NON CONVENTIONAL
SOLVOTHERMAL-ASSISTED
SYNTHESIS OF NANO LEAD(II)
SULFIDE FROM DITHIOCARBAMATE
PRECURSOR BIS (N-PHENYL-1-
NAPHTHYLDITHIOCARBAMATE) -
CHARACTERIZATION

S. Srinivasan
Department of Chemistry, Annamalai University Deputed to Arignar Anna Govt. Arts College
Vadachennimalai Attur Salem(Dt), Tamilnadu, India

Abstract - A non conventional solvothermal formation of PbS nano particles is reported with nickel dithiocarbamate as single source precursor. Morphology and composition of the nano product have been characterized by PXRD, SEM and EDX analysis. The precursor complex [Pb(pndtc)₂] (where pndtc=n-phenyl-1-napht hyldithiocarbamate) are synthesized and characterized by elemental analysis, electronic, IR spectral, ¹H and ¹³C NMR spectroscopy. Electronic spectral band of compound show bands at 435 nm due to charge transfer. For complex the υC-N band are observed at 1499 cm⁻¹ in IR. In the ¹³C NMR spectra of the complexes the thioureide (N₁₃CS₂) carbons resonate at 206.6 ppm. ¹H NMR showed the observed deshielding of the – CH₂ protons in the compoundis attributed to the shift of electron density on the sulfur (or the metal) through the thioureide π system.

Keywords: dithiocarbamate, thioureide, solvothermal formation, scanning electron micrograph, powder diffraction.

I. INTRODUCTION

Metal dithiolates are used as single source precursors for metal sulphides. Various iron, cobalt and nickel 1,1 dithiolates have been investigated as precursors in metal organic chemical vapour deposition[1-3].The variety of dithiocarbamatesbis(N-alkylthiocarbamate) nickel(II) complexes, [Ni(S₂CNH(n-pr)₂], [Ni(S₂CNH(ipr')₂][4], [Zn(S₂CN(C₅H₅)₂)][5,6], M[(S₂CN(C₅H₅)₂)][M=Pb,Cd][7], Pb[(S₂CN(Bu₂)₂)][8], Cr[(S₂CN(C₅H₅)₂)][9] and Cu[(S₂CN(Pr₂)₂)][10] have been used as single source precursors for the production of thin layers of metal sulphides, viz., NiS, ZnS, PbS, CdS, Cr₂S₃ and Cu₂S respectively by chemical vapour deposition method. Solvothermal synthesis has been used to produce nano structured products titanium dioxide[11], graphene[12], carbon sphere[13], chalcogenide[14] and other products. Synthesis of high quality CdS nano rods by solvothermal process and their photoluminescence has been reported[15]. The obtained product was investigated by PXRD, HRTEM, FE-SEM, UV-Vis spectrum and photoluminescence. Shape controlled synthesis of PbS microcrystals in large yields via a solvothermal synthesis[16]. A simple and facile solvothermal synthesis of Hierarchical PbS microstars with multidentric arms and their optical properties was investigated by PXRD, HRTEM, FT-IR, and photoluminescence. A conventional synthetic approach to prepare PbS nano particles via solvothermal method[17]. Synthesis of isotropic PbS nano particles from the single source precursor highly coordinate dithiocarbamate has been reported[18]. From these attempts, we have been focused to syntheses of PbS. Hence in this article we report the large scale PbS nano particles with high quality were successively synthesized by solvothermal process from lead(II)dithiocarbamates [Pb(pndtc)₂] and its subsequent use as single source precursor. From
this work material morphology and nature of PbS nano particles has been explored. The obtained nano lead(II)sulfide was investigated by PXRD, HRSEM, EDAX and IR analysis.

II. EXPERIMENTAL

All the reagents and solvents employed were commercially available analytical grade materials and were used as supplied without further purification. N-Phenyl-1-Naphthylamine are supplied by Sigma Alrich. IR spectra were recorded on an Avatar Nicolet FT-IR spectrophotometer [Range 4000 - 400 cm\(^{-1}\)] as KBr pellets. Electronic spectra were recorded in CH\(_2\)Cl\(_2\) on a Hitachi U-2001 double beam spectrometer. \(^1\)H, \(^{13}\)CNMR spectra were recorded on a Bruker AMX-400 spectrometer at room temperature using CDCl\(_3\) as solvent. Scanning electron micrographs of the sample are recorded with JOEL JSM-5610 v microscopes.

II.1 Preparation of Bis (n-phenyl-1-naphthylthiocarbamato) lead(II); [Pb(pndtc)]

The compound [Pb(pndtc)] was prepared by mixing N-phenyl-1-naphthylamine (4 mmol, 0.60 mL) and carbon disulphide (4 mmol, 0.24 mL) in ethanol under ice cold condition (5°C). To the yellow dithiocarbamic acid solution, aqueous solution of Pb(NO\(_3\))\(_2\) (2 mmol, 0.660 g) was added with constant stirring. A white solid separated from the solution, which was filtered, washed with alcohol and was then dried in air. (Yield: 70%, dec. 186°C, anal. calc. for C\(_{34}\)H\(_{24}\)N\(_2\)PbS\(_4\) (796.0): Pb, 26.0; C, 51.3; H, 3.0; N 3.5%; found: Pb, 26.1; C, 51.9 H 3.6 N 3.9

II.2 Synthesis of PbS nanoparticles by solvothermal decomposition method using [Pb(pndtc)] as a single source precursor;

A mixture of N-phenyl1-naphthalaminedithiocarbamate (1 g) as a clear solution in chloroform (100 mL) was heated with diethylenetriamine (2mL) at 80°C. The black nanoPbS was obtained as a suspension. The precipitate was filtered and washed with ether, chloroform and the nanoparticles were collected and dried.

III. RESULTS AND DISCUSSION

III.1 Spectral studies

III.1.1 Infrared spectrum

Infrared spectra of the complex is shown in Fig.1 Some important spectral bands are presented in Table 1. The spectrum show two characteristic absorptions due to \(\nu_{C-N}\) and \(\nu_{C-S}\) vibrational modes. The \(\nu_{C-N}\) has been used as a measure of the contribution of the thioureide form to the structure of dithiocarbamate. A strong band around 1499 cm\(^{-1}\) is observed in all the complexes due to \(\nu_{C-N}\) stretching and the band around 1000 cm\(^{-1}\) is due to \(\nu_{C-S}\) stretching in the complexes. The phenyl ring C–H out of plane vibrations appear in the region: 600-736 cm\(^{-1}\). The \(\nu_{C-H}\) aliphatic stretching appears around 2950 cm\(^{-1}\) in the complex[19]

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\nu_{C-N}) (thiou reide)</th>
<th>(\nu_{C-S})</th>
<th>Aromatic (\nu_{C-H})</th>
<th>Aliphatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pb(pndtc)]</td>
<td>1499</td>
<td>1097</td>
<td>3013-3074</td>
<td>2852-2914</td>
</tr>
</tbody>
</table>
III.1.2 Electronic spectrum

Electronic spectrum of the complex is shown in Fig 2 and the corresponding \(\lambda_{\text{max}} \) values are presented in Table 2. The parent lead dithiocarbamate complexes are colourless. The electronic spectra of the parent complex show charge transfer only. The ligand transitions of the dithiocarbamates are observed below 350 nm. The charge transfer transition in \([\text{Pb(pndtc)}_2]\) are observed at 435 nm\[20\]

Table 2. Electronic spectral data

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\lambda_{\text{max}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Pb(pndtc)}_2])</td>
<td>435</td>
</tr>
</tbody>
</table>

III.1.3 NMR SPECTRUM

NMR spectral data of the synthesized compound is given along with the splitting patterns.

III.1.3.1 \(^1\)H NMR spectrum

\(^1\)H NMR spectra of the complex is shown in Fig 3 and the chemical shifts is given in Table 3. \(^1\)H NMR spectra of compound show the phenyl CH\(_2\) proton signals at, 5.20 ppm, For the complex the aromatic protons resonate in the region 7.28-7.34 ppm... The equatorial proton attached to \(\beta \) and \(\gamma \)-carbons appear in the region of 1.71-2.03 ppm. The signals around 1.57 ppm are assigned to the \(\delta \)-protons\[21\].

Table 3. \(^1\)H NMR spectral data (ppm)

<table>
<thead>
<tr>
<th>Complex</th>
<th>Phenyl ring protons</th>
<th>(\alpha)–CH</th>
<th>(\beta)–CH(_2)</th>
<th>(\gamma)–CH(_2)</th>
<th>(\delta)–CH(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Pb(pndtc)}_2])</td>
<td>7.28-7.34</td>
<td>5.04</td>
<td>1.71-2.03</td>
<td>–</td>
<td>1.57</td>
</tr>
</tbody>
</table>

III.1.3.2 \(^{13}\)C NMR spectrum

\(^{13}\)C NMR spectrum is shown in Fig. 4 and the chemical shifts is given in Table 4. The most important chemical shifts of thioureide carbons (S\(_2\)\(^{13}\)CN) are observed at 206.6. The mesomeric shift of electron density from dithiocarbamate moiety towards the metal
centre contributes to the upfield shift from the normal chemical shift of \([\text{Ni(dtc)}_2]\) complexes (206-210 ppm) [22]. The observation is supported by the higher \(v_{\text{N-C}}\) values observed (in IR) for complexes (2) and (3) in the present study. The common spin-lattice relaxation mechanism for \(^{13}\text{C}\) results from dipole–dipole interaction with directly attached protons. Thus, non-protonated carbon atoms have longer \(T_1\) relaxation times, which results in less intense signals, and this phenomenon is clearly observed for thioureide (\(\text{N}^{13}\text{CS}_2\)) and NCS- carbon signals, which are of very low in intensity. From the \(^{13}\text{C}\) NMR spectra of the complex the chemical shift of the carbon atom of the NCS\(_2\) moiety can be correlated to the extent of \(\pi\)-bonding in NCS\(_2\) fragment [22]. In the IR spectra, \(v_{\text{C-N}}\) (thioureide) vibration is usually observed at 1500 cm\(^{-1}\) for dialkyldithiocarbamates and 1450 cm\(^{-1}\) for phenyl substituted dithiocarbamates. The normal valence state transition metal dithiocarbamates have NCS\(_2\) (thioureide) signal above 202 ppm and the main group metal dithiocarbamates have the NCS\(_2\) signals below 202 ppm. Generally, higher \(v_{\text{C-N}}\) (thioureide) correlates with lower NCS\(_2\) chemical shifts \(\delta (\text{N}^{13}\text{CS}_2)\). Deprotonation of secondary amine by the addition of \(\text{CS}_2\) is the first step in the preparation of dithiocarbamate complexes and this deprotonation leads to high C=N bond order which results in a higher value \(v_{\text{C-N}}\) and a low \(\delta (\text{N}^{13}\text{CS}_2)\) values. Complex shows \(v_{\text{C-N}}\) band at 1499 cm\(^{-1}\) and the NCS\(_2\) signal is observed at 206.6 ppm. In compound naphthalene ring carbons appears at the range of 127.9 -135.1 ppm[23].

<table>
<thead>
<tr>
<th>Complex</th>
<th>Phenyl ring</th>
<th>N(^{13})CS(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pb(pndtc)(_2)]</td>
<td>127.9-135.1</td>
<td>206.6</td>
</tr>
</tbody>
</table>

Table 4 \(^{13}\text{C}\) NMR spectral data (ppm)

III.1.3.3 Powder XRD measurement

Powder XRD pattern at room temperature is shown in Fig. 5. All the diffraction peaks in the XRD can be indexed to the pure PbS. The peaks correspond to (111), (200), (220), (311), (222), (400), (331) (420) and (422) which are in good agreement with the JCPDS-pattern (JCPDS File No.: 05-0592) for PbS [24]. All the diffraction peaks showed pure cubic phase of PbS. The highest peak intensity indicate the grains are preferentially oriented along (111) direction. Broadened signals indicate diminished dimensions of the particles. Average crystal diameter of the nano PbS are estimated to be 21 nm by Debye-Scherrer formula from the XRD pattern [25].

Fig. 6 Infra-red spectrum of PbS

III 1.3.4 IR SPECTRUM

The infrared spectrum of nano lead(II) sulphide is shown in Fig 6. In the spectrum the broad band was appeared in the range 2883-2821 cm\(^{-1}\) is assigned to O-H bending vibration in PbS. It indicates PbS absorbs moisture. The peaks observed at
626,1047,1384 cm$^{-1}$ is assigned to hetero polar diatomic molecules of PbS.

III 1.3.5 SEM-EDX analysis

Fig 7 is a scanning electron micrograph of nano PbS and Fig 8 shows a typical EDX pattern of PbS nano particles.

The elemental composition of PbS nano particles determined using SEM – energy dispersive (SEM) spectroscopy by performing the spot measurement on particles. The major peaks are due to the presence of Pb along with sulphur. The elemental ratio of Pb to S in PbS nano particles is 58.6 : 41.4.

IV. CONCLUSION

I demonstrated that solvothermal method can be used to prepare a good quality nano PbS from dithiocarbamate as precursor. This paper presents production of PbS nano particles via solvothermal decomposition of [Pb(pndtc)$_2$] at 80°C. The nano particles have regular shape and high purity showed by PXRD of the sample. EDAX pattern of nano PbS showed major peaks due to the presence of Pb along with sulphur in the ratio of 58.6 : 41.4.

V. REFERENCES

[4] BajiaS. C, Mishra A.(2011) Synthesis and spectroscopic characterisation of bis (N-alkyldithiocarbamato) nickel(II) complexes;Crystal structure of [Ni(S$_2$CNH(i-pr)$_2$)]$_2$ and[Ni(S$_2$CNH(i-pr)$_2$)[(i-pr)$_2$] J. Coord. Chem., 64, pp(2727-2734)

dithiocarbamate complexes Thin solid films 271,1-2, pp(4-7)

