
 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

295

MATHEMATICAL MODELLING OF

DELEGATION OF ROLES IN RBAC

Harendra Subedi123*, Iskra Popova2, Silvio Ranise3
1.Royal Institute of Technology, KTH

2.Department of Computer and Systems Sciences (DSV), Stockholm University
3.Security and Trust Unit, FBK, Trento, Italy

Abstract - Role Base Access Control (RBAC) and

its components have been researched in multiple

levels. The research explains and exemplifies by

creating mathematical models describing the

different aspects of RBAC’s administrative

issues. However, the issues regarding

formalization (Mathematical Modelling) of

delegation and revocation of roles in RBAC could

be relatively new area to research.

Undoubtedly, this research offers an important

extension of the policy and it delivers flexibility in

the user to user delegation of roles, especially in

the environment where roles are organized in a

hierarchy. The process allows a user with a role

that is higher in the hierarchy to assign a full or

part of the role to someone who is lower in the

hierarchy or at the same level. Interestingly, this

process consists of time springiness depending on

the choice whether for a limited time or for

permanently.

This paper aims at providing different type of

delegation and techniques with a comprehensive

mathematical Modelling of the processes.

Obviously, the objective is to derive a

mathematical model for delegation roles in

RBAC policy, for deriving mathematical models’

formal method is applied. The mathematical

models developed include grant and transfer

delegation with and without role hierarchy. The

organization using RBAC has been considered as

a case in point to illustrate and clarify the

mathematical models. The mathematical models

presented here can serve as a starting point for

developing, implementations of delegation of

roles on top of existing authorization modules

based on the RBAC model.

Keywords: Delegation; RBAC; Role; Role

Hierarchy; Formal Methods

I. INTRODUCTION

Definition of RBAC Policy

RBAC is the access control policy where the user

can access the resources on the basis of its role rather

than its identity. Let us consider U as the set of users,

R as the set of roles, P as the set of permissions, UA

as the set of user assignments, PA as the set of

permission assignments, and ≥ as the role hierarchy.

We can define UA (User Assignment) relation as the

subset of U × R (User × Role), PA (Permission

Assignment) relation as the subset of R × P (Role ×
Permission) and ≥ (Role hierarchy) as the subset of

R × R (Role × Role) which is also a partial order. In

RBAC, by joining the relations UA and PA, it is

possible to derive the relation associating user(s) to

permission(s). Formally from [1] [2] [3] [4] [5] [6],

roles in a set R associate permissions in a set P to

users in a set U by using the following two relations:

UA ⊆ U × R and PA ⊆ R × P. Roles are structured

hierarchically so as to permit permission inheritance
[7]. A role hierarchy is a partial order ≥ on R, where

r1 ≥ r means that r1 is more senior than r2 for r1, r2 ∈

R. A user u is an explicit member of role r in UA

when (u,r) ∈ UA while u is an implicit member of r

in UA if there exists r′ ∈ R such that r′ ≥ r and (u,r′)

∈ UA. Given UA and PA, a user u has permission p

if there exists a role r ∈ R such that (p, r) ∈ PA and

u is a member of r. Now, we can consider the tuple
< U, R, P, PA, ≥, UA> as an RBAC policy, and this

tuple will be extended when more complex

delegation models will be considered [6] [8] [9].

Figure 1 shows the different components of the

RBAC policy.

Properties of RBAC Policy

The number of relations defining the RBAC system

for big organizations can be very large. When day-

to-day tasks change within the organization,

modification of too many relations might be

required at the same time. This can make the

management and administrating of RBAC to be
cumbersome and problematic. In order to make the

Figure 1:- Different Components of the RBAC Policy

U, R, P UA ⊆ U × R

PA ⊆ R × P

≥ ⊆ R × R

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

296

administration / handling of RBAC policy simple, it

is desirable to allow for the user assignment

relationship to be dynamic and leave the rest of the

relations static. This can be done because the set of

users, the set of roles, set of permissions, the

permission assignment relation, and the role

hierarchy of an organization does not change
frequently.

If there is a huge change in the organizational

structure then only these relations are likely to be

changed, so it is recommended to keep them static

once the security manager or the system

administrator has defined them. The only relation

that changes during daily operation is user

assignment relation. If a new three user comes to the

organization then, he/she can be assigned a role in

UA. Once the new user is associated to the role, then

he/she will get the permissions associated to that role
which is defined in the permission assignment

relation PA.

It is very unlikely for new roles to be created in an

organization frequently or the role hierarchy of an

organization to change very often. New roles in an

organization are created, if there is a change in role

hierarchy or if there is a change in the organizational

structure or if there is a massive reorganization

within the organization. Thus, it is reasonable to

assume that the only relation, that is likely to change

frequently, is UA whereas the other relations are

static and they do not change frequently.

While describing the evolution of RBAC systems,

one can consider the UA relation as the RBAC

policy since all the other relations are static. As a

consequence, questions such as if the user u has the

permission p can be rephrased in terms of roles only,

i.e. “Does the user u can have role r?” From now on,

we consider the problem of establishing whether a

user u can become a member of role r rather than if

u can get permission p.

There are two types of user actions that can be

performed by the user which change the state of the
RBAC system: assigning a role to a user (delegation)

and revoking the role from a user (revocation). If the

user can perform these actions without any

constraint, it would be difficult to foresee all the

implications of the concurrent execution of several

delegations by many users. For this reason, rules are

specified in order to constrain delegation and

revocation to make it possible to understand the

implications of a sequence of delegations and

revocations.

Example Scenario /Case

Throughout this paper, we will use the following

scenario to illustrate our ideas. The presented

scenario is totally imaginary and we believe that this

scenario is not only simple to understand but also

will cover all the possible cases of delegation and

revocation of roles in RBAC.

In an organization there are lots of people working

in different departments. Each department has its

own functionalities. Each person working in the

department is associated with certain role(s). If we

consider the organizational structure of Research
lab as an example, we can see that there are lots

of departments for specific tasks, and each

department of the research lab has its own role

hierarchy. There might be different roles in the

Research lab, such as board of director, chief

executive officer, managing director, director, head

of departments (HOD) etc. There is also the

possibility of having various departments such as

administration, IT, finance etc. It will be difficult to

describe all organization structure and its role

hierarchy. Therefore, we decided to pick one

department called Digital forensics, in order to

simplify our task of explaining the relationship
between the roles in the role hierarchy. We will try

to use the example of this department in the entire

text that follows to explain different mathematical

models. Figure 2.1 shows the role hierarchy and

Figure 2.2 shows the user and its role membership in

the role hierarchy of the digital forensics

department. DIT (Director of IT) is the role which is

considered as the highest senior role in the IT

department and its associated user is Haru. Haru is

accountable for entire IT department of the research

lab and he is liable to control all the other
departments. However, in our case we are only

focusing on Digital forensics department. In this

department, we have different roles, such as HOD,

Prof. (P), Researcher (R), Assistant (A) and Student

Assistant (SA). In the digital forensic department,

Lee is associated with the role of HOD, Alex with

the role Prof., Eric with the role Researcher, Man

with the role Assistant and Ben with the role Student

Assistant. If we only consider the role hierarchy of

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

297

the digital forensic department, then we can

conclude that HOD is the highest senior role and the

student assistant is the lowest junior role. The role

HOD inherits the role and permission of its junior

role(s) [7].

Any user, who has a role, can delegate its role or a

junior role to another user within or outside of role
hierarchy, temporarily or permanently. For example,

Lee can delegate HOD to Alex, Man, Eric etc., or

Lee can delegate his HOD to another member Jen

from different role hierarchy very easily.

 Definition of delegation

Administrative delegation in RBAC enables
administrators to delegate the role and associated

permissions to another user on behalf of the owner

of the role. In user to user delegation, the user

associated to the particular role can delegate its role

or some junior roles to another user. Sometimes the

delegation of the role does not follow the role

hierarchy in the RBAC1 which means that, the

delegation occurs within the same level between the

users of two non-comparable roles. The non-

comparable roles are those roles which cannot be

compared with each other with respect to the role
hierarchy.

In ARBAC [1] [10], there is an administrator, who

takes care of delegation and revocation of roles on

behalf of the users. Instead for user to user

delegation, the delegating user of the role acts as an

administrator for that particular delegation. In this

way additional human intervention such as the effort

of administrators to delegate or to revoke the role on

behalf of a user is not required. However, for some

form of revocation, (see Paper modelling of

Revocation of Permanent Delegation) some
administrative effort is needed.

A user must follow certain rules to delegate or to

receive delegation. The basic rule is that a user can

delegate its role or some junior roles if the user to

whom he is willing to delegate satisfies certain

conditions. The effect of performing a delegation is

an update of the UA relationship whereby the new

association between the delegated role and the user

to which the delegation has been given is added to

UA. Formally, we can see UA as UA= UA0 ∪ UD

(Formally, UD relation can also be defined as UD ⊆

U × R.) where UA0 is static (where user role

assignments are given by the system) and UD is

dynamic (where user role assignments are

established via delegations among users) [6] [7] [8]

[11] [12].

Formally, the rules to perform a delegation are

specified as tuples of the relation can_delegate such

that can_delegate ⊆ R × pre, where pre is the set of

preconditions (to be defined below). Can_delegate
is used to constrain the freedom of users to delegate

roles in order to avoid security problems. Pre is the

set of preconditions, which is used to identify

candidate users to receive the delegation. This can

be made precise in the following way: - Pre

(Precondition) can be defined as a set of signed

roles, i.e. ±r where r ∈ R. The meaning of signed
roles is that the role can be represented either by +r

or -r and is used for checking the precondion. If the

signed role is +r means that the user u is a member

of role r in UA and if it is -r means, that user u is a

not a member of role r in UA. The precondition acts

as the condition that has to be satisfied by the user in

order to receive the delegation. Preconditions can be

very complex. Example of complex preconditions

can be considered as if the user u2 is a member of the

role r1, r2, r3, and if the user u2 is not a member of

the role r4, r5, r6 etc., and then only the user u2 can
delegate the role to another user say u3. This kind of

complex preconditions can be constructed by a

conjunction of signed roles such as being an explicit

or implicit member of certain roles and not being an

implicit or explicit member of certain roles. The

precondition described in this paper can be very

sophisticated, but for reason of simplicity in our

examples, we use a single signed role.

The intuition underlying (r, pre) ∈ can_delegate is

that a user u ̀should be a member of role r to be able

to delegate it or some junior roles of r to a user u
satisfying the precondition pre.

Formally, it is possible to define once and for all; the

notion of a user u satisfies a precondition

pre= {[exp1, exp2…, expn]} with respect to UA0 as

follows

for each expression exp

 of the form +r, we have

User u is a member of role r in

UA0

 of the form –r, we have

User u is not a member of role r in
UA0

It is clear that “being a member of” encapsulates

both the case where a role hierarchy is used and

where it is not. In this way, the preconditions for

RBAC0 do not consider the role hierarchy whereas

those for RBAC1 do so.

The formalization of the effect of the execution of

the delegation on the state of the RBAC system (that

can be thought of the dynamic relation UD) depends

on the type of delegation and revocation that one

considers and will be the main subject of the rest of

the paper.

In particular, we will provide mathematical

framework (based on simple set theory) to specify

the various types of delegation and revocation of

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

298

roles in RBAC considered in E. Barka’s PhD Paper

[9].

Meaning of the above precondition is that the user

u ̀ who is delegating the role r ̀ should be either

implicit or explicit member of r ̀such that the users

receiving the delegation will either have non-

comparable roles to r ̀ or have junior role than r`
with respect to the role hierarchy. In [9], it is

required that a role r that is being delegated to a user

u should be non-comparable or senior (with respect

to the role hierarchy) to the role of u. Thus, in the

rest of this paper, we assume that this check is

preformed every time a delegation is going to be

performed and if the condition is violated, then the

delegation is considered not to be enabled. Formally,

this is expressed as follows:

Given (r, pre) ∈ can_delegate,
a user u satisfies pre is defined as before with

the additional condition:

if (u, ru) ∈ UA

then (neither ru ≥ r nor r ≥ ru) this mean ru and

r are not comparable with respect to role

hierarchy

or (ru ≥ r and ru ≠ r) this means that ru is more

senior that r with respect to the role hierarchy

II. MODELLING OF GRANT/TEMPORARY

DELEGATION

In grant delegation (also known as temporary

delegation), roles are delegated to other users

according to some rules but the delegator maintains

his membership in the delegated role. The delegator

holds full responsibility for the role that has been

delegated [2] [3] [13] [14]. The delegation can either

be total or partial. The term total and partial in

delegation defines how many permissions

associated to the role have been delegated. To be

precise, total delegation means that all the

permissions that are associated to the role have been
delegated, whereas partial delegation means that

only the subset of the permissions which is

associated to the role has been delegated. The

receiver of the delegation is constantly monitored by

the user who has delegated the role. The delegator of

the role bears the full responsibility on behalf of the

receiver; this means that the delegator will be

responsible and accountable for the role that it has

delegated even if the receiver does something

wrong. Grant delegation in RBAC96 comes in two

flavours: delegation within flat roles (RBAC0) and
delegation within role hierarchy (RBAC1) [3] [9]

[13] [15] [16]. The following sections deal with the

different models of grant delegation in RBAC0 and

RBAC1.

III. MODELLING OF ONE STEP GRANT

DELEGATION IN FLAT ROLE (RBAC0)

This subsection deals with one-step grant delegation

in RBAC0, i.e. the roles that have been delegated

once cannot be delegated further. In other words, the

delegatee cannot further delegate the role that he has

received by delegation from another user.

Delegation in this model is total, which means that,

while delegating, the delegator either delegates all
the permissions that are associated with the role or

does not delegate any of them. Delegation between

the users of the same role is also not allowed [5] [9]

[14], since it is obviously useless. The following

example can be taken into consideration from the

scenario which is described in previous chapter of

this paper. Let us assume that Lee is associated to

HOD role in Digital forensic department and is a

very busy person, and most of the time he is out for

conferences and seminars. Now for two weeks, Lee

is going for a conference which is to be held in
Sydney, but he has few tasks pending and they are

supposed to be due within three weeks. It is likely

that Lee will not finish his tasks within the stipulated

period of time. So, before going to Sydney, Lee

decides to delegate his tasks to Maddy who is

associated to a role researcher in the criminology

department. In this model, there is no presence of

role hierarchy, so any user having the role can

delegate its role to any other user within an

organization.

Formally the Modelling of grant delegation in flat

RBAC (RBAC0) can be defined as follows

1. Define the UA relation as UA= UA0 ∪

UD1 where UA0 is static and UD1 is

dynamic.

2. The tuples in can_delegate allows us to

define a transition relation over UD1

Modelling the effect of delegation on UA

as follows: -

a. If (r, pre) ∈ can_delegate and u ̀

is a member of r and u satisfies

pre (with respect to UA0)

b. Then UD1`=UD1 ∪ {(u, r)}

3. We say that user u ̀delegates the role r ̀to

the user u (who satisfies pre) and write

UD1UD1 ̀to denote the transition

induced by the delegating action.

IV. MODELLING OF ONE STEP GRANT

DELEGATION IN ROLE HIERARCHY

(RBAC1)

In this subsection we will discuss about the one step

delegation in the role hierarchy or the one step

delegation in RBAC1. This delegation model is

almost the same as the one step delegation for flat

model (RBAC0). The main difference is that the

delegation is performed in the presence of a role

hierarchy. The basic idea behind this delegation is

that the user associated to the role can delegate its

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

299

role or some junior role to the user who is associated

with the role which is junior to the role that is being

delegated or to the user who satisfies a certain

precondition. This delegation takes place within the

role hierarchy and the delegation can be either

downwards or across [9]. The roles that have been

delegated in one step delegation cannot be further
delegated. The nature of the delegation can either be

partial or full depending upon the fact that the role

itself or some junior roles is delegated. Now, let us

consider the following example to illustrate the one

step delegation in role hierarchy. Alex, Prof. by the

role, is going to be father for the first time; he is very

excited and is thinking of taking few days off from

the office so as to be with his wife for their first

child. Alex has lots of work to finish, and he has also

not finished his courses, and it will take seven more

lectures to finish his course and it is very unlikely
that he will finish the course after becoming father.

So, Alex decides to delegate part of prof. role

(teaching) to Eric who has the role R (Researcher).

The roles of Alex and Eric are non-comparable since

they are at the same level in the role hierarchy. The

type of delegation that occurred in this case is one

step cross delegation. In one step delegation, Eric

cannot further delegate the role that he has received

from Alex.

Following is the mathematical Modelling of one step

grant delegation in Role Hierarchy (RBAC1)

1. Define UA relation as UA= UA0 ∪ UD1
where UA0 is static and UD1 is dynamic.

2. The tuples in can_delegate allows us to

define a transition relation over UD1

Modelling the effect of delegation on UA as

follows: -

a. If (r, pre) ∈ can_delegate and u`

is a member of r and u satisfies

pre (with respect to UA0)

b. Then UD1`=UD1 ∪ {(u, r`)} for
some r` which is junior or equal to

r with respect to role hierarchy.

3. We say that user u ̀delegates the role r ̀to

the user u (who satisfies the pre) and we

write UD1UD1 ̀ to denote the transition

induced by the delegating action.

V. MODELLING OF TWO STEP GRANT

DELEGATION IN ROLE HIERARCHY

This model is an extension of the one step delegation

model in the role hierarchy, with more flexibility in
that the role received from a delegation can be

further delegated to another user, but the user

receiving the second delegation cannot delegate that

role further. So, this means that a role can be

delegated twice within the role hierarchy but it

cannot be delegated more than twice. This type of

delegation can be partial or full and the delegation

should take place either between two non-

comparable roles or downwards in the role

hierarchy. For example, let us continue the example

considered for one step delegation with role

hierarchy. We assume that the first delegation is as

explained above. After few days, Eric realizes that

he is not able to work properly due to extra work

load, so he decides to further delegate his role prof.
(teaching) obtained from Alex to Man who has role

A and which is one step below in the role hierarchy

with respect to Alex and Eric’s roles. This kind of

delegation is an example of the two-step delegation.

In the following Modelling we can see that the first

part of this model is identical to the one step

delegation with the only difference in the second

part of the delegation. More precisely, in place of

checking in if a user satisfies a precondition with

respect to UA, the user delegating the role does so

with respect to in UD1 (User Delegation 1) to
delegate the role. After performing the delegation,

the user delegating the role will make necessary

update in UD2 (User Delegation 2) by adding the

new user to role assign to UD2. Let us consider the

above example once more. When Eric wants to

perform the delegation of the role (teaching) to

MAN which he has received from Alex, he checks

the UD1 relationship at first. Upon performing the

delegation, by Eric to Man, Eric will update the UD2

relation.

In the following you can find the mathematical

Modelling of two step delegation within the Role
Hierarchy.

1. We can define the UA relation as UA= UA0

∪ UD1 ∪ UD2 where UA0 relation is the

static part of UA and UD1 and UD2 relation

are the dynamic parts.

2. The tuples in can_delegate allow us to

define a transition relation as follows: -

a. If (r, pre) ∈ can_delegate and u`

is a member of role r and u

satisfies pre (with respect to UA0)

b. Then UD1`=UD1 ∪ {(u, r`)} and

UD2`= UD2 for some r ̀which is

junior or equal to r with respect to

the role hierarchy.

c. If (r, pre) ∈ can_delegate and u`

is a member of role in UD1 and

user u satisfies pre (with respect to

UD1)

d. Then UD2`=UD2 ∪ {(u, r`)} and
UD1`= UD1 for some r ̀which is

junior or equal to r with respect to

the role hierarchy.

3. We write (UD1, UD2) (UD1 ,̀ UD2`) to

denote the transition induced by the two-

step delegation action.

Modelling of K Steps Delegation in the Role

Hierarchy

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

300

This model is a further generalization of the previous

delegation model, which enables users to delegate

the role for K steps. In the above-mentioned model,

a user can delegate its associated role to another user

either once or twice. In this model, we allow for K

step delegation of a role where K is a natural number

greater than or equal to 1. Following, you can find
the Modelling of Kth step delegation in the role

hierarchy

1. Let K ∈ ℕ some fixed value

2. Let UA= ⋃𝐾
𝑗=0 UD0 where UD0= UA0

is the static relation and UD1,

UD2,…,UDK, are the dynamic relation.

3. If (r, pre) ∈ can_delegate

For some i ∈ {1, 2,…, K-1} we have

User u ̀is a member of role r in UDi

User u satisfies pre with respect to UDi-1

Then UDj`=UDj for j=1, 2,…, k-1 and j≠ i

UDi`=UDi ∪ {(u, r`)} for some r ̀which is

junior or equal to r with respect to role

hierarchy.

4. We write (UD0,…,UDi, …,UDk) (
UD0 ,̀…,UDi ,̀…, UDk`) to denote the

transition induced by a k-step delegation

Modelling of Transfer/Permanent Delegation

If the delegator of a role loses his membership in the

delegated role, then this kind of the delegation is

considered as transfer delegation or permanent
delegation. In the transfer delegation, both parties

involved in delegation, that is the delegator and the

receiver of the delegation should agree on it. After

performing the transfer delegation, the delegator has

no right and holds no responsibility with respect to

the role that has been delegated. It means that, after

performing transfer delegation, the delegator will

lose its membership and ownership in that particular

role. After receiving the delegation, the receiver will

get the membership and act as an original member

of that role. Transfer delegation should be total,
which means that, the delegator should delegate the

whole set of permissions associated to a role.

Transfer delegation in RBAC comes in two flavours,

they are delegation within the flat roles (RBAC0)

and delegation in role hierarchy (RBAC1) [9] [13]

[15]. Most importantly, delegation between users of

the same role is not allowed and also considered as

useless [9]. The following subsection deals with

Modelling transfer delegation of roles in RBAC0 and

RBAC1.

Transfer Delegation in RBAC0 or RBAC1

The basic idea behind transfer delegation in RBAC0

or RBAC1 is that any user associated with the role

can transfer its role to any user provided some

preconditions are satisfied. This type of permanent

delegation should be total in nature i.e. delegator

either delegates all of the permission associated with

a role to the new member or it does not delegate any

of them [9]. Let us consider the following example

to illustrate the transfer delegation. Lee is associated

with the role HOD in Digital forensic department

and he is also associated with Advisor role in the

Criminology department. For some reason Lee was
not able to work properly as an Advisor in the

criminology department. Lee thinks that, Sunil who

has the advisor role in Digital forensic department is

more suitable for the task then himself. So, he

decides to transfer the responsibility of his advisor

role to Sunil. Upon transferring the advisor role to

Sunil, Lee will lose all of his permissions and rights

on the advisory role and Sunil will become an

original member of the advisor role. After

transferring the role to Sunil, Lee will no more have

any responsibility in the advisor role. Furthermore,
in this model, a user can further transfer the received

role to another user since the receiver of the transfer

delegation becomes the original member of the role.

A user delegating the role is responsible for updating

the delegation in the UA relation. A user, who

performs the transfer delegation will add the

membership of new user and delete its membership

from the role.

Following is the mathematical Modelling of

Permanent delegation in RBAC0 or RBAC1

1. The UA relation is dynamic.

2. The tuples in can_delegate allow us to
define a transition relation over UA

Modelling the effect of delegation as

follows: -

a. If (r, pre) ∈ can_delegate and u ̀

is an explicit member of r and u

satisfies pre (with respect to UA0)

b. Then UA`= UA ∪ {(u, r)} \ {(u ,̀

r)}

3. We say that user u ̀has transferred the role

r to the user u (who satisfies pre) and we
write UAUA ̀to denote the transition

induced by the delegating action.

When considering RBAC0, the above definition

does not use any role hierarchy when checking if the

user u satisfies the preconditions pre. This means

that the user u is checked to be an explicit member

of a role r when +r is in the precondition pre (or not

to be an explicit member of r when -r is in pre).

Instead, when considering RBAC1, the above

definition does use the role hierarchy. So, the user u

is checked to be (not to be) a member (either implicit
or explicit) of role r when +r (-r, respectively)

belong to pre.

VI. CONCLUSIONS

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

301

One of the most important extensions for flexibility

to RBAC consists of adding a delegation and

revocation mechanism for the roles. The

contribution with this work is the abstract

mathematical framework (based on set theory) to

specify the various types of delegation and

revocation considered in E. Barka’s PhD paper [9].
On the basis of the framework presented by E.

Barka, we have presented a mathematical model for

specifying the delegation and revocation of roles in

RBAC which are necessary to maintain some

desired security property. We have generalized E.

Barka’s approach by introducing a precondition to

make delegation more flexible. While modelling, we

have introduced some rules known as precondition,

which a user must satisfy to be identified as a

candidate user to receive the delegation. Any user

satisfying the precondition is eligible to receive
either the grant delegation or the transfer delegation.

In grant delegation, roles are delegated to another

user according to some rules, and the delegator

maintains his membership in the delegated role.

Grant delegation comes in two flavours i.e. with or

without role hierarchy. Grant Delegation proposed

in this paper for RBAC0 does not account the role

hierarchy and the roles that have been delegated

once cannot be delegated further. Whereas, grant

delegation in RBAC1 account role hierarchy. We

have presented three sub models for grant delegation

in role hierarchy, they are: -

1. One step delegation where roles are

delegated within role hierarchy for one

time and the roles that have been delegated

once cannot be delegated further

2. Two-step delegation where the role

received from a delegation can be further

delegated to another user, but the user

receiving the second delegation cannot

delegate that role further.

3. K step delegation is the generalization of

the previous delegation model, which
enables users to delegate the role for K

steps.

In, transfer delegation the user associated with the

role can transfer its role to any user provided that he

satisfies some preconditions. In case of transfer

delegation, the delegator loses his membership in the

delegated role. Transfer delegation also comes in

two flavours i.e. in RBAC0 and RBAC1. Transfer

delegation in RBAC0, the user is checked to be an

explicit member or not to be an explicit member of

the role. Instead in RBAC1, the user is checked to be
(not to be) a member (either implicit or explicit) of

the role.

VII. DISCUSSION

On the basis of RBAC96 model which was

developed by R. Sandhu, E. Barka in [9] has

provided framework for two (RBAC0 and RBAC1)

role based delegation and revocation models to

illustrate some practical access control policies. But

it does not cover mathematical Modelling of
delegation and revocation of roles in RBAC. This

paper has come up with the mathematical Modelling

of grant and transfer delegation with two flavours of

RBAC (RBAC0 and RBAC1. This mathematical

Modelling for delegation and revocation of roles in

RBAC96 helps an authorized user to delegate or

revoke his role or some junior roles to another user

in efficient and secure manner.

Similarly, E. Barka in [9] has defined can-delegate

function in his framework which describes what

type of role a user can delegate. But unfortunately,
he has not mentioned any condition which a user

must satisfy in order to receive the delegation, for

this problem we have defined a precondition.

Preconditions, which is used to identify candidate

users to receive the delegation. It means that a

receiver of a delegation must satisfy a precondition

in order to receive various types of delegation role.

In 2000 G.J. Ahn and R. Sandhu in [16] has defined

Role-Based Authorization Constraints Specification

and also introduce an intuitive formal language for

specifying role-based authorization constraints

named RCL 2000 including its basic elements,
syntax, and semantics. Their model is more towards

authorization rather than delegation and revocation

of roles.

Mathematical Modelling of ARBAC, which deals

with the administration aspect of RBAC, which is

well defined and fully formalized [10] [1] and

unfortunately, does not deals with delegation and

revocation of roles of RBAC.

VIII. REFERENCES

[1] F. Alberti, A. Armando and S. Ranise,

“Efficient Symbolic Automated Analysis of

Administrative Role Based Access Control

Policies,” in 6th ACM Symposium on

Information, Computer, and
Communications Security (ASIACCS),

Hong Kong, 2011.

[2] R. Sandhu, E. J. Coyne, H. L. Feinstein and

C. E. Youman, “Role-Based Access Control

Models,” IEEE Computer, vol. 29, pp. 38-

47, 1996.

[3] R. Sandhu, “Rationale for the RBAC96

Family of Access Control Models,” in The

first ACM Workshop on Role-based access

control, 1996.

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 3, ISSN No. 2455-2143, Pages 295-302
 Published Online July 2020 in IJEAST (http://www.ijeast.com)

302

[4] A. Armando and S. Ranise, “Automated

Analysis of Infinite State Workflows with

Access Control Policies,” in 7th Int.

Workshop on Security and Trust

Management, Copnhagen, 2011.

[5] R. Sandhu, V. Bhamidipati and M. Q., “The

ARBAC97 Model for Role-Based

Administration of Roles,” 1998.

[6] R. Sandhu, D. Ferraiolo and R. Kuhn, “The

Nist Model for Role-Based Access Control:
Towards a Unified Standard.,” [Online].

Available: http://csrc.nist.gov/rbac/sandhu-

ferraiolo-kuhn-00.pdf.

[7] W. Jansen, “Inheritance Properties of Role

Hierarchies,” [Online]. Available:
http://csrc.nist.gov/groups/SNS/rbac/docum

ents/design_implementation/pp-rbac-

fin.pdf.

[8] D. F. Ferraiolo and D. R. Kuhn, “Role-

Based Access Controls,” in National

Computer Security Conference, 1992.

[9] E. Barka, “Framework for Role-Based

Delegation Models,” Virginia, 2002.

[10] A. Armando and S. Ranise, “Automated

Symbolic Analysis of ARBAC Policies,” in

6th Int. Workshop on Security and Trust

Management, Athens, 2010.

[11] D. F. Ferraiolo, J. A. Cugini and D. R. Kuhn,

“Role-Based Access Control (RBAC):

Features and Motivations,” 11th Annual

Computer Security Applications

Proceedings, 1995.

[12] D. R. Kuhn, E. J. Coyne and T. R. Weil,
“Adding Attributes to Role-Based Access

control,” 2010.

[13] E. Barka and R. Sandhu, “Role-Based

Delegation Model / Hierarchical Roles

(RMDM1),” in 20th Annual Computer
Security Applications Conference, 2004.

[14] N. Li and M. V. Tripunitara, “Security

analysis in role-based access control,” in

ACM Transactions on Information and

System Security (TISSEC), 2006.

[15] E. Barka and R. Sandhu, “Framework for

Role-Based Delegation Model,” in

Computer Security Applications, 2000.

ACSAC '00. 16th Annual Conference ,

2000.

[16] G. Ahn and R. Sandhu, “Role-Based

Authorization Constraints Specification,”

ACM Transactions on Information and

System Security, vol. 3, no. 4, p. 207–226,

2000.

