGRLTWTLDPKIEPDVGEWAFWENKKNFSQ 300 TFVRLDRPHTPQFLFQLNDTIHLHQQLSNTTGRLIWTLDANINADIGEWAFWENKKNLSE 299 *:*:*: .*****. **:*: : **:** * *.:: :: :******.***::
Zaire Taiforest Bundibugyo Reston Sudan	KIRSEELSFTVVSNGAKNISGQSPARTSSDPGTNTTTEDHKIMASENSSAMVQVHSQGRE 359 TLSSEELSFVPVPETQNQVLDTTATVSPPISAHNHAAEDHKELVSEDSTPVVQMQNIKGK 359 TLSSEELSVIFVPRAQDPGSNQKTKVTPTSFANNQTSKNHEDLVPEDPASVVQVRDLQRE 359 QLHGENLHFQIPSTHTNNSSDQSPAGTVQGKISYHPPANNSELVPTDSPPVVSVLTAGRT 360 QLRGEELSFEALSLNETEDDDAASSRITKGRISDRATRKYSDLVPKNSPGMVPLHIPEGE 359 : .*:*.
Zaire Taiforest Bundibugyo Reston Sudan	AAVSHLTTLATISTSP-QSLTTKPGPDNST-HNTPVYKLD-ISEATQVEQHHRRTDND 414 DTMPTTVTGVPTTTPSPFPINARNTDHTKSFIGLEGPQ-ED-HSTTQPA 406 NTVPTPPPDTVPTTLIPDTMEEQTTSHYEPPNISRNHQ-ER-NNTAHPE 406 EEMSTQGLTNGETITGFTANPMTTTIAPSPTMTSEV-DNNVPSEQPN 406 TTLPSQNSTEGRRVGVNTQETITETAATIIGTNGNHMQISTIGIRPS-SSQIPSSSPT 416

	:
Zaire Taiforest Bundibugyo Reston Sudan	STASDTPSATTAAGPPKAENTNTSKSTDFLDPA447 KTTSQPTNSTESTTLNPTSEPSSGTGPSSPTVPNTTESHAELGKTT453 TLANNPPDNTTPSTPPQDGERTSSHTTPSPRPVPTSTIHPTTRETH1453 NTASIEDSPPSASNETIYHSEMDPIQGSNNSAQSPQTKTTPAPTTSPMTQDPQETANSSK466 TAPSPEASVMATEE440 *
Zaire Taiforest Bundibugyo Reston Sudan	TTTSPQNHSETAGNNNTHHQDTGEESASSGKLGLITNTIAGVAGLITGGRRTR 500 PTTLPEQHTAASAIPRAVHPDELSGPGFLTNTIRGVTNLLTGSRRKR 500 PTTMTSHDTDSNPRPPIDISESTEPGPLTNTTRGAANLLTGSRRTR 500 PGTSPGSAAGPSQPGLTINTVSKVADSLSPTRKQK 501 PTTPPGSSPGPTTEAPTLTTPENITTAVKTVLPQESTSNGLITSTVTGILGSLGLRKRSR 500 *
Zaire Taiforest Bundibugyo Reston Sudan	REAIVNAQPKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAEGIYIEGLMHNQDGLICGLRQ560 RDVTPNTQPKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAEGIYTEGIMENQNGLICGLRQ560 REITLRTQAKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAEGIYTEGIMHNQNGLICGLRQ560 RSVRQNTANKCNPDLYYWTAVDEGAAVGLAWIPYFGPAAEGIYIEGVMHNQNGLICGLRQ561 RQTNTKATGKCNPNLHYWTAQEQHNAAGIAWIPYFGPAEGIYIEGUMHNQNALVCGLRQ560 ************************************
Zaire Taiforest Bundibugyo Reston Sudan	LANETTQALQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPHDWTKNIT 620 LANETTQALQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPQDWTKNIT 620 LANETTQALQLFLRATTELRTFSILNRKAIDFLLQRWGGTCHILGPDCCIEPHDWTKNIT 620 LANETTQALQLFLRATTELRTYSLNRKAIDFLLQRWGGTCRILGPSCCIEPHDWTKNIT 621 LANETTQALQLFLRATTELRTYSLNRKAIDFLLRRWGGTCRILGPSCCIEPHDWTKNIT 620 *****
Zaire Taiforest Bundibugyo Reston Sudan	DKIDQIIHDFVDKTLPDQGDNDNWWTGWRQWIPAGIGVTGVIIAVIALFCICKFVF 676 DKIDQIIHDFVDNNLPNQNDGSNWWTGWKQWVPAGIGITGVIIAIIALLCICKFML 676 DKIDQIIHDFIDKPLPQTDDNWWTGWRQWVPAGIGITGVIIAVIALLCICKFLL 676 DEINQIKHDFIDNPLPDHGDDLNLWTGWRQWIPAGIGITGVIIAVIALLCICKFLL 677 DKINQIIHDFIDNPLPDHGDDLNLWTGWRQWIPAGIGITGVIIAVIALLCICKFLL 676 *:*:** ***:** *:*:** ***:**
	RNA DEPENDENT RNA POLYMERASE
Zaire Tai Bundibugyo Sudan Reston	-MATQHTQYPDARLSSPIVLDQCDLVTRACGLYSSYSLNPQLRNCKLPKHIYRLKYDVTV59 -MATQHTQYPDARLSSPIVLDQCDLVTRACGLYSAYSLNPQLKNCRLPKHIYRLKYDTTV59 -MATQHTQYPDARLSSPIVLDQCDLVTRACGLYSSYSLNPQLKNCRLPKHIYRLKFDATV59 MMATQHTQYPDARLSSPIVLDQCDLVTRACGLYSEYSLNPKLKTCRLPKHIYRLKYDTIV60 -MATQHTQYPDARLSSPIVLDQCDLVTRACGLYSSYSLNPQLRQCKLPKHIYRLKFDTIV59 ************************************
Zaire Tai Bundibugyo Sudan Reston	TKFLSDVPVATLPIDFIVPVLLKALSGNGFCPVEPRCQQFLDEIIKYTMQDALFLKYYLK119 TEFLSDVPVATLPADFLVPTFLRTLSGNGSCPIDPKCSQFLEEIVNYTLQDIRFLNYYLN119 TKFLSDVPIVTLPIDYLTPLLLRTLSGEGLCPVEPKCSQFLDEIVSYVLQDARFLRYYFR119 LRFISDVPVATIPIDYIAPMLINVLADSKNVPLEPPCLSFLDEIVNYTVQDAAFLNYYMN120 SKFLSDTPVATLPIDYLVPILLRSLTGHGDRPLTPTCNQFLDEIINYTLHDAAFLDYYLK119 .*:**.*::*: *::: *:: *:: *: *: *: * * .**:**:
Zaire Tai Bundibugyo Sudan Reston	NVGAQEDCVDEHFQEKILSSIQGNEFLHQMFFWYDLAILTRRGRLNRGNSRSTWFVHDDL 179 RAGVHNDHVDRDFGQKIRNLICDNEVLHQMFHWYDLAILARRGRLNRGNNRSTWFASDNL 179 HVGVHDDNVGKNFEPKIKALIYDNEFLQQLFYWYDLAILTRRGRLNRGNNRSTWFANDDL 179 QIKTQEGVITDQLKQNIRRVIHKNRYLSALFFWHDLAILTRRGRMNRGNVRSTWFVTNEV 180 ATGAQDHLTNIATREKLKNEILNNDYVHQLFFWHDLSILARRGRLNRGNNRSTWFVHDEF 179 .:: * * : :*.*:**:**:***
Zaire Tai Bundibugyo Sudan Reston	IDILGYGDYVFWKIPISMLPLNTQGIPHAAMDWYQASVFKEAVQGHTHIVSVSTADVLIM239 VDILGYGDYIFWKIPLSLLPVDTQGLPHAAKDWYHESVFKEAIQGHTHIVSISTADVLIM239 IDILGYGDYIFWKIPLSLLSLNTEGIPHAAKDWYHASIFKEAVQGHTHIVSVSTADVLIM239 VDILGYGDYIFWKIPLSLLPMNTANVPHASTDWYQPNIFKEAIQGHTHISVSTAEVLIM240 IDILGYGDYIFWKIPLSLLPVTIDGVPHAATDWYQPTIFKESILGHSQILSVSTAEILIM239 :********:*****:::*
Zaire Tai Bundibugyo Sudan Reston	CKDLITCRFNTTLISKIAEIEDPVCSDYPNFKIVSMLYQSGDYLLSILGSDGYKIIKFLE 299 CKDIITCRFNTLLIAAVANLEDSVHSDYPLPETVSDLYKAGDYLISLLGSEGYKVIKFLE 299 CKDIITCRFNTTLIAALANLEDSICSDYPQPETISNLYKAGDYLISILGSEGYKVIKFLE 299 CKDLVTSRFNTLLIAELARLEDPVSADYPLVDNIQSLYNAGDYLLSILGSEGYKIIKYLE 300 CKDIITCRFNTSLIASIAKLEDVDVSDYPDPSDILKIYNAGDYVISILGSEGYKIIKYLE 299 ***::*.**** **: :*.:** ::*:**
Zaire Tai Bundibugyo Sudan Reston	PLCLAKIQLCSKYTERKGRFLTQMHLAVNHTLEEITEMRALKPSQAQKIREFHRTLIRLE359 PLCLAKIQLCSNYTERKGRFLTQMHLAVNHTLEELTGSRELRPQQIRKVREFHQMLINLK359 PLCLAKIQLCSNYTERKGRFLTQMHLAVNHTLEELIEGRGLKSQQDWKMREFHRILVNLK359 PLCLAKIQLCSQYTERKGRFLTQMHLAVIQTIRELLLNRGLKKSQLSKIREFHQLLRLR360 PLCLAKIQLCSKFTERKGRFLTQMHLSVINDLRELISNRLKDYQQEKIRDFHKILLQLQ359 ************************************
Zaire Tai Bundibugyo Sudan Reston	MTPQQLCELFSIQKHWGHPVLHSETAIQKVKKHATVLKALRPIVIFETYCVFKYSIAKHY 419 ATPQQLCELFSVQKHWGHPVLHSEKAIQKVKKHATVIKALRPIIIFETYCVFKYSIAKHY 419 STPQQLCELFSVQKHWGHPVLHSEKAIQKVKKHATVIKALRPVIIFETYCVFKYSIAKHY 419 STPQQLCELFSIQKHWGHPVLHSEKAIQKVKNHATVLKALRPIIIFETYCVFKYSVAKHF 420 LSPQQFCELFSVQKHWGHPILHSEKAIQKVKRHATILKALRPNVIFETYCVFKYNIAKHY 419 :***:*****:**************************
Zaire Tai Bundibugyo Sudan Reston	FDSQGSWYSVTSDRNLTPGLNSYIKRNQFPPLPMIKELLWEFYHLDHPPLFSTKIISDLS 479 FDSQGTWYSVTSDRCLTPGLSSYIKRNQFPPLPMIKELLWEFYHLDHPPLFSTKVISDLS 479 FDSQGSWYSVISDKHLTPGLHSYIKRNQFPPLPMIKDLLWEFYHLDHPPLFSTKIISDLS 479 FDSQGTWYSVISDRCLTPGLNSYIRRNQFPPLPMIKDLLWEFYHLDHPPLFSTKIISDLS 480 FDSQGTWYSVISDRNLTPGLNSFIKRNHFPSLPMIKDLLWEFYHLDHPPLFSTKVISDLS 479

Zaire Tai Bundibugyo Sudan Reston	IFIKDRATAVERTCWDAVFEPNVLGYNPPHKFSTKRVPEQFLEQENFSIENVLSYAQKLE 539 IFIKDRATAVEKTCWDAVFEPNVLGYNPPNKFATKRVPEQFLEQENFSIESVLHYAQRLE 539 IFIKDRATAVEKTCWDAVFEPNVLGYSPPNKFSTKRVPEQFLEQENFSIDSVLTYAQRLD 539 IFIKDRATAVEQTCWDAVFEPNVLGYSPPYRFNTKRVPEQFLEQEDFSIESVLQYAQELR 540 IFIKDRATAVEQTCWDAVFEPNVLGYNPPNKFSTKRVPEQFLEQEDFSIESVLNYAQELH 539 ************************************
Zaire Tai Bundibugyo Sudan Reston	YLLPQYRNFSFSLKEKELNVGRTFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTER 599 YLLPEYRNFSFSLKEKELNIGRAFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTER 599 YLLPQYRNFSFSLKEKELNVGRAFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTER 599 YLLPQNRNFSFSLKEKELNVGRTFGKLPYLTRNVQTLCEALLADGLAKAFPSNMMVVTER 600 YLLPQNRNFSFSLKEKELNIGRTFGKLPYLTRNVQTLCEALLADGLAKAFPSNMMVVTER 599 ****: ****************
Zaire Tai Bundibugyo Sudan Reston	EQKESLLHQASWHHTSDDFGEHATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVK 659 EQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVR 659 EQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVK 659 EQKESLLHQASWHHTSDDFGEHATVRGSSFVTDLEKYNLAFRYEFTAPFIKYCNQCYGVR 660 EQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNHCYGVR 659 ***********************
Zaire Tai Bundibugyo Sudan	NVFNWMHYTIPQCYMHVSDYYNPPHNLTLENRDNPPEGPSSYRGHMGGIEGLQQKLWTSI719 NLFNWMHYTIPQCYIHVSDYYNPPHGVSLENRENPPEGPSSYRGHLGGIEGLQQKLWTSI719 NLFNWMHYTIPQCYIHVSDYYNPPHGVSLENREDPPEGPSSYRGHLGGIEGLQQKLWTSI719 NVFDWMHFLIPQCYMHVSDYYNPPHNVTLENREYPPEGPSAYRGHLGGIEGLQQKLWTSI720
Reston	NVFNWMHYLIPQCYMHVSDYYNPPHNVNLSNREYPPEGPSSYRGHLGGIEGLQQKLWTSI719 *:*:***: *****:************:**********
Zaire Tai Bundibugyo Sudan Reston	SCAQISLVEIKTGFKLRSAVMGDNQCITVLSVFPLETDADEQEQSAEDNAARVAASLAKV779 SCAQISLVEIKTGFKLRSAVMGDNQCITVLSVFPLETESSEQELSSEDNAARVAASLAKV779 SCAQISLVEIKTGFKLRSAVMGDNQCITVLSVFPLETDSNEQEHSSEDNAARVAASLAKV779 SCAQISLVEIKTGFKLRSAVMGDNQCITVLSVFPLESSPNEQERCAEDNAARVAASLAKV780 SCAQISLVEIKTGFKLRSAVMGDNQCITVLSVFPLKTDPEEQEQSAEDNAARVAASLAKV779
Zaire Tai Bundibugyo Sudan Reston	TSACGIFLKPDETFVHSGFIYFGKKQYLNGVQLPQSLKTATRMAPLSDAIFDDLQGTLAS 839 TSACGIFLKPDETFVHSGFIYFGKKQYLNGVQLPQSLKTATRIAPLSDAIFDDLQGTLAS 839 TSACGIFLKPDETFVHSGFIYFGKKQYLNGVQLPQSLKTATRIAPLSDAIFDDLQGTLAS 839 TSACGIFLKPDETFVHSGFIYFGKKQYLNGUQLPQSLKTAARMAPLSDAIFDDLQGTLAS 840 TSACGIFLKPDETFVHSGFIYFGKKQYLNGVQLPQSLKTAARMAPLSDAIFDDLQGTLAS 839
Zaire Tai Bundibugyo Sudan Reston	IGTAFERSISETRHIFPCRITAAFHTFFSVRILQYHHLGFNKGFDLGQLTLGKPLDFGTI 899 IGTAFERSISETRHVVPCRVAAAFHTFFSVRILQYHHLGFNKGTDLGQLSLSKPLDFGTI 899 IGTAFERSISETRHVYPCRVVAAFHTFFSVRILQYHHLGFNKGTDLGQLSLSKPLDFGTI 899 IGTAFERSISETRHILPCRVAAFHTYFSVRILQHHLGFNKGDLGQLAINKPLDFGTI 900 IGTAFERAISETRHILPCRIVAAFHTYFAVRILQYHHLGFNKGIDLGQLSLSKPLDYGTI 899 *******:*****:
Zaire Tai Bundibugyo Sudan Reston	SLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLKTYLRMIEMDDLFLPLIAKNPGN 959 TLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLKTYLQMIHMDDLFLPLIAKNPGN 959 TLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLRTYLQMINMDDLFLPLIAKNPGN 959 ALSLAVPQVLGGLSFLNPEKCLYRNLGDPVTSGLFQLKHYLSMVGMSDIFHALIAKSPGN 960 TLTLAVPQVLGGLSFLNPEKCFYRNFGDPVTSGLFQLRVYLEMVNMKDLFCPLISKNPGN 959 :*:****
Zaire Tai Bundibugyo Sudan Reston	CTAIDFVLNPSGLNVPGSQDLTSFLRQIVRRTITLSAKNKLINTLFHASADFEDEMVCKW1019 CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRTITLSAKNKLINTLFHSSADLEDEMVCKW1019 CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRTITLSAKNKLINTLFHSSADLEDEMVCKW1019 CSAIDFVLNPGGLNVPGSQDLTSFLRQIVRRSITLSARNKLINTLFHASADLEDELVCKW1020 CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRSITLTARNKLINTLFHASADLEDEMVCKW1019 *:*******
Zaire Tai Bundibugyo Sudan Reston	LLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKIINNNTETPVLDRLRKITL1079 LLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKIINHNTETPILDRLRKITL1079 LLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKVINNNAETPILDRLRKITL1079 LLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKMISNNAETPILERLRKITL1080 LLSSNPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKIINNSETPVLDKLRKITL1079
Zaire Tai Bundibugyo Sudan Reston	QRWSLWFSYLDHCDNILAEALTQITCTVDLAQILREYSWAHILEGRPLIGATLPCMIEQF1139 QRWSLWFSYLDHCDQVLADALTQITCTVDLAQILREYTWAHILEGRQLIGATLPCMIEQF1139 QRWSLWFSYLDHCDQVLADALIKVSCTVDLAQILREYTWAHILEGRQLIGATLPCMLEQF1139 QRWNLWFSYLDHCDQVLADALQPIKCTVDLAQILREYSWAHILDGRQLIGATLPCMLEQF1140 QRWNLWFSYLDHCDQLLADALQKISCTVDLAQILREYSWAHILDGRSLIGATLPCNVEQF1139 ***.*********** * ::::::***************
Zaire Tai Bundibug y o Sudan Reston	KVFWLKPYEQCPQCSNAKQPGGKPFVSVAVKKHIVSAWPNASRISWTIGDGIPYIGSRTE 1199 NVIWLKPYEHCPKCAKSANPKGEPFVSIAIKKHVVSAWPDQSRLSWTIGDGIPYIGSRTE 1199 NVFWLKSYEQCPKCAKSRNPKGEPFVSIAIKKQVVSAWPDQSRLSWTIGDGVPYIGSRTE 1199 QTTWLKPYEQCVECSSTN NSSPYVSVALKRNVVSAWPDASRLGWTIGDGIPYIGSRTE 1198 KVKWLGQYEPCPECLNKKGSNAYVSVAVKDQVVSAWPDASRLGWTIGDGIPYIGSRTE 1197 ** ** * :
Zaire Tai Bundibugyo Sudan Reston	DKIGQPAIKPKCPSAALREAIELASRLTWVTQGSSNSDLLIKPFLEARVNLSVQEILQMT 1259 DKIGQPAIKPKCPSAALREAIELTSRLTWVTQGGANSDLLVKPFIEARVNLSVQEILQMT 1259 DKIGQPAIKPKCPSAALREAIELTSRLTWVTQGGANSDLUKPFVEARVNLSVQEILQMT 1259 DKIGQPAIKPRCPSAALREAIELTSRLTWVTQGSANSDQLIRPFLEARVNLSVQEILQMT 1258 DKIGQPAIKPRCPSSALKEAIELASRLTWVTQGGSNSEQLIRPFLEARVNLSVSEVLQMT 1257 **********

Zaire Tai Bundibugyo Sudan Reston	PSHYSGNIVHRYNDQYSPHSFMANRMSNSATRLIVSTNTLGEFSGGGQSARDSNIIFQNV1319 PSHYSGNIVHRYNDQYSPHSFMANRMSNSATRLVVSTNTLGEFSGGGQSARDSNIIFQNV1319 PSHYSGNIVHRYNDQYSPHSFMANRMSNSATRLVVSTNTLGEFSGGQSARDSNIIFQNV1319 PSHYSGNIVHRYNDQYSPHSFMANRMSNTATRLMVSTNTLGEFSGGGQAARDSNIIFQNV1318 PSHYSGNIVHRYNDQYSPHSFMANRMSNTATRLIVSTNTLGEFSGGGQAARDSNIIFQNV1318
Zaire Tai Bundibugyo Sudan Reston	INYAVALFDIKFRNTEATDIQYNRÄHLHLTKCCTREVPAQYLTYTSTLDLDLTRYRENEL 1379 INFAVALFDLRFRNVATSSIQHHRAHLHLSKCCTREVPAQYLVYTSTLPLDLTRYRDNEL 1379 INFAVALFDLRFRNTETSSIQHNRAHLHLSQCCTREVPAQYLTYTSLSLDLTRYRENEL 1379 INFAVALYDIRFRNTCTSSIQYHRAHIHLTNCCTREVPAQYLTYTSLNLDLSKYRNNEL 1378 INLAVALYDIRFRNTNTSDIRHNRAHLHLTECCTKEVPAQYLTYTSALNDLSRYRDNEL 1377 ** :**:**:
Zaire Tai Bundibugyo Sudan Reston	IYDSNPLKGGLNCNISFDNPFFQGKRLNIIEDDLIRLPHLSGWELAKTIMQSIISDSNNS1439 IYDDNPLRGGLNCNLSFDNPLFKGQRLNIIEEDLIRLPYLSGWELAKTVIQSIISDSNNS1439 IYDNNPLKGGLNCNLSFDNPLFKGQRLNIIEEDLIRFPHLSGWELAKTIQSIISDSNNS1439 IYDSNPLKGGLNCNLSIDSPLMKGPRLNIIEDDLIRLPHLSGWELAKTVQSIISDSNS1438 IYDSNPLKGGLNCNLTIDSPLVKGPRLNMIEDDLLRFPHLSGWELAKTVQSIISDNSN1437 ***:**
Zaire Tai Bundibugyo Sudan Reston	STDPISSGETRSFTTHFLTYPKIGLLYSFGAFVSYYLGNTILRTKKLTLDNFLYYLTTQI1499 STDPISSGETRSFTTHFLTYPKIGLLYSFGALISYYLGNTIIRTKKLTLNNFIYYLATQI1499 STDPISSGETRSFTTHFLTYPKVGLLYSFGALVSYYLGNTIIRTKKLDLSHFMYYLTQI1499 STDPISSGETRSFTTHFLTYPKIGLLYSFGALISFYLGNTILCTKKIGLTEFLYYLQNQI1498 STDPISSGETRSFTTHFLTYPQIGLLYSFGAVLCFYLGNTILWTKKLDYEQFLYYLHNQL1497 *******************************
Zaire Tai Bundibugyo Sudan Reston	HNLPHRSLRILKPTFKHASVMSRLMSIDPHFSIYIGGAAGDRGLSDAARLFLRTSISSFL1559 HNLPHRSLRILKPTLKHASVISRLISIDSHFSIYIGGTAGDRGLSDAARLFLRTAITVFL1559 HNLPHRSLRILKPTFKHVSVISRLMSIDPHFSIYIGGTAGDRGLSDAARLFLRVAISSFL1559 HNLSHRSLRIFKPTFRHSSVMSRLMDIDPNFSIYIGGTAGDRGLSDAARLFLRIAISTFL1558 HNLPHRALRVFKPTFKHASVMSRLMDIDSNFSIYIGGTSGDRGLSDAARLFLRIAISTFL1557 *** **:**:**:
Zaire Tai Bundibugyo Sudan Reston	TFVKEWIINRGTIVPLWIVYPLEGQNPTPVNNFLYQIVELLVHDSSRQQAFKTTISDH1617 QFVRKWIVERKTAIPLWVIYPLEGQSPSPINSFLHHVIALLQHESSHDHVCAAEAHSR1617 QFIKKWIVEYKTAIPLWVIYPLEGQNPDPINSFLHLIIALLQNESPQNNIQFQEDRNN1617 SFVEEWVIFRKANIPLWVIYPLEGQRSDPPGEFLNRVKSLIVGTEDDKNKGSILSRSG1616 QFLKSWIDRQKTIPLWVYPLEGQQPESINEFLHKUGLUKGGPKSIPKEVSIQNDGHL1617 *:*:::::::::::::::::::::::::::::::::
Zaire Tai Bundibugyo Sudan Reston	VHPHDNLVYTCKSTASNFFHASLAYWRSRHRNSNRKYLARDSSTGSSTNNSDG1670 VETFDNLVYMCKSTASNFFHASLAYWRSRSKNQDKREMTKILSLTQTEKKNSFGYTAH1675 QQLSDNLVYMCKSTASNFFHASLAYWRSRHKGPKNRSTEEQTVKPIPYDNFHSVKCASN1677 EKCSSNLVYNCKSTASNFFHASLAYWRGRHRPKKTIGATNATTAPHIILPLGNSDR1672 DLAENNYVYNSKSTASNFFHASLAYWRSRKSRKTQDHNDFSRGDGTLTEPVRKFSS1673
Zaire Tai Bundibugyo Sudan Reston	HIERSQEQTTRDPHDGTERNLVLQMSHEIKRTTIPQENTHQGPSF1715 PESTAVLGSLQTSLAPPPSA-DEATYDRKNKVLKASRPGKYSQNTTKAPPN1725 PPSIPKSKSGTQGSSAFF-EKLEYDKERELPTASTPAEQSKTYIKALSS1725 PPGLDLNRNNDTFIPTRIKQIVQGDSRN-DRTTTTRFPP-KSRST1715 NHQSDEKYYNVTCGKSPKPQERKDFSQYRLSNNGQTMSNHRKK1716
Zaire Tai Bundibugyo Sudan Reston	QSFLSDSACGTANPKLNFDRSRHNVKFQDHNSASKREGHQIISHRLVLPFFTLSQGTRQL1775 QTSCRDVSPNITGTDGCPSANEGSNSNNNNLVSHRIVLPFFTLSHNYNER1775 RIYHGKTPSNAAKDDSTTSKGCDSKEENAVQASHRIVLPFFTLSQNDYRT1775 PTSATEPPTKMYEGSTTHQGKLTDTHLDEDHNAKEFPSNPHRLVVPFFKLTKDGEYS1772 GKFHKWNPCKMLMESQRGTVLTEGDYFQNNTPPTDDVSSPHRLILPFFKLGNHNHAH1773
Zaire	TSSNESQTQDEISKYLRQLRSVIDTTVYCRFTGIVSSMHYKLDEVLWEIESFKSAVTLAE 1835
Tai Bundibugyo Sudan Reston	PSIRKSEGTTEIVRLTRQLRAIPDTTIYCRFTGIVSSMHYKLDEVLWEFDNFKSAITLAE 1835 PSAKKSEYITEITKLIRQLKAIPDTTVYCRFTGVVSSMHYKLDEVLWEFDSFKTAVTLAE 1835 IEPSPEESRSNIKGLLQHLRTMVDTTIYCRFTGIVSSMHYKLDEVLWEYNKFESAVTLAE 1832 DQDAQELMNQVIKQYLHQLRSMLDTTIYCRFTGIVSSMHYKLDEVLLEYNSFDSAITLAE 1833
Zaire Tai Bundibugyo Sudan Reston	GEGAGALLLIQKYQVKTLFFNTLATESSIESEIVSGMTTPRMLLPVMSKFHNDQIEIILN 1895 GEGSGALLLLQKYKVETLFFNTLATEHSIEAEIISGITTPRMLLPIMSRFHGGQIKVTLN 1895 GEGSGALLLIQKYKVRTIFFNTLATEHSIEAEIVSGTTTPRMLLPIMAKLHDDQINVILN 1895 GEGSGALLLIQKYGVKKLFLNTLATEHSIESEVISGYTTPRMLLPIMPKTHRGELEVILN 1892 GEGSGALLLIQKYSTRLLFINTLATEHSIESEVVSGFSTPRMLLPIMPKVHEGQVTVILN 1893 ***:******
Zaire Tai Bundibugyo Sudan Reston	NSASQITDITNPTWFKDQRARLPKQVEVITMDAETTENINRSKLYEAVYKLILHHIDPSV1955 NSASQITDITNPSWLADQKSRIPKQVEIITMDAETTENINRSKLYEAVQQLIVSHIDPNA1955 NSASQVTDITNPAWFTDQKSRIPKQVEIMTMDAETTENINRSKLYEAVQQLIVSHIDTRV1955 NSASQITDITHRDWFSNQKNRIPNDADIITMDAETTENLDRSRLYEAVYTIICNHINPKT1952 NSASQITDITSSMWLSNQKYNLPCQVEIIMMDAETTENLDRSQLYRAVYNLILDHIDPQY1953 ***** *** * :: :: :: :: ::::::
Zaire Tai Bundibugyo Sudan Reston	LKAVVLKVFLSDTEGMLWLNDNLAPFFATGYLIKPITSSARSSEWYLCLTNFLSTTRKMP 2015 LKVVLKVFLSDIDGILWLNDNLTPLFGLGYLIKPITSSPKSSEWYLCLSNLLSTSRRLP 2015 LKIVILKVFLSDIEGLLWLNDHLAPLFGSGYLIKPITSSPKSSEWYLCLSNFLSASRRP 2015 LKVVLLKVFLSDLGMCWINNYLAPMFGSGYLIKPITSSARSSEWYLCLSNLLSTLRTTQ 2012 LKVVVLKVFLSDIEGILWINDYLAPLFGAGYLIKPITSSARSSEWYLCLSNLLSTNRRSA 2013 ** *:****** :*: *:* :*:*
Zaire Tai Bundibugyo Sudan Reston	HQNHLSCKQVILTALQLQIQRSPYWLSHLTQYADCELHLSYIRLGFPSLEKVLYHRYNLV2075 HQSHTTCMHVIQTALQLQIQRSSYWLSHLVQYANHNLHLDYINLGFPSLERVLYHRYNLV2075 HQGHATCMQVIQTALRLQVQRSSYWLSHLVQYADINLHLSYVNLGFPSLEKVLYHRYNLV2075 HQTQANCLHVVQCALQQQVQRGSYWLSHLTKYTTSRLHNSYIAFGFPSLEKVLYHRYNLV2072 HQTHKACLGVIRDALQAQVQRGYYWLSHLAQYATKNLHCEYIGLGFPSLEKVLYHRYNLV2073 ** : *: *: *: *: *: *: *: *: *: *: *: *:
Zaire Tai Bundibugyo Sudan Reston	DSKRGPLVSITQHLAHLRAEIRELTNDYNQQRQSRTQTYHFIRTAKGRITKLVNDYLKFF2135 DSQKGPLTSIVQHLAHLQTEIRELVNDYNQQRQSRTQTYHFIKTIKGRITKLVNDYLKFF2135 DSRKGPLVSILYHLTHLQAEIRELVCDYNQQRQSRTQTYHFIKTKGRITKLVNDYLKFF2135 DSRKGPLVSITRHLALLQTEIRELVTDYNQLRQSRTQTYHFIKTSKGRITKLVNDYLRFE2132 DTGLGPLSSVIRHLTNLQAEIRDLVLDYNLMRESRTQTYHFIKTAKGRITKLVNDFLKFS2133 *: ** *: *: *::*:

Zaire Tai Bundibugyo Sudan Reston	LIVQALKHNGTWQAEFKKLPELI LIIQALKHNCTWQEELRALPDLI LVVQALKHNCLWQEELRTLPDLI LVIRALKNNSTWHHELYLLPELI LIVQALKNNSSWYTELKKLPEVI *:::***:* * *: *:	SVCNRFYHIRDCNCEERFLVQTLYLHRMQDSEVKLIE 2195 SVCTRFYHTRNCSCENRFLVQTLYLSRMQDSEIKLID 2195 NVCNRFYHIRDCSCEDRFLIQTLYLTRMQDSEAKLME 2195 GVCHRFNHTRNCTCSERFLVQTLYLHRMSDAEIKLMD 2192 NVCNRFYHTHNCECQEKFFVQTLYLQRLRDAEIKLIE 2193
Zaire	RLTGLLSLFPDGLYRFD	2212
Tai	RLTGLLSLCPNGFFR	2210
Bundibugyo	RLTGFLGLYPNGINA	2210
Sudan	RLTSLVNMFPEGFRSSSV-	2210
Reston	RLTGLMRFYPEGLIYSNHT	2212

RLTGLMRFYPEGLIYSNHT ***.:: : *:*:

MODULE-3

Nucleoprotein:

1	Tel Francis The Invitation	Den Alberry The Instance	Condens The Involves	Zaine Thelesian	Destan Ehelenime
	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene Number = 01	Gene Number = 01	Gene Number = 01	Gene Number= 01	Gene Number = 01
and Exon type	Exon Number = 01	Exon Number =01	Exon Number = 01	Exon Number =01	Exon Number = 01
	Type of Exon = Sngl	Type Of Exon =Sngl	Type of Exon =Sngl	Type of Exon = Sngl	Type of Exon =Sngl
	Gene Number = 01		Gene Number = 01	Gene Number =01	Gene Number = 01
	Exon Number =02		Exon Number =02	Exon Number =02	Exon Number = 02
	Type of Exon =PlyA		Type Of Exon = PlyA	Type Of Exon =PlyA	Type of Exon = PlyA
Type of DNA Strand	E-1(+=Input strand)	E-1(+ = Input Strand)	E-1(+=Input Strand)	E-1(+=Input Strand)	E-1(+=Input Strand)
+ = Input Strand	E-2(+=Input Strand)		E-2(+=Input Strand)	E-2(+=Input strand)	E-2(+=Input Strand)
- = Output Strand					
Beginning of Exon/Signal	E-1=409	E-1=403	$E_{-1} = 403$	E-1= 415	E-1=409
Deginning of Liton organi	E-2=2677	21.005	$E_{-2} = 2734$	$E_{-2} = 2743$	E-2= 2947
	22200		22 2.2.	22 200	
Ending of Exon/signal	E-1=2628	E-1=2622	E-1=2619	E-1=2634	E-1= 2628
Ending of Exchosignal	E-2=2682	2 1 2022	$E_{-2} = 2739$	$F_{-2} = 2748$	$F_{-2} = 2952$
	2 2 2002		22 2.00	22 27 10	22 2702
Length of Exon/signal	E-1=2220	E-1=2220	E-1 = 2217	E-1=2220	E-1= 2220
Dengen of Elton Signal	E-2=06		E-2 = 06	E-2=06	E-2=06
Reading Frame	E-1=0	E-1=0	E-1=0	E-1= 0	$E_{-1} = 0$
g	E-2=()		E-2 = ()	$E_{-2} = ()$	$E_{-2} = ()$
			()		()
Net-Phase of Exon/Signal	E-1=0	E-1=0	E-1 = 0	E-1=0	E-1 = 0
	E-2=()		E-2 = ()	$E_{-2}=()$	$E_{-2} = ()$
Initiation signal/3'-Splice	E-1=99	E-1=75	E-1 = 81	E-1= 55	E-1 = 71
site score	E-2=()		$E_{-2} = ()$	E-2=()	$E_{-2} = ()$
Termination signal/5'-Splice	E-1=28	E-1=42	E-1 = 55	E-1 = 42	E-1 = 41
site score	E-2=()		E-2 = ()	E-2=()	E-2 = ()
Coding Region score	E-1=1622	E-1=1481	E-1 = 1662	E-1 =1366	E-1 =1420
	E-2=()		$E_{-2} = ()$	$E_{-2}=()$	$E_{-2} = ()$
			== ()	== ()	== ()
Probability of Exon	E-1=0.776	E-1=0.478	E-1 = 0.998	E-1 =0.578	E-1 = 0.921
	$E_{-2}=()$		$E_{-2} = ()$	$E_{-2} = ()$	$E_{-2} = ()$
			()	()	()
Exon score	E-1=151.05	E-1=135.75	E-1= 155.98	E-1 =122.45	E-1 =129 35
Laon score	E-2=-3 64	21 10000	$E_{-2} = 1.05$	$E_{-2} = 1.05$	$E_{-2} = -1.75$
1					

Polymerase complex protein

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene number = 01	Gene number = 01	Gene number =01	Gene number = 01	Gene number = 01
and Exon type	Exon Number =01	Exon number = 01	Exon number = 01	Exon number = 01	Exon number $= 01$
	Type of Exon =Init	Type of Exon = Sngl	Type of Exon = Sngl	Type of Exon =Sngl	Type of Exon = Sngl
		Gene number =01	Gene number = 01	Gene number = 01	Gene number = 01
		Exon number = 02	Exon number =02	Exon number $= 02$	Exon number =02
		Type of Exon =PlyA	Type of Exon = PlyA	Type of Exon = PlyA	Type of Exon = PlyA
Type of DNA Strand	E-1(+=Input Strand)	E-1(+= Input strand)	E-1(+=Input strand)	E-1(+=Input strand)	E-1(+=Input strand)
+ = Input Strand		E-2(+=Input Strand)	E-2(+=Input Strand)	E-2(+=Input strand)	E-2(+=Input strand)
- = Output Strand					
Beginning of Exon/Signal	E-1 = 89	E-1 = 89	E-1= 126	E-1=98	E-1 = 137
		E-2 = 1303	E-2 =1343	E-2= 1238	E-2 = 1218
Ending of Exon/signal	E-1 =1004	E-1 = 1114	E-1 =1115	E-1 = 1120	E-1 = 1126
		E-2 = 1308	E-2 =1348	E-2 = 1243	E-2 = 1223
Length of Exon/signal	E-1 =916	E-1 = 1026	E-1 =990	E-1 = 1023	E-1 = 990
		E-2 = 06	E-2 = 06	E-2 = 06	E-2 = 06
Reading Frame	E-1 = 01	E-1 = 01	E-1 = 02	E-1 = 01	E-1 = 01
_		E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()
Net-Phase of Exon/Signal	E-1 = 01	E-1 = 00	E-1 = 00	E-1 = 00	E-1 = 00
		E-2=()	E-2=()	E-2 = ()	E-2 = ()

Initiation signal/3'-Splice	E-1 =42	E-1 = 75	E-1 =71	E-1 = 66	E-1 = 69
site score		E-2=()	E-2 = ()	E-2 = ()	E-2=()
Termination signal/5'-Splice	E-1=3	E-1 = 45	E-1 = 43	E-1 = 52	E-1 = 48
site score		E-2=()	E-2 = ()	E-2 = ()	E-2 = ()
Coding Region score	E-1 =568	E-1 = 296	E-1 = 819	E-1 = 843	E-1 = 813
		E-2 =()	E-2 = ()	E-2 = ()	E-2 = ()
Probability of Exon	E-1 = 0.455	E-1 = 0.283	E-1 = 0.534	E-1 = 0.847	E-1 = 0.846
-		E-2 = ()	E-2 = ()	E-2 = ()	E-1 = ()
Exon score	E-1=37.93	E-1 = 21.09	E-1 = 72.31	E-1 = 75.31	E-1 = 72.01
		E-2 = 1.05	E-2 = -1.75	E-2 = -1.75	E-2 = -1.75

Matrix Protein:

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene number = 01				
and Exon type	Exon number = 01				
	Type of Exon = Init	Type of Exon = Init	Type of Exon = Sngl	Type of Exon = Sngl	Type of Exon = Sngl
	Gene number = 01	Gene number $= 01$	Gene number = 01	Gene number = 01	Gene number = 01
	Exon number $= 02$	Exon number =02	Exon number $= 02$	Exon number $= 02$	Exon number $= 02$
	Type of Exon = Term	Type of Exon =Intr	Type of Exon = PlyA	Type of Exon =PlyA	Type of Exon = PlyA
Type of DNA Strand	E-1(+ = Input strand)				
+=Input Strand	E-2(+ = Input strand)				
- = Output Strand					
Beginning of Exon/Signal	E-1 = 90				
	E-2 = 1098	E-2 = 1046	E-2 = 1293	E-2 =1435	E-2 = 1274
Ending of Exon/signal	E-1 = 990	E-1 = 1004	E-1 = 1070	E-1 = 1070	E-1 = 1085
	E-2 = 1498	E-1 = 1225	E-2 = 1298	E-2 = 1440	E-2 = 1279
Length of Exon/signal	E-1 = 901	E-1 = 915	E-1 = 981	E-1 = 981	E-1 = 996
	E-2 = 401	E-2 = 180	E-2 = 06	E-2 = 06	E-2 = 06
Reading Frame	E-1 = 02				
	E-2 = 01	E-2 = 01	E-2 = ()	E-2 = ()	E-2 = ()
Net-Phase of Exon/Signal	E-1 = 01	E-1 = 00	E-1 = 00	E-1 = 00	E-1 = 00
	E-2 = 02	E-2 = 00	E-2 = ()	E-2 = ()	E-2 = ()
Initiation signal/3'-Splice	E-1 = 81	E-1 = 101	E-1 =64	E-1 = 48	E-1 = 60
site score	E-2 = 20	E-2 = 72	E-2 = ()	E-2 = ()	E-2 = ()
Termination signal/5'-Splice	E-1 = 53	E-1 = -6	E-1 = 37	E-1 = 32	E-1 = 28
site score	E-2 = 48	E-2 = 69	E-2 = ()	E-2 = ()	E-2 = ()
Coding Region score	E-1 = 349	E-1 = 427	E-1 = 279	E-1 = 837	E-1 = 692
	E-2 = 287	E-2 = 239	E-2 = ()	E-2 = ()	E-2 = ()
Probability of Exon	E-1 = 0.752	E-1 = 0.769	E-1 = 0.632	E-1 = 0.840	E-1 = 0.728
	E-2 = 0.989	E-2 = 0.823	E-2 = ()	E-2 =()	E-2 = ()
Exon score	E-1 = 25.13	E-1 = 28.67	E-1 = 17.22	E-1 = 70.65	E-1 = 57.05
	E-2 = 13.18	E-2 = 20.46	E-2 = -1.75	E-2 = -0.45	E-2 = -1.75

Small Secreted Glycoprotein:

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01
and Exon type	Exon number = 01 Type of Exon= Init	Exon number = 01 Type of Exon = Init	Exon number = 01 Type of Exon = Init	Exon number = 01 Type of Exon = Intr	Exon Number = 01 Type of Exon = Init
	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01

	Exon number = 02				
	Type of Exon = Term	Type of Exon = Term	Type of Exon = Term	Type of Exon = Intr	Type of Exon = Intr
	Gene number = 01	Gene number = 01			
	Exon number = 03	Exon number = 03			
	Type of Exon = PlyA	Type of Exon = PlyA			
Type of DNA Strand	E-1(+ = Input strand)				
+=Input Strand	E-2(+ = Input strand)				
- = Output Strand	E-3(+ = Input strand)	E-3(+ = Input Strand)			
Beginning of Exon/Signal	E-1 = 140	E-1 = 140	E-1 = 116	E-1 = 425	E-1 = 142
	E-2 = 1076	E-2 = 1052	E-2 = 1043	E-2 = 1035	E-2 = 1102
	E-3 = 2356	E-3 = 2373			
Ending of Exon/signal	E-1 = 995	E-1 = 995	E-1 = 971	E-1 = 999	E-1 = 1000
	E-2 = 2169	E-2 = 2169	E-2 = 2145	E-2 =2101	E-2 = 1938
	E-3 = 2361	E-3 = 2378			
Length of Exon/signal	E-1 = 856	E-1 = 856	E-1 = 856	E-1 = 575	E-1 = 859
	E-2 = 1094	E-2 = 1118	E-2 = 1103	E-2 = 1067	E-2 = 837
	E-3 = 06	E-3 = 06			
Reading Frame	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 00
_	E-2 = 00	E-2 = 00	E-2 = 00	E-2 = 00	E-2 = 02
	E-3 = ()	E-3 = ()			
Net-Phase of Exon/Signal	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 02	E-1 = 01
_	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 00
	E-3 = ()	E-3 = ()			
Initiation signal/3'-Splice	E-1 = 84	E-1 = 87	E-1 = 82	E-1 = 39	E-1 = 87
site score	E-2 = 35	E-2 = -37	E-2 = -50	E-2 = -12	E-2 = 34
	E-3 = ()	E-3 = ()			
Termination signal/5'-Splice	E-1 = 92	E-1 = 36	E-1 = -4	E-1 = -12	E-1 = 97
site score	E-2 = 43	E-2 = 33	E-2 = 42	E-2 = 72	E-2 = 67
	E-3 = ()	E-3 = ()			
Coding Region score	E-1 = 285	E-1 = 496	E-1 = 305	E-1 = 423	E-1 = 415
	E-2 = 497	E-2 = 430	E-2 = 578	E-2 = 611	E-2 = 425
	E-3 = ()	E-3 = ()			
Probability of Exon	E-1 = 0.896	E-1 = 0.908	E-1 = 0.237	E-1 = 0.365	E-1 = 0.835
-	E-2 = 0.979	E-2 = 0.134	E-2 = 0.309	E-2 = 0.734	E-2 = 0.362
	E-3 = ()	E-3 = ()			
Exon score	E-1 = 23.30	E-1 = 39.10	E-1 = 15.51	E-1 = 18.94	E-1 = 37.09
	E-2 = 32.16	E-2 = 17.20	E-2 = 31.64	E-2 = 39.43	E-2 = 26.36
	E-3 = 1.05	E-3 = 1.05			

Second Secreted Glycoprotein:

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene number = 01				
and Exon type	Exon number = 01				
	Type of Exon = init	Type of Exon = Init	Type of Exon = Init	Type of Exon = Intr	Type of Exon = Init
	C	C	C	C	C
	Gene number = 01				
	Exon number = 02				
	Type of Exon = Term	Type of Exon = 1 erm	Type of exon = 1 erm	Type of exon = Intr	1 ype of exon = Intr
	Gene number = 01	Gene number = 01			
	Exon number = 03	Exon number = 03			
	Type of Exon = PlyA	Type of Exon = PlyA			
Type of DNA Strand	E-1(+ = Input Strand)				
+ = Input Strand	E-2(+ = Input strand)				
- = Output Strand	E-3(+ = Input strand)	E-3(+ = Input Strand)			
_					
Beginning of Exon/Signal	E-1 = 140	E-1 = 140	E-1 = 116	E-1 = 425	E-1 = 142
	E-2 = 1076	E-2 = 1052	E-2 = 1043	E-2 = 1035	E-2 = 1102
	E-3 = 2356	E-3 = 2373			
Ending of Exon/signal	E-1 = 995	E-1 = 995	E-1 = 971	E-1 = 999	E-1 = 1000
	E-2 = 2169	E-2 = 2169	E-2 = 2145	E-2 = 2101	E-2 = 1938
	E-3 = 2361	E-3 = 2378			
Length of Exon/signal	E-1 = 856	E-1 = 856	E-1 = 856	E-1 = 575	E-1 = 859
	E-2 = 1094	E-2 = 1118	E-2 = 1103	E-2 = 1067	E-2 = 837
	E-3 = 06	E-3 = 06			
Reading Frame	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 00
reading Frank	$E_{-2} = 00$	$E_{-2} = 00$	$E_{-2} = 00$	$E_{-1} = 00$	$E_{-2} = 02$
	E-3 = ()	E-3 = ()	22 00	2	22 02
Ļ	= - \/	\/	1	1	1

Net-Phase of Exon/Signal	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 02	E-1 = 01
_	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 00
	E-3 = ()	E-3 = ()			
Initiation signal/3'-Splice	E-1 = 84	E-1 = 87	E-1 = 82	E-1 = 39	E-1 = 87
site score	E-2 = 35	E-2 = -37	E-2 = -50	E-2 = -12	E-2 = 34
	E-3 = ()	E-3 = ()			
Termination signal/5'-Splice	E-1 = 92	E-1 = 36	E-1 = -4	E-1 = -12	E-1 = 97
site score	E-2 = 43	E-2 = 33	E-2 = 42	E-2 = 72	E-2 = 67
	E-3 = ()	E-3 = ()			
Coding Region score	E-1 = 285	E-1 = 496	E-1 = 305	E-1 = 423	E-1 = 415
	E-2 = 497	E-2 = 430	E-2 = 578	E-2 = 611	E-2 = 425
	E-3 = ()	E-3 = ()			
Probability of Exon	E-1 = 0.896	E-1 = 0.908	E-1 = 0.237	E-1 = 0.365	E-1 = 0.835
	E-2 = 0.979	E-2 = 0.134	E-2 = 0.309	E-2 = 0.734	E-2 = 0.362
	E-3 = ()	E-3 = ()			
Exon score	E-1 = 23.30	E-1 = 39.10	E-1 = 15.51	E-1 = 18.94	E-1 = 37.09
	E-2 = 32.16	E-2 = 17.20	E-2 = 31.64	E-2 = 39.43	E-2 = 26.36
	E-3 = 1.05	E-3 = 1.05			
I	ł	4	4	ł	1

Spike Glycoprotein:

	Tai Forest Fhelavirus	Bundibugyo Ebolayirus	Sudan Ebolavirus	Zaira Ebalavirus	Reston Ebelavirus
Cone numbers Fron number	Concernment = 01	Cone symbol = 01	Cono number = 01	Cone number = 01	Cone number = 01
Gene number;Exon number	Gene number – 01	Gene number – 01	Gene number = 01	Gene number – 01	Gene number – 01
and Exon type	Exon number $= 01$	Exon number $= 01$	Exon number $= 01$	Exon number = 01	Exon number $= 01$
	Type of Exon = Init	Type of Exon = Init	Type of Exon = Init	Type of Exon = Intr	Type of Exon = Init
	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01
	Exon number = 02	Exon number = 02	Exon number = 02	Exon number = 02	Exon number = 02
	Type of Exon = Term	Type of Exon = Term	Type of Exon = Term	Type of Exon = Intr	Type of Exon = Intr
	- , , , , , , , , , , , , , , , , , , ,	- 71	- 71	- 51	- 77
	Gene number = 01	Gene number = 01			
	Exon number = 02	Exon number = 03			
	Type of Exon = PlvA	Type of Exon =PlvA			
	- , ,	- , , - , - , - , - , - , - , - , - , -			
Type of DNA Strand	E-1(+ = Input Strand)	E-1(+ = Input Strand)	E-1(+ = Input Strand)	E-1(+ = Input Strand)	E-1(+ = Input Strand)
+ = Input Strand	E-2(+ = Input Strand)	E-2(+ = Input Strand)	E-2(+ = Input Strand)	E-2(+ = Input Strand)	E-2(+ = Input Strand)
- = Output Strand	E-3(+ = Input Strand)	E-3(+ = Input Strand)			
Beginning of Exon/Signal	E-1 = 140	E-1 = 140	E-1 = 116	E-1 = 425	E-1 = 142
	E-2 = 1076	E-2 = 1052	E-2 = 1043	E-2 = 1035	E-2 = 1102
	E-3 = 2356	E-3 = 2373			
Ending of Exon/signal	E-1 = 995	E-1 = 995	E-1 = 971	E-1 = 999	E-1 = 1000
	E-2 = 2169	E-2 = 2169	E-2 = 2145	E-2 = 2101	E-2 = 1938
	E-3 = 2361	E-3 = 2378			
Length of Exon/signal	E-1 = 856	E-1 = 856	E-1 = 856	E-1 = 575	E-1 = 859
	E-2 = 1094	E-2 = 1118	E-2 = 1103	E-2 = 1067	E-2 = 837
	E-3 = 06	E-3 = 06			
Reading Frame	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 00
	E-2 = 00	E-2 = 00	E-2 = 00	E-2 = 00	E-2 = 02
	E-3 = ()	E-3 = ()			
Net-Phase of Exon/Signal	E-1 = 01	E-1 = 01	E-1 = 01	E-1 = 02	E-1 = 01
	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 02	E-2 = 00
	E-3 = ()	E-3 = ()			
Initiation signal/3'-Splice	E-1 = 84	E-1 = 87	E-1 = 82	E-1 = 39	E-1 = 87
site score	E-2 = 35	E-2 = -37	E-2 = -50	E-2 = -12	E-2 = 34
	E-3 = ()	E-3 = ()			
Termination signal/5'-Splice	E-1 = 92	E-1 = 36	E-1 = -4	E-1 = -12	E-1 = 97
site score	E-2 = 43	E-2 = 33	E-2 = 42	E-2 = 72	E-2 = 67
	E-3 = ()	E-3 = ()			

Coding Region score	E-1 = 285 E-2 = 497 E-3 = ()	E-1 = 496 E-2 = 430 E-3 = ()	E-1 = 305 E-2 = 578	E-1 = 423 E-2 = 611	E-1 = 415 E-2 = 425
Probability of Exon	E-1 = 0.896 E-2 = 0.979 E-3 = ()	E-1 = 0.908 E-2 = 0.134 E-3 = ()	E-1 = 0.237 E-2 = 0.309	E-1 = 0.365 E-2 = 0.734	E-1 = 0.835 E-2 = 0.362
Exon score	E-1 = 23.30 E-2 = 32.16 E-3 = 1.05	E-1 = 39.10 E-2 = 17.20 E-3 = 1.05	E-1 = 15.51 E-2 = 31.64	E-1 = 18.94 E-2 = 39.43	E-1 = 37.09 E-2 = 26.36

RNA Dependent RNA Polymerase:

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number:Exon number	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01
and Exon type	Exon number $= 01$	Exon number $= 01$	Exon number $= 01$	Exon number $= 01$	Exon number $= 01$
and Luon type	Type of Exon = Sngl	Type of exon = Sngl	Type of Exon = Sngl	Type of Exon = Sngl	Type of Exon = Sngl
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-)1	-)	-,,,	-)1
	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01	Gene number = 01
	Exon number = 02	Exon number = 02	Exon number = 02	Exon number = 02	Exon number = 02
	Type of Exon = PlyA	Type of Exon = PlyA	Type of Exon = PlyA	Type of Exon = PlyA	Type of Exon = PlyA
Town of DNA Street 1	E 1(+ = Input Step of)	E 1(+ = Input Strep d)	E 1(+ = Input Step ad)	$E_1(\pm \pm 1)$	E 1(+ = Input Strend)
Type of DNA Strand	E = 1(+ - Input Stand) E = 2(+ = Input Strand)	E-1(+ - Input Strand) E 2(+ = Leput Strand)	E-1(+ = Input Strand) E 2(+ = Input Strand)	E = 1(+ = Input Strand)	E-1(+-input Strand) E 2(+ = Input Strand)
+ - Input Strand	E-2(+ – Input Suand)	E-2(+ = input suand)	E-2(+ = input straind)	E-2(+-input straind)	E-2(+ - input Suand)
- = Output Strand	F.1. 01	E 1 01	F1 00	F.1. 01	E 1 07
Beginning of Exon/Signal	E = 1 = 81	E-1 = 81	E-1 = 82	E-1 = 81	E-1 = 87
	E-2 = 0959	E-2 = 0805	E-2 = 0980	E-2 = 0775	E-2 = 7202
Ending of Exon/signal	E-1 = 6713	E-1 = 6713	E-1 = 6711	E-1 = 6719	E-1 = 6725
	E-2 = 6964	E-2 = 6808	E-2 = 6991	E-2 = 6780	E-2 = 7207
Length of Exon/signal	E-1 = 6633	E-1 = 6633	E-1 = 6630	E-1 = 6639	E-1 = 6639
	E-2 = 06	E-2 = 06	E-2 = 06	E-2 = 06	E-2 = 06
Reading Frame	E-1 = 02	E-1 = 02	E-1 = 00	E-1 = 02	E-1 = 02
	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = 00	E-2 = ()
Net-Phase of Exon/Signal	E-1 = 00	E-1 = 00	E-1 = 00	E-1 = 00	E-1 = 00
_	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = 00	E-2 = ()
Initiation signal/3'-Splice	E-1 = 87	E-1 = 36	E-1 = 52	E-1 = 15	E-1 = 40
site score	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()
Termination signal/5'-Splice	E-1 = 49	E-1 = 44	E-1 = 31	E-1 = 38	E-1 = 43
site score	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()
Coding Region score	E-1 = 2393	E-1 = 2459	E-1 = 2403	E-1 = 2927	E-1 = 2884
	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()
Probability of Exon	E-1 = 0.884	E-1 = 0.996	E-1 = 0.967	E-1 = 0.972	E-1 = 0.975
	E-2 = ()	E-2=()	E-2 = ()	E-2 = ()	E-2 = ()
Exon score	E-1 = 227.53	E-1 = 228.53	E-1 = 223.23	E-1 = 272.63	E-1 = 271.33
	E-2 = -3.44	E-2 = -0.45	E-2 = -1.75	E-2 = -3.44	E-2 = 1.05

Membrane Associated Protein:

	Tai Forest Ebolavirus	Bundibugyo Ebolavirus	Sudan Ebolavirus	Zaire Ebolavirus	Reston Ebolavirus
Gene number;Exon number	Gene number = 01	Gene number = 01			
and Exon type	Exon number = 01	Exon number = 01			
	Type of Exon = Term	Type of Exon = Sngl	Type of Exon = Sngl	Type of Exon = Sngl	Type of Exon = Sngl
	Gene number = 01 Exon number = 02 Type of Exon = PlyA	Gene number = 01 Exon number = 02 Type of Exon = PlyA	Gene number = 01 Exon number = 02 Type of Exon = PlyA	Gene number = 01 Exon number = 02 Type of Exon = PlyA	Gene number = 01 Exon number = 02 Type of Exon =PlyA
Type of DNA Strand	E-1(+ = Input Strand)	E-1(+ = Input Strand)			

+= Input Strand	E-2(+ = Input Strand)				
- = Output Strand					
Beginning of Exon/Signal	E-1 = 327	E-1 = 467	E-1 = 474	E-1 = 461	E-1 = 472
	E-2 = 1439	E-2 = 1348	E-2 = 1237	E-2 = 1310	E-2 = 1241
Ending of Exon/signal	E-1 = 1222	E-1 = 1222	E-1 = 1229	E-1 = 1216	E-1 = 1227
	E-2 = 1444	E-2 = 1353	E-2 = 1242	E-2 = 1315	E-2 = 1246
Length of Exon/signal	E-1 = 896	E-1 = 756	E-1 = 756	E-1 = 756	E-1 = 756
	E-2 = 06				
Reading Frame	E-1 = 01	E-1 = 01	E-1 = 02	E-1 = 01	E-1 = 00
	E-2 = ()				
	()	(/	()	(/	()
Net-Phase of Exon/Signal	E-1 = 02	E-1 = 00	E-1 = 00	E-1 = 00	E-1 = 00
-	E-2 = ()	E-2 = ()	E-2=()	E-2 = ()	E-2 = ()
	()	(/	()	(/	()
Initiation signal/3'-Splice	E-1 = 45	E-1 = 80	E-1 = 80	E-1 = 88	E-1 = 83
site score	E-2 = ()				
Termination signal/5'-Splice	E-1 = 35	E-1 = 37	E-1 = 32	E-1 = 36	E-1 = 42
site score	E-2 = ()				
Coding Region score	E-1 = 535	E-1 = 450	E-1 = 504	E-1 = 622	E-1 = 299
	E-2 = ()				
Probability of Exon	E-1 = 0.795	E-1 = 0.776	E-1 = 0.992	E-1 = 0.999	E-1 = 0.922
	E-2 = ()				
Exon score	E-1 = 35.47	E-1 = 34.99	E-1 = 39.89	E-1 = 52.89	E-1 = 20.69
	E-2 = -1.75	E-2 = 1.05	E-2 = 1.05	E-2 = 1.05	E-2 = -3.24

Minor Nucleoprotein:

	Tai Forest Fholavirus	Bundibugyo Ebolayirus	Sudan Fholavirus	Zaira Ebolavirus	Reston Ebolavirus
Cone number: Exon number	Gene number = 01				
and Even type	Exon number = 01	Exon number = 01	Exon number = 01	Exon number $= 01$	Exon number = 01
and Exon type	Type of Even = Sngl	Type of Even = Sngl	Type of Even = Sngl	Type of Exen=Sogl	Type of Exer = Sngl
	Type of Exon – Sligi	Type of Exon – Sigi	Type of Exon – Silgi	Type of Exon-Singi	Type of Exon – Sligi
	Gene number = 01				
	Exon number = 02				
	Type of Exon = PlyA				
Type of DNA Strand	E-1(+ = Input Strand)				
+ = Input Strand	E-2(+ = Input Strand)				
- = Output Strand					
Beginning of Exon/Signal	E-1 = 228	E-1 = 228	E-1 = 218	E-1 = 222	E-1 = 229
	E-2 = 1174	E-2 = 1174	E-2 = 1161	E-2 = 1401	E-2 = 1132
Ending of Exon/signal	E-1 = 1097	E-1 = 1097	E-1 = 1084	E-1 = 1088	E-1 = 1092
	E-2 = 1179	E-2 = 1179	E-2 = 1166	E-2 = 1406	E-2 = 1137
Length of Exon/signal	E-1 = 870	E-1 = 870	E-1 = 867	E-1 = 867	E-1 = 864
	E-1 = 06	E-2 = 06	E-2 = 06	E-2 = 06	E-2 = 06
Reading Frame	E-1 = 02	E-1 = 02	E-1 = 01	E-1 = 02	E-1 = 00
	E-2 = ()				
Net-Phase of Exon/Signal	E-1 = 00				
	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()	E-2 = ()
Initiation signal/3'-Splice	E-1 = 78	E-1 = 52	E-1 = 73	E-1 = 06	E-1 = 77
site score	E-2 = ()				
Termination signal/5'-Splice	E-1 = 48	E-1 = 38	E-1 = 38	E-1 = 38	E-1 = 43
site score	E-2 = ()				
Coding Region score	E-1 = 595	E-1 = 540	E-1 = 513	E-1 = 414	E-1 = 566
	E-2 = ()				
				1	
Probability of Exon	E-1 = 0.990	E-1 = 0.865	E-1 = 0.971	E-1 = 0.891	E-1 = 0.693
	$F_{-2} = ()$	$F_{-2} = ()$	$F_{2} = ()$	$F_{-2} = ()$	$F_{2} = ()$
	1-2-()	L-2 - ()	L-2 - ()	1-2-()	L-2-()
Exon score	E-1 = 50.17	E-1 = 41.07	E-1 = 40.44	E-1 = 23.84	E-1 = 46.62
	$F_{-2} = 1.05$	$E_{-2} = -1.75$	$E_{-2} = 1.05$	$F_{-2} = -0.45$	$E_{-2} = 1.05$
	2.2 1.00	L L -1.15	1.00	2.2 10.10	2.2 1.05

Intrepretation Of Data- The above data provides Gene structural information of the genes encoded by Ebola virus proteins. The data represented in the above table shows different terminologies involving gene structure i.e. Exon Number, Type of Exon [Init = Initial exon (ATG to 5'splice site); Intr = Internal exon (3'splice site to 5'splice site); Term = Terminal exon (3' splice site to stop codon); Sngl = Single exon gene (ATG to stop); Prom = Promoter (TATA box/ initiation site); Ply A = poly A signal (consensus: AATAAA)]. We also study DNA strand i.e. (+) = input strand and (-) = negative strand. We also studied beginning of the exon / signal, end of the exon/signal, Length of exon, Reading frame, Net phase of exon, Initial signal/3' splice site score, Termination signal/5' splice site score.

X. CONCLUSION

This three module study help us to know different angles i.e; the Extinction coefficient estimations of proteins help us to distinguish the adjustment in light collecting proficiency and surface inclusion esteem with submersion solvent, Immersion time and drenching focus in the protein. It is likewise used to ponder the effect of dissolvable to control the adsorption kinetics. This is utilized to characterize the scope of wavelength where the light has its greatest profundity of infiltration in tissue. This is the inherent property of various species so it is utilized to separate between the molecules. Instability record clarifies the steady property of protein. Aliphatic file estimates the dissolvability of focused proteins. We assessed whether the protein even is hydrophobic/hydrophilic dependent on the amazing normal of hydrophaticity values. we can anticipate the protein structure, Function and developmental history of groupings and its utilization structure superposition programs and phylogenetic examination programmes. By the quality basic data we can discover infection seriousness and foresee quality structure to explore function, expression level, disease, mutation. By this quality basic investigation we can avoid the sickness by postponement of occurance of ailment.

XI. REFERENCES

1.Multiple sequence alignment: a methodology for protein identification 2015 (Srinivasa Rao V.*1, Das S. K.2, Nageswara Rao K.3 and Kusuma Kumari E.4)

2. Protein Identification and Analysis Tools on the ExPASy Server 1998 (Elisabeth Gasteiger, Christine Hoogland, Alexandre Gattiker, Séverine Duvaud, Marc R. Wilkins, Ron D. Appel, and Amos Bairoch)

3.Ebolavirus disease by CDC/Dr F. A. Murphy 2003(World health organisation-western pacific region)

4.Genome sequence analysis of Ebola virus in clinical samples from three british healthcare workers, August 2014 to March 2015(A Bell, K Lewandowski, R Myers, D Woolridge, E Aarons, A simpson, R Vipond, M Jacobs, S Gharbia, M Zambon. 5. IN SILICO approach of structure prediction and funtional characterization of Zaire Ebola and identification of binding site for drug development 2016 (Md. Jahirul Islam, Kaniz Fatima, Pipasha Biswas-2008 Department of Biochemistry and Biotechnology; University Of Science And Technology, Chittagong)

6. Advance protein alingments based on sequence, structure and hydropathy profiles 2018 The paradigm of viral polymerase enzyme (Alexandros Armaos , Dimitrios Vlachakis, Sophia Kossida)

7. Extiction coefficient- (2007)A guide to understanding extinction coefficient, with emphasis spectrophotometric determination of protein concentration

8. Ebola virus comparative genomics (1999)(Se-Ran Jun; Michael R.Leuze; and David W. Ussery)

9. Ebolaviruses New Roles For Old Proteins (2013)(Diegocantoni, Jeremy S. Rossman-School of Biosciences, University Of Kent, Canterbury,UK) 10. Ebola Virus: (2012) Identification of Virion Structural Proteins By Michael P. Kiley; Russell L. Ragnery and Karl M. Johnson (Special pathogens branch, Virology Divison, Bureau Of Laboratories, Centre for disease control, Public Health Service, US Health, Education and Welfare, Atlanta, Georgia 30333) 1. 11.Bermejo M, Rodriguez-Teijeiro JD, Illera G, Barroso A, Vilà C, Walsh PD. Ebola outbreak killed 5000 gorillas. Science 2006;314:1564. 2.

12Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker JR Jr. Inactivation of Ebola virus