
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 278-282
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

278

CONVERTING NATURAL LANGUAGE QUERY

TO SQL QUERY

Buddhaditya Rath
Department of Computer Engineering

University of Mumbai, Mumbai, Maharashtra, India.

Abstract— This program aims to develop a system that

converts a natural language statement into a SQL query to

obtain information from the relevant database. The native

language input statement taken from the user is

transmitted through various natural language processing

techniques such as Tokenization, Parts of Speech Tagging,

Stemming and Lemmatization to get the statement the way

you want it. The statement is also processed to determine

the type of question. The final question is done by

changing the basic categories and conditions in their

question form and combining the question mark with the

basic question. Currently, the system only works with the

Oracle SQL database. We are exploring ways to use native

English words - sentences or fragments of sentences - to

extract data from SQL, a small experiment of natural

language with machine language problems. We aim to

contribute to the goal of strong natural language in the

data recovery system.

I. INTRODUCTION

Indigenous Language Processing is an area under Artificial

Intelligence used to build smart computers that can

communicate with a person as a person. It closes the gap of

the human-machine. The main purpose of the Indigenous

Language Quiz is to translate English sentences electronically.

Apart from all the challenges, it is widely used for research

purposes. Natural Language Processing can be used to access

the database by asking queries in Natural Language and

getting the required results. Asking questions in native
language for information is a very simple and easy way to

access data, especially for users who are not familiar with the

complex language of handling question languages such as

SQL (Structured Question Language). There are many

challenges in converting a natural language query into a SQL

query as an ambiguous meaning that one word can have more

than one meaning. In this case, one-word maps in more than

one sense. Another challenge is the construction of a complex

SQL query and the next challenge is about Discourse

information where the previous sentence affects the translation

of the next sentence for example if a user enters the

SELECTION and INSTALLING simultaneously, such a case
is not understood in the system.

II. SCRIPTURE STUDY

The problem we address is a subcategory of a broader

problem; natural language to machine language. SQL is
opportunistic for its distinctive, high level language and close

connection to the underlying data. We utilize these

characteristics in our project. SQL is tool for manipulating

data. To create a system which can generate a SQL query from

natural language we need to make the system which can

understand natural language. Most of the research done until

now solves this problem by teaching a system to identify the

parts of speech of a particular word in the natural language

which is called tagging. After this the system is made to

understand the meaning of the natural query when all the

words are put together which is called parsing. When parsing

is successfully done then the system generates a SQL query
using proper syntax of Oracle SQL.

III. EXAMINING THE SYSTEM

The existing method for the query from SQL information

manually But some improvements have been made in recent

years to help with questions that require the use of

Probabilistic Context-Free Grammar (PCFG). The current

standard used is QuePy and similar, non-integrated projects

are the same. These programs use old techniques; QuePy has

not been updated in over a year. The key website has an

interactive web application to show how it works, which
shows the area for improvement. key answers factoid

questions as long as the structure of the question is simple.

Recent research such as SQLizer provides algorithms and

methods that can greatly improve current open source projects.

However, the SQLizer website does not use natural English to

question the feature found in their 2017 paper. We look

forward to proving these innovations.

IV. EXISTING PROGRAM OR RESEARCH GAP

The following are some of the input types that can currently

be managed by our system. Find the power of class number

3128 in building Taylor 3.

SELECT *
 FROM the classroom

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 278-282
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

279

WHEN classroom capacity = '3128' AND classroom

construction = 'Taylor’

In this particular example, the system failed to determine

whether to take 'classroom volume' or 'class number' as n-

gram. Therefore, mapping failed.

Who teaches Physics?

SELECT *

FROM THE DEPARTMENT THERE

department name = 'Physics'

In this example, the included query module of our program is

able to map Physics so that 'door name' is defined from the

'door' table. But it fails to identify the 'who' refers to the

person (pastor). Our system combines column value
references in the native language. It can hang trying to match

the column value with the word in the schema.

V. PROBLEM STATEMENT & OBJECTIVES

PROBLEM STATEMENT: This project uses natural

language processing techniques to work with text details to

construct SQL queries with the help of a corporation we have

developed. En2sql is provided in clear English language as

input returns a well-structured SQL statement such as output.

OBJECTIVE: The aim of our project is to generate accurate

and valid SQL queries after natural language analysis using
open source tools and libraries. Users will be able to access

the SQL statement of the 5 keywords by passing an English

sentence or a piece of a sentence. We wish to do so in a way

that advances current open source projects in terms of

robustness and usability.

VI. SCALE

We will be using the question SELECT, INSERT,

DELETE, UPDATE and WHERE categories. We hope to use

many phrases such as joining, merging, ordering, limiting, etc.

but we cannot commit to this very challenging due to their

additional problem and difficulty of time. The study will begin

with a focus on statements (“get / find number of employees”)
and then extend to questions (“Who is Bob?”). The statements

are easier as it gives more keywords to interpolate the SQL

query structure. There are many relations databases. While

their SQL syntax is similar, it can differ for more complicated

queries. We will focus on Oracle SQL as it is an open source

database with a large user base.

VII. SUGGESTED SYSTEM

The proposed approach aims to use SQL information to

create a corpus that will help identify SQL command names

namely SELECT, INSTALL, DELETE, UPDATE, and map

token with the appropriate POS. Word matches will be
calculated with input schema tokens (table names, column

names, data) to enter table names, column names, and data

comparisons in question.

VIII. DATA ANALYSIS & DISCUSSION

DATASET: We will build our corpus by scanning the

schema of the table name, column name, column types, key

relationships, and data. This will be a specific schema

database. The other corpus will contain all the necessary

building materials. It will contain words that are likely Select,

Add, Delete, Where to help create a question by entering. We

also use the POS corpus of Stanford and WordNet corpus with

nltk.

SETUP: Using En2SQL you will need to track packages.
Python3, NLTK, pymysql, POS Tagger [14] Stanford, Oracle

MySql, and Yelp SQL Dataset [13]. You will first need to set

up a MySQL data user, and then upload the Yelp SQL data to

the database. We include a POS tagger with a code. Launch

the requirements.txt file (via pip3) to enter the python package

requirements (nltk and pymysql). Update data contact details

in the db.config.py file. Enter the native language questions in

input.txt, each line. Launch the main.py. file.

RESULT & ANALYSIS: The corpus that can be used to

test our system is not easily accessible and depends on the

database. Therefore, we tested our system on an integrated
computer for bank language-related language statements and

university details. The university and banking website

contains 11 and 6 tables respectively. However, the system

can work on any complex database. The natural language

statement should be one sentence. The system has been tested

on a campus of about 75 of the university's native language

statements and 50 related to the bank database. System

accuracy is found to be approximately 86%. The program

offers the same SQL query as output where the same native

language statement is represented in different ways. If the

system fails to generate a SQL query that matches any native

language statement, an error message is displayed. Here are a
few of the results provided by the program on the university's

corpus:

i. Find the student name where instructor name is

’Crick’.

SELECT DISTINCT student.stud name FROM

instructor INNER JOIN advisor ON

instructor.ID = advisor.instID INNER JOIN

student

ON student.ID = advisor.stud ID WHERE

instructor.name = ’Crick’

In this database, the tables ’student’ and ’instructor’ are linked
through the table ’advisor’. So, we can see that this query

deals with multiple tables which are joined by INNER JOIN.

ii. Find all student name whose credits are between 90

and 100 and department name is ’Finance’ or

’Biology’. SELECT DISTINCT student.stud

name FROM student

WHERE (student.tot cred BETWEEN ’90’ AND

’100’) AND (student.dep name = ’Finance’ OR

student.dep name = ’Biology’)

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 278-282
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

280

The above query showcases multiple conditions within the

WHERE clause. This query also involves use of BETWEEN

clause and logical clauses like AND, OR.
iii. List all student names whose credits are 50 in

decreasing order of credits. SELECT DISTINCT

student.stud name FROM student

WHERE student.tot cred = ’50’ ORDER BY

student.tot cred DESC 7

Another type of query is the one involving sorting its result

based on some attribute. For this purpose, the query uses the

ORDER BY clause to sort the results in decreasing order.

iv. Give the department name where maximum salary of

instructor is greater than50000.

SELECT DISTINCT instructor.dep name FROM

instructor
GROUP BY instructor.dep name HAVING

MAX(instructor.salary) >’50000’

In SQL, when an aggregate function is compared to constant,

like in this case maximum of salary is compared to 50000,

then the query involves use of HAVING clause instead of a

WHERE clause. Also, whenever HAVING is used, the results

are supposed to be grouped by the attributes in the SELECT

clause.

v. Give the department name where salary of instructor

is greater than average of salary.

SELECT DISTINCT instructor.dep name FROM
instructor

WHERE instructor.salary > (SELECT

AVG(instructor.salary)

FROM instructor)

This query showcases a special case of nested queries.

Whenever an attribute is compared to the result of an

aggregate function, i.e. in this case salary greater than average

of salary, we have to use nested query.

vi. Find the course taught by Crick. SELECT

DISTINCT teaches.course id FROM teaches

NATURAL JOIN instructor WHERE

instructor.name = ’Crick’
Till now, we have seen cases in which an attribute associated

to the value is mentioned in the natural language statement. In

this case, we handle cases where attribute is not mentioned.

We find out the most appropriate attribute for the given value.

vii. o Publish in alphabetic order the names of all

instructors. o Give names of all the instructors in alphabetical

order. o Give instructors names in ascending order.

SELECT DISTINCT instructor.name FROM instructor

ORDER BY instructor.name ASC

As seen in this example, there can be multiple ways of

representing the same natural language statement. The system
gives the same SQL query as the output when the same natural

language statement is represented in different ways.

vii. Insert a student whose id is 5, name is Josh,

department name is Physics and credits are 150.

INSERT INTO student (student.ID, student.stud

name, student.dep name, student.tot cred)

VALUES (’5’ , ’Josh’ , ’Physics’ , ’150’)
In addition to the data retrieval queries, our

system also provides a natural language interface

to insert data into the database. Other DML

queries such as UPDATE and DELETE are also

provided by the system.

ABNORMAL CASE EXPLAINATION: Some input table

names, column name contains underscore, short forms as a

result of which it becomes unusual and difficult to distinguish

between a stand word, a common word. So we should either

add it to the corpus or talk openly before using it. The

accuracy of the questionnaires indicates minute fluctuations.
Some English statements are less instructive. Example: Who is

Bob? This question when asked in a large database creates

confusion to find the right answer. Sometimes it gives and

takes away what is right and sometimes it gives a vague result.

IX. ALGORITHM DESIGN

Following will be our algorithm.

1. Scanning the database: Here we will scan the database to

find table names, column names, primary and foreign keys.
2. Input: We will take the sentence as input from the user

(using input.txt).

3. Tokenize and Tag: We will mark the line and use POS

tagging to mark words.

4. Syntactic parsing: Here we will try to map the table name

and column name with the given natural query. Also, we will

try to identify different attributes of the query.

 5. Redundancy Filtering: Here we will try to eliminate

demolition such as if while creating a map we create a merger

requirement and if not necessary then remove the additional

table.

6. Query Formation: Here we will form a complete SQL
query based on MySQL syntax.

7. Query Execution: Here we will execute the query on

database to get results.

X. DETAILS OF HARDWARE & SOFTWARE

REQUIREMENTS

Hardware Requirements • 4GB RAM. • 10 GB HDD. • Intel

1.66 GHz Processor Pentium 4

Software Requirements • Windows XP/Vista or higher •
Python 3.6.3.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 278-282
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

281

XI. DETAILED DESIGN

Our project uses Python 3.6. Python has many libraries that

are easily accessible and proven. All our required libraries

support Python 3.6. Tools used for the NLTK3 python library

will be used for input inputs. This library serves as a tool for

computer language tools. The following is a list of modules

we will use. The token module provides basic classes for

processing certain text objects, such as words, or sentences.

NLTK Tokenizer is used to make a token.

XII. DATA COLLECTION

For SQL domain information we will create a corpus that will

contain exactly the same words as SQL syntax in SELECT,

LIMIT, FROM, etc. This is common among open source

projects we have seen. Most of the open source projects we

have tested use such keywords, so finding a kind keyword will

be easier. If our English to keyword mapping results are not

favourable, we may use the online thesaurus API. The Oracle

SQL database will be built with data from the public Yelp

SQL Database [13]. We have chosen the Yelp Database

because it is large enough, has many tables, and we have some
domain information about Yelp. This data will be used as a

corpus and test. The corpus will be constructed from table

names, column names, table relationships, and column types.

The corpus database will be used unattended to store the

agnostic database. A set of architectural questions will be used

as a starting point for questions. Indigenous language tokens

will be compared to this.

XIII. OUTPUT AND TESTING

A program that removes a SQL architecture query that

works in a database and attempts to answer an input question
or statement. The output is displayed in standard output and in

put.txt.

Testing our code will begin by creating a specific schema

that contains table-related data, column name and column

data. The other corpus will contain data related to the

SELECT query command. And then we will give you a

general natural language statement to test it. It will take the

native language input and then use two copies and thus issue a

SQL query. We will take the file for

extract the query and run it against the MySQL Yelp

Database, test the functionality of the query. After the run, we

will take the resulting data and compare it with our expected

results. In the final test, we will check the question accurately

and make sure the wrong question does not return the correct

information. We will need to build a natural English set with

the expected pairing of the output. If the question passes the

first two default tests, you will need to be tested manually to

be ready. If all these tests pass, the question is correct. With

this test we will build the accuracy of the system.

XIV. SOLTION STRUCTURE

Figure 1: Solution Structure

XV. RESULT & DISCUSSION

EFFECT OF PSEUDO-CODE USE

We propose a system that seems to overcome the

shortcomings of an existing system that adopts a natural

language sentence such as input, which is transmitted through

various NLP phases to form the final SQL query.

TOKENIZE AND TAG

The original language input query is divided into different

tokens with the help of token, word token, from the 'NLTK'
package. Token collections made with the tag of the speech

part using the Stanford POS tag. All processes that follow this

step use these tagged tokens to process.

ANALYZE TAGGED TOKENS

Depending on the tags of the previous step, the name map

and action list are updated with a single iteration over the

tokens. Tokens associated with affiliate activities are also

assigned with their proper names using the pre-built alphabet.

The decision as to whether a native language statement

represents a data retrieval question (SELECT) or a DML
question (INSERT, UPDATE, DELETE) is taken at this stage

with the help of some 'data sorting' to indicate the type of

question. For example, if words like ‘insert’ and similar

specific words appear in the input, the question type is

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 278-282
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

282

‘INSERT’ and so on. For any type of query, the 'S' (SELECT),

'W' ('O', 'O' (ODA,) test tags are arranged in nouns that

indicate their categories. For this, we have designed data
dictionaries for various categories. These data dictionaries

contain a token-clause term pair, e.g. The line data dictionary

rate is "number": "COUNT", "count": "COUNT", "value":

"SUM", "sum": "SUM", "average": "AVG", "means": " AVG.

”Therefore, if any of these tokens are met, it is likely that they

will have an integrated clause and the names will be properly

marked with a clause.

WORD MANAGEMENT MAP
 Using the noun map and verb list, the table set is
prepared, which will hold the tables that are needed in the query

to be formed. This is based on the fact that the table names are
either nouns or verbs. The noun map is used to find the attributes

which are needed in the final query. The attributes, the table
associated with the attribute and the clause tag are stored in an

attribute-table map which is used in the final stage of query
formation. This is done using the string-matching algorithm that

we have implemented in our system. The words in the input
sentence need not exactly be as they are in the database. The

stemmer and lemmatizer are applied on the words before they are
matched using our string-matching algorithm. The data obtained

during this step i.e. table set and attribute-table map, is most
likely to be in the final query, however, it might be refined later.

FILTER REDUNDANCY AND FINALIZE CLAUSES OF THE

QUERY

 Using the various data dictionaries described, the

system has already decided which categories are most likely to

be in the final question and put the information into categories.
However, some details should be completed in this section.

The information related to the GROUP BY and HAVING

clause is collected using previous data and basic SQL rules.

For example, if the consolidation function is compared to a

permanent, i.e. 'MAX (salary)> 40000', then the clause

'HAVING' should be used instead of the clause 'WHERE'. As

mentioned in the previous step, data mining should be done.

Here, obsolete tables and attributes are removed using other

filtering algorithms. For example, one of the algorithms filters

a table with its corresponding symbols that are the basis of a

particular table in a table. e.g. if the table set has [table1,
table2] and table1 has symbols [a1, a2] and table2 has [a1, a2,

a3] after the previous steps, then table2 is sufficient to

represent all the required attributes which is why table1 has

been removed. There are various other algorithms used to

filter the results and complete the table set and table of table

symbols.

FORM THE FINAL QUERY & EXECUTE
 Depending on the relationship between multiple

tables, the decision of INNER JOIN or NATURAL JOIN is
taken. For example, if there are two tables. If these two tables
have one common feature and are called the same in both, then
there is a NATURAL BETWEEN Tables. But if the standard

attribute is named separately for both tables, then there is an
INNER JOIN between the tables.

XVI. CONCLUSION

This project has given us a great opportunity to come up

with a solution for writing boring questions. This project
nevertheless helps to solve basic questions but over time it can
be developed to manage complex questions, familiarity and can
be expanded with NoSQL. We were able to read and use
NLTK, cosine, tf-idf for python3. We found around 30-50%
accuracy in basic queries.

XVII. REFERENCES

[1] A Natural Language Database Interface Based on a

Probabilistic Context Free Grammar, IEEE International
Workshop on Semantic Computing and Systems 978-0-7695-

3316-2/08 $25.00 © 2008 IEEE DOI 10.1109/WSCS.2008.14.

[2] Domain Specific Query Generation from Natural

Language Text, The Sixth International Conference on

Innovative Computing Technology (INTECH 2016) 978-1-

5090-2000-3/16/$31.00 ©2016 IEEE

[3] Generic Interactive Natural Language Interface to

Databases (GINLIDB), Proceedings of the WSEAS

International Conference on Evolutionary Computing ISSN :

1790-5109 ISBN : 978-960-474-067-3 Natural Language

Interface to Database Using Modified Co-occurrence Matrix
Technique, 2015 International Conference on Pervasive

Computing (ICPC) 978-1-14799-6272-3/15/$31.00(c)2015

IEEE.

[4] Natural language to SQL Generation for Semantic

Knowledge Extraction in Social Web Sources, Indian Journal

of Science and Technology, Vol 8(1), 01- 1, January 2015

ISSN (Online) : 0974-5645 ISSN (Print) : 0974-6846 DOI :

10.17485/ijst/2015/v811/54123

[5] Natural Language Query Processing Using Semantic

Grammar, Gauri Rao et al. / (IJCSE) International Journal on

Computer Science and Engineering Vol.02, No.02, 2010, 219-

223 ISSN 0975-3397.
[6] SQLizer : Query Synthesis from Natural Language, Proc.

ACM Program. Lang., Vol. 1, No. OOPSLA, Article 63.

Publication date : October 2017 .

[7] Synthesizing Highly Expressive SQL Queries from Input-

Output Examples, PLDI’17, June 12-23, 2017, Barcelona,

Spain ACM. 978-2-4503-4988-

8/17/06…http://dx.doi.org/10.1145/3062341.3062365.

