
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

30

 AN ARCHITECTURAL MODEL FOR SLA

NEGOTIATION BETWEEN SAAS AND

CUSTOMERS

 Ajayi Oluwabukola Ajayi Adebowale

 Department of Computer Science Department of Computer Science

Babcock University, Ilishan-Remo, Ogun State, Nigeria Babcock University, Ilishan-Remo, Ogun State, Nigeria

Abstract— Software as a Service (SaaS) is a cloud

computing model where consumers use Cloud applications

without controlling the hardware, operating system and

network devices of the environment providing the

application. In order to enlarge their customer base, SaaS

providers need to attract customers with special

requirements and for this a novel negotiation framework

was proposed to establish service level agreements (SLAs)

with these special QoS requirements.

This paper presents an architectural model for SLA

negotiation between SaaS and Customers and describes

as SaaS providers want to enlarge market share, they need

to provide more flexibility in terms of services to cater to

variations associated with an individual customer. This is

generally done by a negotiation process between

customers and service providers. However, while

undertaking this negotiation process, the service provider

needs to take into consideration not only what they can

provide to customers but also the competition with other

SaaS providers. Thus, the new negotiation frameworks

proposed are needed for the SaaS provider that considers

dynamism in Cloud environment with time and market

factors to make the best possible decisions for negotiation.

The proposed negotiation framework can be used for the

SaaS provider and the SaaS broker model

Keywords— Cloud Computing, Software as a Service

(SaaS), Service Level Agreement (SLA), Negotiation.

I. INTRODUCTION

Cloud computing provides huge computing services to the
business for improving the organizational growth. Basic

requirement needed for this technology is Internet but

provides higher capability when compared to the Internet.

Software as a Service (SaaS) is a cloud computing model

that the consumer uses Cloud application but does not control

the hardware, operating system and network devices of the

environment providing the application. This layer includes the

software applications, such as social computing applications

and enterprise applications, which is deployed by PaaS

providers renting resources from IaaS providers

Yeo and Buyya (2006) highlighted that customer
satisfaction is an important success factor to excel in the

service industry and the best way to ensure the Quality of

Service (QoS) is to define a legal contract which is a Service

Level Agreement (SLA), between a service provider and a

consumer (Buco, et al., 2004) to measure the CSL.

SLAs can be traced back to 1980s in telecommunication

companies where telecommunication companies include SLA

within the terms of their contracts with customers to define the

level(s) of service being sold to them in plain language terms.

A Service Level Agreement (SLA) is a formal, negotiated

document that defines (or attempts to define) in quantitative

(and perhaps qualitative) terms the service being offered to a
Customer . An alternative definition going a bit away from the

pure process-oriented Information Technology Infrastructure

Library (ITIL) as: “A Service Level Agreement (SLA) is a

formal negotiated agreement between two parties. It is a

contract that exists between the Service Provider (SP) and the

Customer.

II. LITERATURE REVIEW

Glen & Alfonso (2006) presented a unified QoS
ontology applicable to QoS-based Web services selection,

QoS monitoring, and QoS adaptation. However, they did not

consider the enforcement of other service application types.

Mike, Stephen & Alfonso (2007) discussed dynamic

service provisioning using GRIA (a Service Oriented

Architecture framework) SLA. The authors explored how web

service management using SLA and dynamic service

provisioning can maximise resource utilization while fulfilling

the QoS commitments to the existing customers. In their
approach, they proposed two possible policy enforcement

strategies for handling SLA violation: i) prevention before

violation and ii) reaction after violation. The prevention

strategy was based on prediction of possible future violations,

which can be obtained by monitoring predefined prevention

thresholds. These prevention thresholds have to be defined on

per SLA basis. With dynamic provisioning, when the

prevention threshold is exceeded, a new service instance is

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

31

started so that new requests are redirected to the new instance to

ensure their SLA. The reaction strategy is only acceptable if

the violation does not result in complete service failure. The
service provider allows the violation of an SLA in order to

enforce others. In such cases, it specifies priority for different

SLAs based on business impact. Moreover, they did not detail

how the low-level metric are monitored and mapped to high-

level SLAs to enforce the application SLA objectives at

runtime.

Congwu, Lei & Jun (2007) discussed Aspect Oriented

Programming (AOP) based trustable SLA compliance

monitoring for web services. The authors proposed a novel

trustable mechanism to monitor and evaluate SLA compliance
based on the Aspect Oriented Programming paradigm. In their

approach, authoritative monitoring features were supplied by a

trustable SLA manager and by focusing the aspects into

susceptible service runtime, provider can accurately monitor

and report their service status. However, their approach targets

only web services.

Bastian, Lutz (2007) discussed autonomous SLA

management using a proxy-like approach. They implemented

an architecture that can be exploited to define SLA contracts.

The architecture allows autonomous management of such

contracts, once service providers and customers explicitly
provide the requirements for the contracts. Based on the

architecture, they outlined some guidelines on how such a

system can be setup and reused. Their strategy was based on

WSAgreement. Moreover, their approach is limited to Web

services and did not consider other applications types.

Henar & Loannis (2009) discussed the main approach
of the EU project BREIN (2015) to develop a framework that

extends the characteristics of computational Grids by driving

their usage inside new target areas in the business domain for

advanced SLA management. BREIN applies SLA

management to Grids, whereas this work target SLA

management in Clouds.

Stefano, Vittorio, Fabio, Michele & Elisa (2010)
proposed QoS-aware Clouds. In their approach they

discussed the design and evaluation of a middleware

architecture that enables SLA-driven dynamic configurations

to respond effectively to the QoS requirements of the
Cloud customer applications. The proposed architecture

was proactive, it uses continuous monitoring and dynamic

resource allocation to enforce the agreed SLA objectives for

the customer applications. However, they did not consider

optimal monitoring interval for efficient monitoring and

enforcement of SLA objectives.

Kornel, Jakub, Renata & Jacek (2010) presented the

application of the ESB architecture for distributed monitoring

of the SLA requirements. The authors identified some issues
affecting efficient SLA enforcement processes such as different

technologies for the evaluation of the SLA documents,

complex deployment processes, and scalability issues. Their

SLA enforcement strategy was based on the continuous

monitoring of the system to identify violation situations. But
they did not address the issues of individually enforcing

customer SLAs for applications executing on the same host.

Lee et al. (2010) propose profit-driven SLA based

scheduling algorithms in Clouds to maximize the profit for

service providers. The application model used in this work can

be classified as SaaS and PaaS. The service types supported by

their algorithm are dependent services, which mean one sub-

service can not start until the pre-required services complete.

However, their work does not support multiple providers and

full simulation configuration is not available.

III. METHODLOGY

Fig 1: Negotiation Framework High Level Architecture
(Brandic, Musicand Dustdar, 2009)

The main components in the negotiation framework

as shown in figure 1 are: Customer Agent (CA), Broker
Coordinator Agent (BCA), Provider Agent (PA), IaaS

Provider, SLA Generator, Directory, Policy Database (PD),

and Knowledge Base (KB).

Customer Agent: Represents a customer that submits

requests for software services and registers their QoS

requirements into PD.

Broker Coordinator Agent: Represents the broker by

receiving customer requests and negotiates with providers to

achieve business objectives. It will include Negotiation Policy

Translator (NPT), Negotiation Engine (NE), and Decision

Making System (DMS).

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

32

Negotiation Policy Translator: Maps customer’s QoS

parameters to provider level parameters. Negotiation Engine:

Includes workflows which use negotiation strategies during
the negotiation process. Decision Making System: Uses

decision making heuristics to update the negotiation status.

Provider Agent: Represents the provider. PA could

include the thirdparty monitoring system to update the

provider’s dynamic information.

The SLA Generator: When the negotiation has been

successfully completed, the SLA Generator creates an SLA

between the customer and the provider using templates

retrieved from the KB. The template includes specified Service

Level Objectives (SLOs) according to the QoS.

The Directory: The repository stores the providers’ registered
service information.

The Policy DB: The repository stores QoS terms that both

providers and customers understand.

The Knowledge Base: The repository stores negotiation

strategies and SLA templates.

The focus of this research is on two main components: the NE,

by proposing strategies considering both time and market, and

the DMS, by proposing heuristics for different objectives.

This paper considered three entities: consumers, SaaS brokers

and SaaS providers. Each consumer c submits a service
request to the SaaS broker, who leases software services from

SaaS providers.

The customer c requests services with the following

attributes:

 Budget Bc: the maximum price a customer can afford.

 Software service set SRb: the service editions.

 The service start time tss: the latest service available time

for a customer c.
 The contract length indicates the period of service usage

conLength, so that customer c must be able to use

software service within the contract term.

 The service refresh time tr: time it takes a query

operation to be executed in a software service.

 The service process time tp: the maximum time for a

consumer c to wait for completing a transaction.

 The service availability avai: the minimum availability

that the customer requires.

 The expected discount percentage for budget σ: the

percentage a customer can save from their actual budget.

 The preference level of each QoS parameter γ: the absolute

importance level which varies (0, 1).

The broker receives the customer request and calculates

the expected budget, expected refresh time, process time, and

availability. These expected values are the best values that the
broker expects to provide to the customer and they will be

proposed to providers in the quote request process. If

providers cannot fulfil these expected values, the broker will

adjust the expected value up to the customer requested value

during the negotiation process. The broker always seeks to

secure the expected value from provider.

Each provider offers the same or different types of

services. The provider can host or lease infrastructure services

from 3rd party IaaS providers.

A. Negotiation Objectives

In sophisticated markets, the negotiation objective is not

only price but also other elements such as quality, reliability of

supply, or the creation of long-term relationships. Multiple

objectives were considered including cost, refresh time,

process time and availability. The main objectives for a

customer, a SaaS broker and a provider are:

Customer: minimize price and guaranteed QoS within

expected timeline.

SaaS Broker: maximize profit from the margin between the

customer’s budget and the providers’ negotiated price.

SaaS Provider: maximize profit by accepting as many

requests as possible to enlarge market share.

B. Negotiation Policy Specification

The negotiation policy specifications are used to

specify QoS parameters, which are to be negotiated and the

acceptable range of them to reach the mutual agreement.

1) QoS Model
Different terms used by different participants’ is one

of the critical challenges in SLA negotiation. For this

framework, a QoS model is used to provide shared knowledge

about QoS attributes among negotiating participants. The QoS

model defines a set of QoS dimensions. Each QoS dimension

represents a specific quality aspect of a service, such as refresh

time, availability, and price. In this QoS model, a quality
dimension is defined using: a title, a category, a name, a

description, and a metric. The QoS model is shared among

service consumers and service providers, therefore, they have

a common understanding on the QoS attributes about how

they are defined, how they are measured, and so on. For the

QoS dimensions the following was considered– price, refresh

time, process time and availability. These dimensions are the

ones that are mostly used and they are domain- independent.

Before negotiation, both participants specify the rule

of QoS parameter in a policy specification. The policy usually

refers to a high-level description of goals to be achieved and
actions to be taken in different situations.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

33

C. Negotiation Protocol

The negotiation protocol refers to a set of rules, steps

or sequences during the negotiation process, aiming at SLA

establishment. It covers the negotiation states (e.g. propose

offer, accept/reject offer, and terminate negotiation). It is

common to characterize negotiations by their settings:

bilateral, one-to-many, or many-to-many. This work focuses

on the one-to-many bargaining setting, where three types of

agents are considered (CA, BCA and PA). A BCA negotiates
with many PAs in a bilateral fashion.

During the negotiation process, the negotiation status

is updated using negotiation states described in Table 1.

Table 1: The Negotiation States and Description Summary

The sequential negotiation process for this framework is

described as follows and depicted in Figure 2:

Phase 1: CA submits requests: CA requests services on behalf

of the customer to the Broker.
Phase 2: The BCA requests initial proposals from all
providers, who are registered in the Directory. The values sent
from BCA to PAs are expected values.

Phase 3: PAs propose initial offer: All PAs propose initial
offers based on their current capabilities and availability to
fulfil BCA’s requirements.

Phase 4: Negotiation Process with PAs:

a. if there are providers who can fulfil all requirements, then

the BCA selects the best vendor.

b. If there is no provider that can fulfil all requirements, then

the BCA starts the negotiation process with PAs.

Step 1: BCA selects the best initial offer from all offers

that are proposed by all providers according to the objective.

Step 2: BCA adjusts its initial offer according to the offer

selected in Step 1 to generate new counter offer and propose it
to all providers.

Step 3: A PA evaluates BCA’s counter proposal.

Step 4: If the counter offer proposed by BCA cannot be

accepted, PA proposes a counter offer.

Step 5: Terminate negotiation. There are three termination

conditions: First, when negotiation deadline expires. Second,

when the offer is mutual agreed by both the CA and the PA.

Third, when BCA is not able to accept any counter offer

proposed by all providers within the negotiation deadline.

Phase 5: SLA Generation: Initiate SLA creator to generate

SLA for customer and provider respectively using SLA

templates stored in KB.

Phase 6: Send SLA to all participants: The generated SLA
will be sent to the customer and provider respectively by the
SLA creator.

Fig 2. The Interaction between Components during Negotiation
Process

D. Decision Making System

In the negotiation process, the action that a
participant performs is determined by a decision making

system. In the decision making system, three main questions

need to be answered: 1) how to evaluate the offer; 2) what

actions to take: accept, reject or generate counter offer; and 3)

how to generate counter offer? Therefore the negotiation

heuristics to answer them is designed from the broker and

provider’s perspectives.

 Broker

States Description

Propose The agent propose initial or counter offer to the

opponent

agent.

Reject The agent does not accept the offer proposed by the

opponent

agent.

Accept The agent accepts the offer proposed by the

opponent agent.

Failure System failure, trigger renegotiation.

Terminate Negotiation is terminated due to timeout or no

mutual

agreement.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

34

After BCA requests quotes from all PAs, each PA proposes an

initial offer to the BCA, which selects the best offer and makes
a decision. If the decision is to propose a counter offer, then the

new counter offer will be proposed to all PAs. The best offer

is selected based on different objectives. To consider cost-

benefit objectives:

Minimum cost: selects the offer with the lowest price first

and then the highest cumulative CSL for all QoS.

Maximize CSL: selects the offer with the highest cumulative

CSL for all QoS first and then the lowest price.

Table 2: The Mincost Heuristic

Table 3: The Maxcsl Heuristic

After selecting the best offer, the broker needs to decide how to

deal with the selected best offer. One of three actions can be

adopted: accept, reject or generate counter offer according to

negotiation heuristics. Therefore for these, two broker

negotiation heuristics (mincost heuristic and maxcsl heuristic)

to decide which action to take according to different objectives
were designed.

In these two heuristics (Table 2 and 3), cost and other

Issue values are calculated using negotiation strategy

functions, where the most desired and the minimal acceptable

values for each issue are considered for the broker. In both

decision making heuristics, two criteria is used to evaluate the

offer:

1. whether offer is within BCA’s expected budget: whether the

service price offered by provider pricep is less than the

broker’s expected budget expB, and
2. whether all QoS parameters are satisfied

The above two criteria generate four combined

conditions. For each condition, the decision making heuristics

guide the broker to make different decisions on which Issue

requires adjustment. There are two factors that require

consideration when making adjustments. Firstly, trade-off

between cost and QoS parameters depends on the objective.

Secondly, when the broker must concede on QoS parameters,

it always adjusts the least preferred parameter. After the

broker decides which Issue to adjust, the new value of the

Issue is calculated. The time complexity of these heuristics is
O(CPI) depending on the number of customers (C), the

number of providers (P) and the number of Issues (I).

b. Providers

Table 4: Provider’s Decision Making Heuristic

Conditions Within BCA’s expB Exceed BCA’s

expB

All QoS

parameters
are satisfied

If deadline condition

is urgent, agree.
Otherwise

 decr

ease the least preference parameter to decrease

expB.

If expB is less than

actual budget,
increase expB.

Otherwise

decrease the QoS

value.

Not all QoS are

Satisfied

Satisfy all parameters

and increase price.

Increase price.

The provider’s objective is to maximize profit by accepting
as many requests as possible. Therefore, the provider does not
reject requests but continues to negotiate with each broker until
negotiations have ended. Table 4 shows the provider’s decision
making heuristic.

Conditions Within BCA’s expB Exceed BCA’s expB

All QoS

parameters are

Satisfied

If deadline condition is

urgent, agree.

Otherwise decrease

expB.

If expB is less than

actual budget, then

increase expB.

Otherwise reject.

Not all

 QoS

 are

satisfied

Satisfy all parameters

and reduce expB.

Satisfy all

 paramete

rs by

negotiating on

minimal (not

desired) values.

Conditions Within BCA’s expB Exceed BCA’s expB

all QoS

parameters are

satisfied

If deadline condition is

urgent, agree.

Otherwise decreases the

least preference

 para

meter to

decrease expB.

Decreases the value of

parameters, which are

better than expected

to decrease price.

Not all

 QoS

 are

Satisfied

Satisfy all

 parameters and

increases expB.

Increases expB.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

35

E. Experimental Methodology

A prototype of the framework considering both time

and market factors using real data shared by cloud provider

CA Technologies was implemented. CA Technologies offers a

number of enterprise software solutions to customers delivered

as SaaS. The data provided included the response, refresh and

processing times of an enterprise solution hosted on VMs, as

measured by the quality assurance team. Availability data was

collected from CloudHarmony benchmarking system (2019),

which provides real data from Cloud providers. These data
were collected over 4 days including weekdays, weekends.

Availability: Varies from 98.654% (Colosseum) to 100%

(Amazon EC2) as derived from Cloud Harmony.

Process Time: The mean 5.243 (± 2.043) s.

Refresh Time: The mean 1.581 (± 1.383) s.

Cost: Cost is considered similar to Windows VMs from

3rd party IaaS providers, which varies from $0.34 per hour

(VCloud Express) to $0.46 per hour (Amazon EC2).

IV. RESULTS

This section presents the performance results obtained

from an extensive set of experiments done by comparing the

proposed heuristics with the most recently proposed heuristic
which is the baseline (Zukernine and Martin, 2011). The

performance of each proposed heuristic depends on three

factors: time, cost and market constraints. Therefore, to

analyse how these heuristic can achieve customer, broker and

provider’s objectives, the following experimental scenarios

were considered:

Impact of negotiation deadline (time factor): The impact

of 4 sets of negotiation timeframes from the customer’s

perspective was observed; number 1 to 4 was used to represent

the variation from ‘very crucial’ to ‘very trivial’.

Impact of broker expected margin (cost factor): The impact
of 4 sets of initial broker expected margins (varying from 20%

to 50% over budget), were observed.

Impact of market factor: The impact of 4 sets of market

factors (varying the ratio in relation to the number of providers

and customers from less than 10%, 30%, 70%, and more than

90%), were observed. Numbers 1 to 4 were used to represent

each set.

V. CONCLUSION

 Once a request is accepted by the SaaS

provider, there is a possibility for customers to change their

existing requirements (such as add more accounts or upgrade

service package). Thus, SaaS is expected to be scaled up and
out dynamically according to the customers’ QoS

requirements.

As SaaS providers want to enlarge market share, they need
to provide more flexibility in terms of services to cater to

variations associated with an individual customer. This is

generally done by a negotiation process between customers and

service providers. However, while undertaking this negotiation
process, the service provider needs to take into consideration

not only what they can provide to customers but also the

competition with other SaaS providers. Thus, the new

negotiation frameworks proposed are needed for the SaaS

provider that considers dynamism in Cloud environment with

time and market factors to make the best possible decisions for

negotiation. The proposed negotiation framework can be used

for the SaaS provider and the SaaS broker model.

VI. REFERENCE

[1] Yeo, C. S., and Buyya, R. (2006). A Taxonomy of

Market-based Resource Management Systems for Utility-
driven Cluster Computing. Software: Practice and

Experience (SPE), 36 (13), (pp.1381-1419).

[2] Buco, J., Chang, N., Luan, Z., Ward, C., Wolf, L., and

Yu, S. (2004). Utility Computing SLA Management

based upon Business Objectives. IBM Systems Journal,

43(1), (pp. 159- 178).

[3] Glen D., and Alfonso S. (2006). Towards unified

QoS/SLA ontologies. In IEEE Services Computing

Workshops, 2006. SCW ’06 pages 169 –174.

[4] Congwu C., Lei L., and Jun W. (2007). Aop based

trustable SLA compliance monitoring for web services. In

Seventh International Conference on Quality Software,

2007. QSIC ’07, pages 225 –230.

[5] Bastian K., and Lutz S. (2007). Towards autonomous sla

management using a proxylike approach. Multiagent Grid

Syst., 3(3):313–325

[6] Henar M., and Ioannis K. (2009). BREIN: Business

objective driven reliable and intelligent grids for real

business. International Journal of Interoperability in

Business Information Systems, 3(1):39–42.

[7] Stefano F., Vittorio G., Fabio P., Michele P., and Elisa T.

(2010). Qos-aware clouds. In 2010 IEEE 3rd International

Conference on Cloud Computing, pages 321–328.

[8] Service Level Agreement in the Data Centre. (April

2002). Retrieved March 2020, from Sun Microsystems:

http://www.sun.com/blueprints.

[9] Zukernine, F., and Martin, P. (2011). An Adaptive and

Intelligent SLA Negotiation System for Web Services.

IEEE Transactions of Service Computing, 4(1), (pp. 31-

43).

[10] Kornel S., Jakub S., Renata S., and Jacek K. (2010).
Application of the esb architecture for distributed

monitoring of the sla requirements. In Proceedings of the

2010 Ninth International Symposium on Parallel and

Distributed Computing, pages 203–210.

http://www.sun.com/blueprints
http://www.sun.com/blueprints

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 5, ISSN No. 2455-2143, Pages 30-36
 Published Online September 2020 in IJEAST (http://www.ijeast.com)

36

[11] Lee C., Wang, C., Zomaya Y., and Zhou B. (2010). Profit-

driven Service Request Scheduling in Clouds. Proceedings

of the International Symposium on Cluster Computing

and the Grid (CCGRID). Melbourne, Australia.

[12] Brandic, I., Music, D., and Dustdar, S. (2009). Service

Mediation and Negotiation Bootstrapping as First

Achievements towards Self-adaptable Grid and Cloud

Services. In Grids and Service-Oriented Architectures for
Service Level Agreements. P. Wieder, R. Yahyapour, and

W. Ziegler (eds.), Springer, New York, USA.

[13] CloudHarmony benchmarking system (2019), Retrieved

on 06 December 2019: http://www.cloudharmony.com.

[14] Amazon web services, retrieved Nov 2019 from AWS:

http://aws.amazon.com.

2019:%20http:/www.cloudharmony.com.
http://aws.amazon.com/
http://aws.amazon.com/

