
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 2, ISSN No. 2455-2143, Pages 353-355
 Published Online June 2020 in IJEAST (http://www.ijeast.com)

353

ROLE OF MULTI-AGENTS IN SMART CITY

– A STUDY

P.FELCY JUDITH

Associate Professor

T John College, Bangalore

Abstract - Multi Agent Technology has advanced

significantly since its initiation and the research

area has been gaining its importance recently due

to the need for managing intelligence in field of

Internet of Things (IoT). This paper introduces

the usage of multi-agents framework in order to

help agents to interact and co-ordinate to arrive at

necessary decision and later to respond based on

the arrived decisions.

Keywords -Agent; Multi-Agents; Modeling Agents;

Agent Oriented Software Engineering;

I. INTRODUCTION

Multi-Agents are derived from distributed artificial

intelligence, provide more modular solutions. Multi

agent system provides following positive features

Modularity – even though agent design plays primary

role in managing modularity, their distributed nature

and features like adding run time behaviors and their

reasoning to understand the environment and adapt
itself to the environment translates itself in to more

modular being. The modularity or separation of

concern is about the loose coupling of their behavior

and about the intelligence they show in performing

the tasks.

Reusability – as discussed earlier they have features

like adding behavior in runtime.

They use delegates and events to achieve these

features, using this feature a tested behavior could be

either configured or could be adopted in runtime

directly. Multiple agents could easily share same or

similar behaviors. This way the reusability is very

high with the usage of multi-agents technology.

Runtime integration – basically objects of available

in software would be tightly integrated using

inheritance or loosely integration using interface

implementation. Agents provide additional feature of

integrating components in runtime. This could be

done using configuration files or by applying rules

during runtime. This way the agents could be loaded

with various behaviors in the runtime.

Team work – agents are more than objects and
components. They have behaviors which could be

plugged in during runtime. Also they integrate or

cooperate with each other depending on the rules

provided to them. These rules could also be

configured in runtime. Rules generally do not specify

single action to be performed alternately it provides

list of actions to the agents. Depending on the

situation of the agent environment the agent would

perform one of the actions configured through rules.

Intelligence – as specified earlier the agents would be

configured with possible rules and depending on the

environment the agent executes one of the rules

specified or the combination of rules if sufficient

information is provided to the agent. This way the

agent works intelligently in comparison to the objects

or components. Also the agent rules could be

provided using various mathematical models as well.

This is outside the scope of this research.

II. DOMAIN SPECIFIC LANGUAGES

A domain-specific language (DSL) is a high-level

software implementation language that supports

concepts and abstractions that are related to a
particular (application) domain. A DSL is a language,

that is, a collection of sentences in a textual or visual

notation with a formally defined syntax and

semantics. The structure of the sentences of the

language should be defined by means of a grammar

or meta-model, and the semantics should be defined

by means of an abstract mathematical semantics, or

by means of a translation to another language with a

well understood semantics.

DSL are designed to solve domain problems and to

increase productivity in software development

process and to move the requirements closer to the

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 2, ISSN No. 2455-2143, Pages 353-355
 Published Online June 2020 in IJEAST (http://www.ijeast.com)

354

product. Domain specific languages are equivalent to

assembly lines in automobile industry [4]. Domain-

specific languages are also called as application-

oriented [8] or special purpose [9] or specialized [5]
or task specific [7] or application languages [10].

These little languages do not include many features

available in the general purpose languages (GPLs)

[6].

DSL are also classified into Textual and Graphical.

Textual DSL could be constructed using a parser-

generator or writing configuration code in the host
language and by using XML. All these methods help

define a language which would be useful to the later

problems. The Graphical DSL has to define notation,

domain model, generation, serialization and tool

integration. Notation is where we define building

blocks with various kinds of shapes and connectors.

The shapes and connectors use decorators to display

shapes and texts graphically.

Graphical DSL will help capture the framework to

define processes and to integrate the involvement of

agents. Textual DSL could be used for various needs

including communication between agents.

III. GOAL GRAPHICAL MODEL FOR AGENT

FRAMEWORK

Tropos is a software development methodology that

uses concepts of actor, goal, and dependency to the

model. It involves in early requirement, late

requirement, architectural design and detailed design,

implementation, unit and integration testing phases.

Tropos (Bresciani, Giorgini, Hiunchiglia,

Mylopoulos, & Perini, 2004) [11] was originally

developed at the Tropos adopts Yu's i* framework
(Castro, Kolp, &Mylopoulos, 2002) [12] as the base

theory of requirement analysis. The purpose of this

"system" actor is to provide system operational

services to actors depending on services from the last

analysis phase. In the detailed design phase, more

explicit scenarios of Agents are depicted. Finally, in

the implementation phase, Notations used in Tropos

can be seen as mental ones, such as goals and tasks

(plans) (Perini, Bresciani, Giunchiglia, Giorgini,

&Mylopoulos, 2001) [3]. The notations used

throughout the analysis and design phase help

preserve the semantic mapping. The Tropos provides
necessary tool support in every phase of the

development.

The Tropos domain model consists of actor diagrams

and goal diagrams. Actor diagrams represent

resources used by actors. Goal diagrams include

dependencies between actors of the system and

reflect system architecture. The early requirements

analysis, involves the modeling the intentions of the
stakeholder. Stakeholders are modeled as actors. The

dependencies between actors are modeled as goal,

soft goal, task or resource.

A soft goal is a goal without proper clarity, used to

specify non-functional requirements. The actor

diagram is expanded considering the individual

perspective of the independent actor. Goals are
decomposed into sub-goals. In the late requirements

stage the stakeholder goals are modeled as a new

actor. Every individual goal at higher level is

decomposed into detailed lower level goals to

completely capture the requirement.

Architectural and detailed design involves in

identifying and adopting proper architectural styles

and design patterns to implement the captured goals
of the actors. Architectural design consists of

activities to decompose and refine the actor diagram,

identifying actors and replacing actors with agents.

Detailed design involves itself towards BDI agent

architecture. As the result it produces capability

diagrams, plan diagrams, agent interaction diagrams

to depict protocol interaction and UML class diagram

with the modeling information.

Figure 1: Goal model for Agent Framework,

Communication DSL statement

Figure 1 shows the Goal model for Agent Framework

and how the agents could be configured using

graphical DSL. These agents will communicate

between each other using textual DSL developed will

look like as given earlier. Individually each of the
agents will provide necessary information and

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 2, ISSN No. 2455-2143, Pages 353-355
 Published Online June 2020 in IJEAST (http://www.ijeast.com)

355

collectively the agent(s) organize this information to

take necessary decision and later use other agents to

post its response based on the decision made.

IV. CONCLUSION

In this paper we discussed how Multi-Agents could

help resolve the complexity involved in IoT by

configuring various devices, sensors and actuators
into multiple agents and to integrate the agents using

graphical DSL and communicate using textual DSL

in order to arrive at decisions based on information

provided by individual agents and respond to

decision using other agents.

V. REFERENCES

[1] Svítek, M.(2014). Telematic approach into

program of smart cities. In: EATIS 2014, Valparaiso,

Chile.Google Scholar

 [2] Přibyl, O., Svítek M(2015).System-oriented

approach to smart cities. In: Proceedings of the First

IEEE International Smart Cities Conference. IEEE

Systems, Man, and Cybernetics Society, New York
,Google Scholar

[3] Perini, A., Bresciani, P., Giunchiglia, F.,

Giorgini, P., &Mylopoulos, J. (2001), 28 May - 1

June 2001). Aknowledge level software engineering

methodology for agent oriented programming. Paper

presented atthe Fifth International Conference on

Autonomous Agents, Montreal, Canada.

[4] P. C. Smolik, (2006). Mambo Metamodeling

Environment, A dissertation submitted in partial

fulfillment of the requirements for the degree of

doctor of philosophy, Brno University of

Technology, Czech Republic.

[5] Elizabeth A. Kendall (1999). Role modeling for

agent system analysis, design,and implementation. In

ASA/MA, pages 204–218. IEEE Computer Society.

[6] BENTLEY, J. L. (1986). Programming pearls:

Little languages. Comm.ACM29, 8 (August), 711–

721.

[7] NARDI, B. A. (1993). A Small Matter of

Programming: Perspectives on End User Computing.

MITPress.

[8] SAMMET, J. E.(1969). Programming

Languages: History and Fundamentals. Prentice-Hall.

[9] WEXELBLAT, R. L., Ed. (1981). History of

ProgrammingLanguages.Academic Press.

[10] MARTIN, J. (1985). Fourth-Generation

Languages.Vol. I: Principles, Vol II: Representative

4GLs.Prentice-Hall.

[11] Bresciani, P., Giorgini, P., Hiunchiglia, F.,

Mylopoulos, J., & Perini, A. (2004). Tropos: An

agent-oriented software development methodology,
technical report #dit-02-0015. AAMAS Journal, 8(3),

203-236.

[12] Castro, J., Kolp, M., &Mylopoulos, J. (2002).

Towards requirements-driven information systems

engineering: The tropos project, information systems.

Elsevier, Amsterdam, The Netherlands.

https://scholar.google.com/scholar?q=Sv%C3%ADtek%2C%20M.%3A%20Telematic%20approach%20into%20program%20of%20smart%20cities.%20In%3A%20EATIS%202014%2C%20Valparaiso%2C%20Chile%20%282014%29
https://scholar.google.com/scholar?q=P%C5%99ibyl%2C%20O.%2C%20Sv%C3%ADtek%2C%20M.%3A%20System-oriented%20approach%20to%20smart%20cities.%20In%3A%20Proceedings%20of%20the%20First%20IEEE%20International%20Smart%20Cities%20Conference.%20IEEE%20Systems%2C%20Man%2C%20and%20Cybernetics%20Society%2C%20New%20York%20%282015%29

