
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 334-337
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

334

PROPOSED HYBRID SOFTWARE MODEL

IN THE SOFTWARE DEVELOPMENT

AURA
 Dr. Jayant Shekhar Nitika Singh Yadav

 Director M.Tech (CSE)

Subharti Institute of Technology and Engineering Subharti Institute of Technology and Engineering

 Meerut, India Meerut, India

Abstract - The orientation of enlargement

scientific high-tech convolution of the various

systems paired with the need of repetition and

foreseen process methodologies have driven

system developers to establish new system

development models. The essence of this paper

analyzes some methodologies that could have

result in successful completion of proposed model.

This paper explores proposed model peculiar

advantages, disadvantages. This paper also

explains domestication of the proposed model and

the common elements in the process. Finally, this

paper suggests a new compound software

development model which meets the strength of

present scenario. The recommended method can

be utilized in the software industry, particularly in

the business sectors that deals with large scale

projects. The main objective behind this research

is to design development model that could meets

the needs of different systems and eliminates the

defects presented in the previous development

models. The present research introduces a model

“hybrid model” which combines the features of

the five development model i.e waterfall model,

iterative model, prototype model, spiral model,

agile model. The introduced model in this

research has the advantages and some features of

the previous models with some adjustments and

because of this it avoids and overcomes many

software problems that exist in the previous

models. Thus, the new proposed model is a

concatenation of various models, which is relevant

to most software programs and systems.

KEYWORDS – Proposed hybrid model, software

management process, software development life

cycle, software development processes

I. INTRODUCTION

As the name implies “hybrid” which already means

that hybrid development model is a combination of

other software development life cycle models.

Typically, the way of working of this model is define

by development team which will adopt the best

features of heterogeneous development method. In

order to design a hybrid project we can use both

viewspreliminary placing and planning board which

is available at the same instant of time by using the

same data. For hybrid projects we can execute

fundamental requirements by the classical way using

a hierarchy of features , enterprise requirement and

system essentials.. There are many different

compound approach that attempt to apply feedback

mechanisms to the acceptable model so that

scientific and practical imperfection in the original

design could bring to light during development that

can be more quickly consolidated .So, enters the

hybrid SDLC that considers advent way for all or

fractions of the project. The hybrid SDLC is provided

as a layout to help project managers and business

analysts in development of the own hybrid SDLC by

the way of using enterprise process and decision

model.Project manager and business analysts

collaborate by selecting the best way for the system

development SDLC on a project. Model will control

the entire process based upon superiority and

importance and this waythis model will suit the

project size and type which will match the

organizations environment for development. It is easy

to adopt due to adjustability of proportion. Their

development will be monotonous and quick as we

follow only applicable process cycle. Rather, than

adopting a pure SDLC approach generally we go for

hybrid model which containsessentials of those

models together.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 334-337
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

335

II. PROPOSED HYBRID MODEL

Here is the incentive to design the introduced model

which imitate the advantages of the previous

different models found in software process projects is

to be confirm of its capability and capacity to show

how this model works.. The acute importance of this

engineering and their relationship in order to develop

various software. This model is a collective

association of these models:-

1. Waterfall model

2. Iterative model

3. Prototype model.

4. Spiral model

5. Agile model

III. VARIOUS PHASES OF HYBRID MODEL

1. PLANNING-Planning usually refers to how

the resources are being allocated in order to

live with a fixed economic budget. Time

span is also given a second thought.

Planning is the art of organizing the

necessary activities in time, space and across

operatives in order to optimize production,

long term goals, customer’ssatisfaction.

2. REQUIREMENT-Stabilize the components

for building the systems, including the

hardware requirements, software tools. .It

also, involves the prospect for software

utility and identifies which system

fundamentals usually affects the software..

3. DESIGN-Determines the software structure

of a system to meet the specific preliminary.

The design usually defines the major

components and the interaction amongst

these components but it does not define the

structure of each component. Rather it also

defines the architectural design.

4. INTEGRATION- It is define as a part of

bringing all the pieces together into a special

testing environment, than checks for errors,

bugs and interoperability. Integration

combines different modules in one system

rather than creating any negative effect on

the rest of the system components.

5. DEPOSITION- The declining of software is

due to performance front which occurs as

the time span. It may go completely

outmoded or may need extreme progress.

Therefore the exacting helps to eliminate a

major portion of the system that may arises

.This phase also include archiving of data

and required software components , closing

down the system, planning deposition

activity and abort system at convenient end

of system time.

6. DEPLOYMENT:- It means sending the

system after completing to customer for

using and working on and showing the

problems based on its use for the first time

7. TESTING- It helps to Determines whether

the software is to ready meet the specified

requirements and finds any error presents in

the code. Execution of software is

performed in this phase in order to find the

defects. Exercise new code in combination

with code that already has been coordinated.

8. BUSINESS MODELLING- A business

process is a collection of related structured

activities or tasks that produce a specific

service or product (serve a particular goal) a

particular customer. This process can be

decomposed into several sub-processes ,

which have their own attributes, but also

contribute to achieving the goal of a super-

process

9. RISK ANALYSIS:- It includes all the

expected risk involves and suggests all the

necessary activities to reduce such risks.

10. CONFIGURATION-Configuration

management is the task of tracking and

controlling changes in the software. If

something goes wrong configuration can

determine what was changed and who

change it. It is generally understood to cover

changes typically made by a system

administrator.

11. IMPLEMENTATION-It involves source

code, database, user documentation, testing.

In this the real code is being written.

The tractability of this hybrid model is that you can

take any phase to give a start which can be applied to

small, medium, and large projects.

The following figure shows the proposed model:-

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 334-337
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

336

 Fig:-1

IV. ADVANTAGES

1. Brighten innovation and compliance design.

2. Provides better Environment to resolve

imprecise objectives.

3. May generate particularization for the

production applications.

4. Clients are constraint to take active part in

the fundamental definition process.

5. Explicitly interface operative cost and

development times.

6. Immediate user evaluation with good

conclusions.

7. Produces business value and product

marketing in the development life cycle.

8. Better use of resources.

9. Deliver partial versions to smooth the

introduction of the new product in the

clientsorganization.

10. High amount of risk analysis.

V. COMPARISON TABLE OF PROPOSED

MODEL WITH OTHER SOFTWARE

DEVELOPMENY MODELS

PROPOSED

MODEL

OTHER

SOFTWARE

MODELS

Frequent adaptation

to small, medium

and large projects.

Has not been widely

used for complex

projects.

Unrestricted

applicability

Limited

applicability.

Developers have to

be competent in risk

analysis and risk

resolution.

Only applicable in

spiral model.

Focus on planning

phase and risk

management.

Risk analysis is only

in spiral model.

Identifies end point

for each phase.

Not yet proven

beyond all doubt.

Disciplined

approach.

Delivered product

may not meet

client’s needs.

Best suited for

Reusing series of

similar product and

future products.

Cannot be easily

reused.

VI. CONCLUSION

On completion of this research paper, it has been

concluded that proposed model has advantages over

the other already existing SDLC models of systems

so each model provides efforts to eliminate the

disadvantages of the previous existing models. SDLC

steps are useful to create the proposed software that

meets a business need. Idea for completing this

research has been borrowed from previous models.

This model has the potential to provide a straight

forward structured approach in the software

development. This paper gives a comparison analysis

between the proposed model and other software

development models. The Hybrid model is dependent

on the five development models: Waterfall, Iterative,

Prototype, Spiral, Agile model.

VII. REFERENCES

1. Barry Boehm edited by Wilfred J. Hansen,

"Spiral Development: Experience,

Principles, and Refinements", 2000.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 334-337
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

337

2. Ian Sommerville, "Software Engineering",

Addison Wesley, 7th edition, 2004.

3. Steve Easterbrook, "Software Lifecycles",

University of Toronto Department of

Computer Science, 2001.

4. Research Topics in Software Engineering

Unaided Curricular Paradigms as Compute¸

˜Paradigms of Computation (UCPC)Minho,

FEUP July 23, 2009

5. Roger Pressman, Software Engineering: A

Practitioner’s Approach, Sixth Edition,

McGraw-Hill Publication.

6. A. M. Davis, H. Bersoff, E. R.

Comer(1988), “A Strategy for Comparing

Alternative Software Development Life

Cycle Models”, journal IEEE

Transactions on Software Engineering ,Vol.

14, Issue 10,1988.

7. B. Boehm(2002), "Get Ready for Agile

Methods, with Care," IEEE Computer, vol.

35, no. 1, 2002.

8. Klopper, R., Gruner, S., &Kourie, D.

(2007), “Assessment of a framework to

compare software development

methodologies” Proceedings of the 2007

Annual Research Conference of the South

African Institute of Computer Scientists and

Information Technologists on IT Research

in Developing Countries, 56-65. doi:

10.1145/1292491.1292498.

9. Roger Pressman, titled “Software

Engineering - a practitioner's approach”.

10. SanjanaTaya, Shaveta Gupta, “Comparative

Analysis of Software Development Life

Cycle Models”.

11. Karlm, "Software Lifecycle Models", KTH

2006.

12. Rlewallen, "Software Development Life

Cycle Model" , 2005

13. Brooks, F. P. (1995). The mythical man-

month. Reading, MA: Addison-Wesley Gall,

D. M., Gall.

14. P. J., & Borg, R. W. (2003). Educational

research: An introduction. Boston, MA:

Allyn and Bacon

15. Glesne, C. (2006). Becoming qualitative

researchers: An introduction. Boston, MA:

Allyn and Bacon.

16. Grunbacher, P., Hailing, M., Biffl, S.,

Kitapci, H., & Boehm, B. (2004).

Integrating collaborative processes and

quality assurance techniques: Experiences

from requirements negotiation. Journal of

Management Information Systems, 20(4), 9-

29.

17. Jones, C. (1997). Applied software

measurements: Assuring productivity and

quality. McGraw Hill.

18. Parrish, A., Smith, R., Hale, D., & Hale, J.

(2004). A field study of developer pairs:

Productivity impacts and implications. IEEE

Software, 21(5), 76-79.

19. Summerville, I. (2004). Software

Engineering. Boston: Addison-Wesley.

20. Takeuchi, H., &Nonaka, I. (1986, January-

February). The new new product

development game. Harvard Business

Review, p137-146.

21. Watson, R. T., Kelly, G., Galliers, D.,

&Brancheau, C. (1997). Key issues in

information systems management: An

international perspective. Journal of

Management Information Systems, 13(4),

91-115

