
                        International Journal of Engineering Applied Sciences and Technology, 2020    

                                                 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48 
                                     Published Online December 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

36 

 

A SURVEY OF THE HOST HYPERVISOR 

SECURITY ISSUES PRESENTED IN PUBLIC 

IAAS ENVIRONMENTS AND THEIR 

SOLUTIONS
Paul Cullum 

 Cyber Security Master’s Degree 

 Manchester Metropolitan University / HKU Space 

 Hong Kong

ABSTRACT - The use of virtualization can be attributed 

to the success of cloud computing. However, usage of a 

hypervisor in a shared environment among mistrusting 

users presents significant challenges.  This paper surveys 

the works on host hypervisor security issues presented in 

cloud computing, performing a short review of current 

literature on the subject. Addressing several key topics, 

namely threats and known attacks against the hypervisor 

or a virtual machine (vm) that exist in a shared 

environment.  

This paper also contains a thorough review and 

comparison of the current solutions and proposed 

mitigations for the known attacks and identifies any 

potential gaps. Aiming to uncover if a hypervisor can 

provide the level of confidentiality, integrity and 

availability expected by cloud consumers. Research is 

critically analyzed and consideration for each solutions 

suitability of implementation in an Infrastructure as a 

Service (IaaS) environment is applied, including the 

impact on performance, if any. 

 

KEYWORDS - Hypervisor security, virtualization, 

Cloud computing Security, IaaS security. 

 

I. INTRODUCTION 

Virtualization provides the foundation for many Cloud 

service providers (CSP). The core advantages and selling 

points of Cloud computing are well documented as 

elasticity, reductions in operational overhead and capital 

expense and scalability of resources. All of which are 

fulfilled with the help of virtualization in a cloud computing 

environment.  

It is observed that when shifting from an On-Prem private 
cloud model to IaaS public cloud, the management and 

responsibility for the virtualization and physical server layer 

shifts to the CSP as per figure 1. It is this layer that is not 

natively accessible or even visible to the cloud consumer.  

 

 
Figure 1. Shared responsibility model of cloud computing 

(Source 

https://medium.com/@oscarpalaciosmontoya/cloud-

models-and-the-shared-responsibility-in-public-cloud-

c0a78e205369) 

 

Placing this level of trust in the CSP is often overlooked by 

cloud consumers and should be a key consideration when 
placing vm’s that have sensitive data or critical workloads 

into IaaS public cloud environments. Cloud services by 

nature are always on and remotely accessible from the 

internet, the traditional network perimeter protection 

boundaries offered in an On Prem environment are either 

removed or operate in a reduced capacity. 

 

1.1. Multi-tenancy 

 

IaaS public cloud environments provide an economic, cost 

effective solution due to their multi-tenancy nature. Multi-

tenancy refers to sharing the hosting infrastructure and the 

sharing of the address space across a number of cloud 

consumers. What this translates to in practice is that a cloud 
consumers vm, data or application could reside on the same 

physical machine or server as a malicious threat actor or 

even a malicious competitor. Consumers theoretically have 

https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369
https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369
https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369
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no visibility or insight into the precise location of their vm, 

data or application location nor do they have visibility into 

the other tenants sharing the physical host infrastructure 

alongside them. CSP’s have a huge reliance on the 

hypervisor as the core security solution to isolate consumers 

from each other and ensure that data is not accessible 

between tenants. Due to this dependency on the security of 

the hypervisor a clear single point of attack is presented. 

Vulnerabilities do exist and will likely continue to exist, and 
so this expected, and often overlooked level of isolation, 

may not always be achieved or adhered to. 

A large proportion of the cloud’s value proposition is 

centered around the shared nature of cloud resourcing and 

the underlying hardware and compute such as memory, disk 

and CPU resources. This includes the capability to deliver 

resourcing both dynamically and on demand. Thus, 

empowering organizations to operate with a far greater level 

of flexibility than previously achieved with traditional 

environments. This transformation in which customers 

require flexibility whilst still maintaining a high level of 

isolation from malicious tenants or threats presents 
substantial challenges. Cyber criminals are presented with a 

unique opportunity due to the multi-tenancy that simply is 

not available in an On Prem private cloud [5]. 

1.2. Hypervisors 

 

The issues and threats that pertain to hypervisors within 

public cloud computing also exist in private clouds, however 

the threats to virtualization are simply amplified in Cloud 

computing due to the shared infrastructure between 

untrusting customers.  

The hypervisor is considered a lower level of the stack and 

cloud consumers do not have access or visibility at this level. 

However, the hypervisor is considered the layer of 
abstraction, providing logical separation across vm’s for 

tenants. The hypervisor is used to manage and control all 

vm’s, it is for this reason that the hypervisor becomes a 

single point of failure and provides a large attack surface 

within a cloud architecture. If a malicious actor were to 

compromise the hypervisor this would automatically result 

in the compromise of all the underlying vm’s. Below figure 

2 shows a typical hypervisor and vm relationship in a type 1 

hypervisor often employed in IaaS architecture. 

 

 

 
Figure 2: Type 1 Hypervisor high level view relative to user 

and kernel mode   

(https://www.researchgate.net/figure/Hypervisors-Type-1-

and-Type-2_fig1_224202390) 

 

1.3. Survey Aims 

The aim of this survey paper is to collectively review the 
latest research into solutions that address known attacks 

against a hypervisor or known attacks leveraging 

virtualization presented in a cloud computing IaaS 

environment. 

This survey paper takes the hypothesis that there is no single 

solution to address all known hypervisor threats presented in 

public cloud IaaS computing environments, and that a 

hypervisor alone does not provide effective isolation. 

1.4. Methodology 

The methodology of the survey paper will review current 

solutions or mitigations and measure them for effectiveness 

in mitigating the mentioned known attacks, taking into 

consideration the solutions impact on performance, if any, 

and a brief view of the feasibility for CSP’s adopting or 

implementing the proposed solutions. Papers have been 

selected from tier 1 sources based on their forward-thinking 
ideas and relevance to address the known attacks and ability 

to build upon previous research. 

II. THREAT MODEL  

 

The cloud security alliance report 2019 [3] lists abuse in the 

cloud as one of the top 11 threats to cloud computing.  

This survey paper will focus on the known attacks that exist 
in a public cloud IaaS environment due to virtualization and 

sharing of physical host infrastructure, resulting in the co-

residency of vm’s and the solutions presented to address the 

attacks.  

The threat model will focus on attacks from a malicious vm 

breaking out of the isolation boundary and compromising the 

hypervisor, or an unsuspecting tenant’s vm or administering 

https://www.researchgate.net/figure/Hypervisors-Type-1-and-Type-2_fig1_224202390
https://www.researchgate.net/figure/Hypervisors-Type-1-and-Type-2_fig1_224202390
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resource exhaustion-based attacks against other cloud 

consumers sharing the same physical infrastructure. The 

paper will also examine attacks that allow a level of 

information leakage from vm’s or the underlying host 

infrastructure.  

To provide focus, the threat model adopted will assume that 

the CSP and its administrators are trusted. 

We assume that one or more cloud consumers are not trusted 

and may be malicious in nature, and attempt to compromise 
the confidentiality, integrity or availability of another cloud 

consumers virtual machine or data or the hypervisor itself. 

The cloud environment in scope is IaaS, in which the host 

(CSP) has very little, if any, authority over the actions and 

operations of its guests vm’s.  

The list of attacks in section 2 is not exhaustive and instead 

focusses on the important known attacks concerning 

hypervisors and virtual machines in IaaS public cloud 

environments. The known attacks listed are present in IaaS 

due to the extensive usage of virtualization within cloud 

computing and the shared hardware required to support this 

model. Physical attacks are not in scope for this survey 
paper. 

 

2.1 Known Attacks 

Vm escape 

In this attack an attacker leverages a vm and interacts 

directly with the hypervisor to escape from its control. In a 

vm escape the vm crafts an attack to bypass the isolation 

between the vm’s and the hypervisor. The attacker can gain 

or elevate privileges to access the resources shared with 

other VMs. Examples of this are Venom CVE-2015-3456. 

Vendors take this vulnerability very seriously as it is clearly 

a threat to virtualization. Microsoft have offered up to 250, 

000 US dollars as a bug bounty for any proof of concept code 
that can demonstrate a successful vm escape exploit in their 

Hyper-V virtualization platform. 

 

Hyper-jacking 

A Hyper-jacking attack inserts a root kit that allows an 

attacker to control the hypervisor and in turn the entire 

virtual environment. This is achieved by inserting a thin 

malicious hypervisor on-top of the legitimate hypervisor. 

This represents a single point of failure as a compromise of 

the hypervisor would provide access to all the vm’s that 

reside under it. Previous research in SubVirt [21] 

demonstrated how this would be achieved. 

 

Denial of Service 

Whilst a Denial of service attack (DoS) can take many 

forms, in the context of this survey paper a DoS attack refers 

to a malicious VM exhausting the hypervisor resources in its 

entirety and impacting the performance of vm’s running on 

the same physical host. This attack is also known as a 

resource exhaustion attack, which impacts one of the core 

principles for information security, availability. An example 

of this attack is CVE-2017-17566, 

 

Side channel 

In a side channel attack the attacker first aims to co-locate a 
malicious vm on the same physical host as a victim vm and 

achieve co-residency. The attacker then constructs covert 

side channels to obtain sensitive information from the 
victim’s vm. A side channel attack leverages a 

communication method not originally intended for the 

transfer of data. This attack has caused serious concern since 

the announcement in 2018 of the Spectre and Meltdown 

vulnerabilities, found in nearly all Processors which leverage 

a side channel to access memory locations. Side channel 

attacks work by converting leakage into usable information. 

Due to the non-standard use of side channel attacks they 

often can go undetected from intrusion detection systems 

(IDS). There are different categories of the attack relating to 

the method in which the exploitation is achieved. Cache 

attacks and Timing attacks are the most prominent and will 
be included in this paper. In addition to the well-publicized 

Spectre and Meltdown vulnerabilities, additional examples 

of a side channel attack are the RowHammer attack [16] 

CVE-2015-0565, in which memory bits are flipped to a new 

location to alter outcomes. 

 

III. LITERATURE REVIEW 

Section 3 includes the literature reviewed for the survey 

paper including current solutions with some references to 

previous research. 

 

3.1 Co-Residency  

Achieving co-residency relates to the planned placement of 

a malicious vm onto the same physical host as a victim’s 

target vm in which to leverage one of the known attacks to 

attack the target vm. Co-residency forms a large part and a 

core requirement to initiate the known attacks mentioned in 

section. 

Achieving targeted co-residency was successfully 
demonstrated in previous research [18]. In which Ristenpart. 

et al were able to demonstrate an ability to achieve targeted 

co-residency in Amazon’s EC2 Cloud service (AWS). This 

was successfully implemented by mapping the AWS internal 

cloud infrastructure using the IP address space and usage of 

simple heuristics to determine accurate location of vm’s, 

with the view that subnets are logically assigned between 

locations for simple and ease of administration.  After the 

mapping launch of a malicious vm and a probing technique 

using network latency round trip time variation was used to 



                        International Journal of Engineering Applied Sciences and Technology, 2020    

                                                 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48 
                                    Published Online December 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

39 

 

determine when co-residence with a victim vm had been 

achieved. Using this strategic approach of understanding 

Amazon’s vm placement algorithm, demonstrated up to a 

40% success rate. During the same attack the keystrokes 

were recovered from a co-resident vm. This is very 

important as it allowed a malicious attacker to locate a target 

and  then issue some of the known attacks against a specific 

target, demonstrating a non-trivial method and exposing 

novel risks within IaaS public cloud environments. Once co-
residence has been achieved a side channel attack can be 

carried out.  

 

3.2   Side Channel Attack Solutions 

The mitigations in [18] listed steps towards side-channel 

attacks focus on blinding techniques used to minimize the 

information leakage.  

The blinding techniques are expanded and further enhanced 

in paper [13] which improved on previous research in [14] 

in which a side channel attack is performed against memory 

deduplication employed by hypervisors and the mitigations 

against the attack are offered. Hypervisor memory 
deduplication is a memory optimization technique 

introduced to provide memory cost saving through 

techniques performed by the hypervisor to identify and 

merge identical memory pages across the vm infrastructure 

[4] to reduce the physical memory footprint of vm’s, as 

depicted in figure 3. The described attack allows a co-

resident malicious vm to perform a timing-based side 

channel attack by exploiting the timing difference between a 

binary that is already running in the shared memory pages 

between vm’s versus the difference of a new binary. The 

difference in timing reveals information on which 
applications or even software versions are running on a 

victim vm. Allowing a malicious vm to fingerprint running 

applications on a victim vm. The mitigations offered against 

this particular side channel attack in [13] are to de-activate 

memory deduplication on the hypervisor altogether and lose 

the cost saving features or implement encryption of vm 

memory which 

 

  
Figure 3 : Memory deduplication example 

 

 

in turn would make it impossible for the hypervisor to 
perform any deduplication unless an encryption key is 

shared across the vm’s. Whilst both suggestions are 

plausible this would present additional effort from CSP’s. 

Requiring infrastructure changes and likely a large memory 

overhead to facilitate disabling memory deduplication, 

similarly enabling vm memory encryption would incur a 

larger memory overhead due to an inability to de-duplicate 

memory pages and would also require hardware 

infrastructure changes to perform the encryption all of which 

would need to be at the effort of the CSP potentially resulting 

in an increase in charge back to the cloud consumer.   
[13] Also suggests an alternate counter measure is to 

obfuscate the vm memory by applying a randomizing 

technique, which would allow memory deduplication to be 

enabled, though using the fingerprinting technique 

implemented the victim vm’s running applications could still 

occur, albeit  at a much larger memory overhead with a 

requirement to probe ~5000 times as many signatures. 

Essentially slowing a malicious vm down in any 

fingerprinting activity but not eradicating the threat in its 

entirety.  

An option not considered in [13] is to build upon previous 
research used in [2] and consider enabling deduplication on 

zero pages only. Applications and operating systems may 

zero out pages for usage in the future and this can be a 

frequent occurrence, although not for an extended amount of 

time. Whilst this provides less efficient memory 

optimization when compared with full memory 

deduplication, this method could reduce vm memory 

footprint without exposing a side channel. 

Implementing the mitigations offered in [13] address a 

specific side channel timing attack in memory deduplication, 

but do not consider mitigating threats for other available side 
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channels that leverage the  hardware design itself, such as an 

attack against the CPU cache or last level cache which is 

shared across all CPU cores to prevent memory bottle necks, 

figure 4 provides a visualization of the last level cache 

sharing between vm’s.  Research in [17] proposes an event 

driven solution that uses machine learning techniques to 

classify events and detect the probing techniques used within 

side channel attacks in a virtualized environment, 

specifically tested on the KVM hypervisor. Consideration 
for performance overhead and integration into KVM’s 

existing architecture was applied and the system was built 

directly into the Linux kernel within KVM, reducing the 

complexity required and making good use of the default 

probes provided by the Linux distribution within KVM. The 

machine learning model trained for the monitoring system 

demonstrated in the results a clear capability to detect 

patterns of any side channel cache attack, casting a wide net 

on the ability for detection due to the persistent unique 

probing required in a side channel cache attack. The 

implementation can work directly within the host and further 

improved upon the research in [24] by negating the need for 
co-operation from the victim vm. 

[17] mentions a small impact on the guest performance with 

almost zero impact to the host performance, though this has 

not been quantified in the paper. The model used in [17] 

leverages a trained class for known attacks and an untrained 

class, the latter is implemented to detect new side channel 

attacks that the model has not seen. The results demonstrate 

low false positives and low false negatives providing good 

future use to detect new unseen side channel attacks, 

examples of this could be any predecessors to Spectre and 

Meltdown. A clear draw-back is that a real-world 
implementation would only provide monitoring for a CSP 

and in its current state does not offer any prevention against 

a malicious vm from initiating an attack or ceasing an attack 

in operation, the CSP would need to implement corrective 

measures and the cloud consumers safety could depend on 

the CSP’s ability to react promptly. No attempt was made to 

look at segmentation of the CPU last level cache between 

tenants and due to the threat model assumptions in [17], the 

solution could not cater for a compromised hypervisor. 

 

 
Figure 4: Last level cache sharing example (source 

https://www.researchgate.net/figure/Cross-VM-side-

channel-attack-using-a-shared-last-level-

cache_fig2_327314423) 

 

 
3.3  Resource Monitoring 

Cloud computing’s always on nature is a key requirement 

for cloud consumers. It is therefore paramount that the 

availability of virtual machines is guaranteed and not 

negatively impacted by a malicious vm sharing the same 

physical host. In [25] a solution is implemented to detect and 

prevent a DoS attack initiated from a co-resident malicious 

vm. The solution consists of a set of testing programs to 

monitor a host’s resource usage. [25] considers DoS attacks 

against memory, CPU, disk and network. The testing 

programs perform a set of repeated tasks for the hosts disk, 

memory and network to form a set of samples that are run on 
an offline host running the same hardware, this essentially 

creates a baseline. The testing programs then run on all hosts 

and a probability method is used to determine any deviations 

from the baseline that may indicate a DoS attack. After an 

attempted host DoS attack is detected the testing program 

will restrict resources from the suspected malicious vm for a 

short period, focusing on the area effected such as disk or 

memory, and if by performing the restriction the host 

performance improves then the identified vm is further 

confirmed as malicious and additional action is taken such 

as migrating the malicious vm to an alternate host or shutting 
the vm down.  

The initial identification and pinpointing process indicates 

that thought has been given towards a method for managing 

false positives and not impacting an innocent vm that may 

have an irregular request for resources from the host. 

Evaluation on the impact of the testing programs 

performance overhead on the host has been applied and 

https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423
https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423
https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423
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results on monitoring memory, network or disk attacks does 

not incur any performance overhead. As part of the 

evaluation there has not been an attempt to see if multiple 

co-resident malicious vm’s initiated simultaneous DoS 

attacks against the host how the testing program would 

handle this, as part of the threat model [25] assumes that only 

one vm per host is required to perform a DoS attack. 

In [8] a solution is presented to detect DoS attacks even if 

the hypervisor has been compromised, secure resource 
allocation for the vm’s is implemented by using a probing 

mechanism executed from the hosts CPU system 

management mode (SMM) which provides a higher 

privileged environment above that of the hypervisor 

ensuring protection and isolation against a compromised 

hypervisor. The SMM is normally used to handle privileged 

instructions outside of normal operation. The hypervisor is 

excluded from the trusted computing base (TCB) in this 

solution in which only the hardware and BIOS are included 

in the TCB. A sample-based approach performs random 

probing of the CPU and memory allocation, the probing 

program resides in System management RAM (SMRAM) 
installed within a customized BIOS on the host machine, 

though no hypervisor modifications are required. Near 100% 

accuracy is recorded for memory and CPU reporting. 

 The architecture also uses a dedicated proxy server to 

manage user requests to create new vm’s , delete vm’s and 

manage vCPU creation all of which are forwarded from the 

proxy to the hypervisor. The proxy is also used to check on 

resource usage and is connected via a serial device from 

proxy server to host. Architecture is shown in figure 5. 

An out of band network channel is suggested as a further 

improvement option for bandwidth and scalability and to 
secure communication between the proxy and hypervisor, 

however beyond this no additional thought has been applied 

to further secure the proxy server which provides an attack 

surface if an attacker were to gain unauthorized access, 

whilst the hypervisor has been deprivileged in some aspects 

by leveraging the SMM, a proxy server has been introduced 

and further hardening of the proxy should be considered. 

 

 
Figure 5: host resource accounting architecture 

 

Performance overhead of the system is considered and 

normalized performance testing across a diverse range of 

applications running on the vm’s was applied. For average 

workloads the performance overhead is between 1 – 2%, 

however for CPU intensive workloads the performance 

degradation is high with impact on the sampling.  

It is also noted that unlike [25] there is no provision for the 

monitoring of disk or network usage within the solution and 

the focus is entirely on CPU and memory accounting. In the 

event the hypervisor was compromised in [8] the solution 

would still be able to continue probing for resource 
allocation, however based on the design it is probable that an 

attacker would be able to cause damage to the availability of 

the host or co-resident vm’s in the event the hypervisor is 

compromised as this solution focuses on verifying CPU and 

memory resources under a vulnerable hypervisor rather than 

protection of vm’s and the vm data as implemented in 

previous papers [15] . 

 

3.4  Hypervisor modifications 

Alluding to the simple idea that the hypervisor provides the 
attack surface and is the weakest link it has been suggested 

in NoHype [10] that removing the hypervisor from runtime 

is one approach that could be considered. NoHype 

architecture is proposed to modify and remove the 
hypervisor from runtime and therefore the requirement to 

defend the hypervisor. An attempt is made to preserve some 

of the connotations of virtualization whilst removing the 

interactions a vm can have with a hypervisor. Aiming to 

protect against vm escape and Hyper jacking known attacks. 

In the NoHYpe architecture the codebase is minimized to 

reduce the attack surface.  The view is that due to the 

multiple lines of code (LOC) in a standard hypervisor a 

larger attack surface is presented. 

In the NoHYpe architecture each CPU core is directly 

allocated to a single vm, ensuring guest vm’s cannot share 
CPU cores. Memory is also pre-allocated. A temporary 

hypervisor is used only to run at initialization, rather than the 

traditional vmm operating at run time. 

Removing the hypervisor altogether whilst may seem 

plausible would require a drastic paradigm shift for CSP’s. 

A clear draw back to this proposed architecture surrounds 

restricting the ability for guests to share CPU, which in turn 

is actually one of the major selling points of virtualization. 

Whilst performance is not measured in this paper, as 

resources are pre-allocated and this could result in 

underutilizing CPU and memory, 

Flexibility and scalability of virtualization resources are lost 
due to the cost of a single core per virtual machine. The 

ability to over subscribe also is not possible with the 

NoHYpe architecture, as well as dynamic resource 

allocation. Some of the core advantages of cloud computing 

are removed, demonstrating a tradeoff between security and 
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economic value. In NoHYpe there is still a management vm 

that can provide an avenue to attack and impact the virtual 

environment. 

An alternate idea in a solution named HypSec [12] is to 

modify and retro fit the existing KVM hypervisor rather than 

recreate a new hypervisor. Continuing with the theory in [10] 

and previous research in micro hypervisor, Nova, [19], that 

a large codebase within the hypervisor represents risk due to 

complexity and vulnerabilities. HypSec aims to reduce the 
trusted computing base (TCB) by leveraging microkernel 

principles. A trusted core, labelled corevisor, is created that 

provides access control to vm data and provides the CPU and 

memory virtualization. The hypervisor is partitioned into a 

non-trusted host, labelled hostvisor, performing hypervisor 

functionality with no access to vm data. Providing protection 

against a vm escape and hyper jacking attack. 

Previous attempts in nested virtualization [22] that retro fit a 

hypervisor yet fail to provide full support of virtualization 

features are considered in HypSec. The viewpoint is taken 

that the hypervisors that are built on Linux (KVM and Xen) 

also inherit all of the vulnerabilities and bugs associated with 
the Linux kernel. HypSec’ s design retains the Linux kernel 

and moves this to an untrusted hostvisor away from the 

corevisor. Isolation and protection of the trusted core is 

achieved using hardware virtualization, execution is at a 

higher level of privilege so that virtual machine exceptions 

are mediated and protect vm data is contained within CPU 

and Memory.  

In the interest of protecting VM Data the corevisor 

intervenes privileged instructions, such as VM EXIT and the 

exit reason determines if the corevisor handles the exit 

directly or if there should be a switch to the hostvisor to 
handle. This step will provide a performance overhead when 

deciding to hand off or handle the instruction directly. 

The transition from non-root mode to root mode is called 

VM EXIT and the opposite is called VM ENTRY. In the 

architecture for Hypsec the hostvisor is deprivileged and 

must call VM ENTER for the corevisor to execute a vm. 

Performance testing reveals up to a 19% performance 

overhead on the number of CPU cycles when HypSec is 

compared to a standard KVM hypervisor, this is due to the 

corevisor interposing on the trap and emulation and potential 

transfer to the hostvisor. Whilst this handoff to the hostvisor 

is considered to simplify the TCB there is a clear detriment 
to performance. Evaluation of practical attacks is also 

completed and compared with KVM, providing further 

protection against privileged escalation attacks that KVM 

are vulnerable to. 

Whilst the privileged corevisor is deemed to be secure there 

is little evidence of further hardening to support this. 

 

 
Figure 6: HypSec architecture  

 

Similarly, to [12] control of privileged instructions in 
FWinst [7] the focus is on hardening the hypervisor to 

effectively secure all instruction emulation and the 
interaction of privilege instructions from an application on 

the vm in the ring 3 user space to the vmm in ring 0.  This 

emulation is required as part of the standard trap and emulate 

behavior of virtualization in which sensitive actions are 

attempted by a vm and allow a vm to operate as if it is a 

physical machine. Actions such as direct access to the 

hardware, are trapped by the vmm to take control and then 

interact with the hardware as necessary and return the 

appropriate information to the vm. This emulation process is 

complicated and can be prone to errors which results in 

vulnerabilities that can lead to a vm escaping the isolation 
boundary and compromise of the hypervisor facilitating a 

vm escape or a host-based DoS, which FWinst can protect 

against. The emulator should validate privileged instructions 

and ensure they are executed from the correct ring code 

segment and not directly executed from a lesser privileged 

code segment such as ring 1-3. 

Unlike Hypsec which selectively hands off to the corevisor 

for privileged instructions, FWinst uses an instruction filter, 

positioned between the VM Exit handlers and the instruction 

emulator (Figure 7). Based on a list of pre-programmed 

legitimate instructions for each context taken from the VM 
Exit reason. FWinst provides firewall like properties for 

privileged instructions from vm to instruction emulator. An 

inability to provide validation of privilege and prevent 

emulation of sensitive instructions from ring 3 has appeared 

as a common vulnerability in the Xen hypervisor as seen in 

CVE-2014-7155. From this list FWinst is able to filter out 

illegitimate instructions from a malicious vm and reduce the 

attack surface. 
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The overall performance overhead at runtime is stated as less 

than 2.5% using standard benchmarking tests. FWinst is 

implemented in KVM and performance tested with 

Windows and Linux vm’s. It was proven in research from 

Amit et. Al [1] that an attacker can force any instruction, 

including non-privileged, to be emulated and so an approved 

filtered instruction list certainly has a place in further 

securing a hypervisor.  

Challenges for the CSP would be in maintaining the list of 
legitimate instructions within FWinst if ever there were 

changes to architecture, similarly if unauthorized access to 

the hypervisor was gained there is an avenue to amend the 

list of legitimate instructions potentially undetected. FWinst 

uses only 279 LOC and it is also lightweight as per [12 and 

10]. Whilst FWinst clearly addresses the known threat of a 

vm escape, the coverage of preventing a DoS attack against 

vm’s in its entirety is questionable, if the hypervisor was 

compromised via a method other than vm escape this would 

allow a malicious actor to impact the availability of all vm’s 

on the compromised host. 

 
Figure 7: FWInst instruction filter architecture 

 

In blind hypervison [6], the hypervisor is deprivileged, 

similarly to HypSec [12], so that in the event of compromise 

via a vm escape attack the underlying vm’s data is 

inaccessible to the hypervisor. Focusing on the privacy 

concerns if a hypervisor was compromised that a consumers 

vm data would be safe. In this architecture a master server 

and one or more host servers are implemented. The master 
controls the overall global system state and the hosts have 

the deprivileged hypervisor installed. The master acts as an 

authentication authority responsible for the deployment of 

new vm’s and ensuring confidentiality between the vm and 

hypervisor. 

The master server can run on standard hardware, however 

the host requires specific hardware components that are used 

to encrypt and decrypt the vm data and loading them into 

memory, storing the private key. The hosts also require an 

extended memory management unit to further enforce 

isolation and creation of specific execution modes 

customized on the host for protection from unauthorized 

access. Symmetric keys are used to encrypt and decrypt 

memory between the master and the host to guarantee 

confidentiality of the vm data. Essentially by modifications 

in the hypervisor and the addition of the host memory 

protection of the vm’s is achieved. 

Implications into the performance overhead on the host and 
underlying vm’s running in this architecture have not been 

evaluated. The design and research is focused towards 

protecting vm migration between hosts and communication 
across the network as all vm migrates can only be initiated 

from the master. There is no consideration into the hardening 

of the master which could provide a single point of failure 

within a cloud IaaS deployment. The additional hardware 

requirement in each host and software modifications may 

also present challenges for CSP’s, coupled with 

administrative overhead to the manage and maintain the 

master servers. As per [12 and 7] there is focus towards 

control of privileged instructions, however the introduction 

of non-standard instructions into the hosts may also present 

supportability and compatibility challenges. 

HyperPS [23] aims to implement a  hypervisor monitoring 
solution that provides event monitoring of interactions 

between a vm and a hypervisor. An isolated space is created 

by separating privileges in which HyperPS monitors the 

hypervisor at runtime and is able to operate on privileges no 

higher than the hypervisor. The approach tackles the idea 

that when the kernel and hypervisor address space is shared 

additional security is required to protect vm’s from a 

compromised hypervisor.  

The standard hypervisor has the control of any security-

sensitive system resources removed such as a VM Exit 

hypercall or manipulation of page tables or vm memory 
mapping. Hooks are used to forward privileged instructions 

such as VM EXIT from the hypervisor directly to HyperPS, 

essentially transferring the control flow and adopting similar 

focus on control of privileged instructions as observed in [6, 

7, 12]. HyperPS uses an additional page table to achieve an 

isolated address space upon which to run, ensuring there is 

no mapping of virtual to physical in the hypervisor address 

range, preventing compromise of a hypervisor with known 

attacks vm escape and hyper jacking. 
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                         Figure 8. Hyper PS architecture 

 

An impact on performance was evaluated and due to the 

requirement of the creation of a new memory page table for 
HyperPS and allocating memory pages an impact on the 

speed vm boot times is seen up to 1.09 times slower when 

compared with KVM. Relative performance testing on the 

whole system was achieved using application and micro 

benchmarks, up to a 4% performance overhead was 

observed. Additional hardening of the HyperPS world is not 

considered in the research and would also present an 

additional attack vector for a malicious tenant.  

 

3.5  Hypervisor removal and vm modifications 

Previous research in [15] proposed to modify the vm and 
implement a unikernel in which the user space and kernel 

space share a single address space. Unikernels, whilst 
running on traditional hypervisors such as KVM, restructure 

vm’s into secure and flexible components by adopting a 

minimalist approach and provide the minimum number of 

libraries needed to run. The standard TCB is modified and 

the user space and security kernel space share a single 

address space on a lightweight vm.  Within the single 

address space, the typical drivers or support library functions 

expected within a standard OS are excluded and only the 

required libraries and functions needed to run the application 

are included, and nothing else. A small monitor process is 

required to interact and manage privileged instructions or 
hypercalls between the unikernel and hypervisor and 

hardware for I/O. This was considered an improvement to 

the security of vm’s by reducing the attack surface when 

compared with a traditional vm due to the absence of drivers 

or unnecessary I/O commands and non-essential libraries. 

Unikernel supporters also argue that due to the single 

address space applications no longer run in ring 3 and now 

operate in ring 0. Negating the need to switch contexts 

between the traditional user and operating system boundary 

seen with a standard TCB and is recognized as allowing 

operations to run faster providing a performance increase.  

[21] aims to build upon the Unikernel principles in [15] and 

implement unikernels to run as processes whilst retaining the 

isolation benefits from their vm- like properties. In [21] the 

solution proposes to remove the hypervisor completely. This 

further enforces the principles used in NoHype [10] by 

completely removing any trace of the hypervisor, instead of 

simply at runtime. If the hypervisor does not exist then the 

vulnerabilities pertaining to a hypervisor should be removed, 

resulting in mitigation against Hyper jacking and vm escape. 
[21] proposes to implement a tender process, depicted in 

figure 9 which builds upon the ukvm used in [15]. This 

tender process also contains the unikernel and maintains exit 

handling for interaction with I/O devices directly and setup 

of the unikernel. Multiple copies of unikernels can run on a 

single host and the tender process is able to ensure that the 

unikernel binary is shared in memory by the host for memory 

efficiency across unikernels. A whitelist of system calls in 

the kernel is used to maintain isolation. This aims to improve 

on the considered limitations of hardware virtualization and 

the use of a hypervisor with techniques such as memory 

ballooning which although provide memory efficiencies, 
operates at the expense and trade off of extra CPU cycles. 

[21] also aims to improve on the design in [15] that requires 

a switch between the context of the vm and monitor, an 

increase in hypercalls to perform the context switching was 

found to more than double the CPU cycles when compared 

with a direct function call as introduced by implementing the 

unikernel into the tender process and removal of the 

hypervisor. Ultimately removing the context switching 

results in better performance and is demonstrated in the 

comparison tests which show a faster startup and more 

efficient utilization of memory and CPU when compared 
with traditional unikernels. In [21] thought was considered 

to evaluate isolation capabilities of unikernels as processes 

when compared with traditional unikernels. The metrics 

adopted for evaluation check how much of the host kernel 

access is needed to function correctly and how much of the 

kernel a unikernel could access. 
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              Figure 9: Unikernels as processes architecture 
 

Results are reported as unikernel running as processes 
requiring half as much access to kernel functions as standard 

unikernels. 

Whilst implementing unikernels as processes and omitting 

the hypervisor sounds promising, the paper excludes how 

supportable this would be. Unikernels are essentially black 

box implementations and the ability to support and debug 

would present CSP’s challenges. Removal of the hypervisor 

in an IaaS public cloud would require a huge architecture 

overhaul for CSP’s.  

Implementing unikernels as processes and removing the 

hypervisor would also not provide protection against side 
channel attacks such as the Spectre and meltdown 

vulnerability, which even in the Unikernel [15] or unikernel 

as processes [21] architecture could be exploited.  

The unikernel design is in direct conflict with the principle 

of least privilege and prevents application developers from 

running the standard user protection boundary due to the 

single address space sharing, which takes an application 

from the standard ring 3 and essentially moves it into ring 0. 

The notion that a unikernel is more secure due to the limited 

codebase whilst may be correct for the unikernels does not 

factor in the Linux machine kernel vulnerabilities and the 

attack surface this presents. 

The reduced codebase in Unikernels was found in [20] to be 

missing basic security features, such as an ability to update 

whilst running and input validation failures leading to buffer 

overflow vulnerabilities. Raising concerns that whilst the 

hypervisor is removed additional vulnerabilities are 

introduced, coupled with a lack of supportability from CSP’s 

and a complete infrastructure overhaul requirement. 

3.6 Survey summary 

Figure 10 is used to better visualize the coverage of the 

presented papers, and each solutions ability to address all the 

known threats presented in section 2 in their entirety. 

 

 
Figure 10: Table of all surveyed papers solutions and their 

threat coverage. 

 
A full table summarizing the work is shown in appendix A 

at the end of this paper. 

 

IV. FUTURE WORK 

In this survey paper, we describe the known attacks against 

a hypervisor and the relevance of this in the context of a 

public IaaS environment. 

Based on the survey’s findings the gaps and opportunities 

and valuable future work could include: 

The Inclusion of I/O encryption built into the hypervisor and 

included as a standard among all vm’s, this coupled with an 

ability to share memory pages. Research into slicing CPU 

last level cache to ensure this cannot be used in a side 

channel attack.  

There are clear gaps in the full coverage of the proposed 

solutions. Combining some of the proposed solutions into 

hypervisors as standards to provide full coverage against the 

known attacks presented in this paper. 

Continued usage of machine learning techniques to future 
proof against unknown attacks based on classification and 

anomaly as seen in solution [17]. 

Transparency from CSP’s into the tenants that occupy a 

physical host so that the decision and ultimately the risk is 

offloaded to the cloud consumer to decide if they wish to 

decline sharing with a particular tenant due to competitive 

reasons or a conflict of interests. 

V. CONCLUSION 

Ensuring the security of cloud consumers is paramount. 

Threats to hypervisor security exist in all environments that 

leverage virtualization, including private clouds, however 

this threat is exacerbated in multi-tenancy environments due 

to the shared nature of the hosting infrastructure. 

The prevalence of side channel attacks demonstrates that 

isolation is not achieved at the hardware or hypervisor level. 

Mechanisms that have been implemented to improve 

performance across hardware and scalability across shared 

Known 

threat 

addressed [13] [17] [25] [8] [10] [12] [7] [6] [23] [21]

Vm Escape √ √ √ √ √ √

DoS √ √ √

Hyper-Jacking √ √ √ √ √

Side Channel √ √

Paper Number
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resources are often exploitable. The survey paper 

demonstrates that there is often a trade-off between 

performance and security. 

For guaranteed security against attacks from malicious vm’s 

cloud consumers should resort to avoiding co-residence. 

Customers with strong privacy requirements could consider 

the economical trade off against security and request 

dedicated hosts in an IaaS environment or consider if the 

workload is more suitable to a private cloud. 

Solutions that aim to remove the hypervisor as a threat by 

various methods of deprivileging, often introduce an 

alternate to the hypervisor and in turn introduce an additional 

attack vector.  

Clear trends towards controlling the flow of privileged 

instructions using variations of trap and emulate between the 

vm and hypervisor were employed in the surveyed papers, 

often at the expense of extra CPU cycles and ultimately 

resulting in degraded performance for the host or vm’s. 

As demonstrated in the literature review there is no single 

solution that can address all known attacks within a virtual 

environment. The hypervisor should not be trusted as a level 
of isolation by cloud consumers, who should take effort to 

further scrutinize CSP hypervisor security in more detail 

when deciding to move workloads to an IaaS environment.   

As with many items in Information Security an approach that 

is layered and applies a defense in depth methodology, 

leveraging a multitude of solutions will likely yield the best 

results. 
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APPENDIX 
 
A   Full table summarizing literature review. 

 
 

Threat addressed Solution Name and reference Solution Performance Overhead CSP Impact

Memory Deduplication Side Channel

On the Detection of Applications in Co-

Resident Virtual Disable Memory deduplication Large infrastructure changes required.

Memory obfuscation

Paper [13] Encrypt vm memory

Side channel cache

Leveraging KVM events to detect cache based 

side channel attacks.

Monitoring using events in KVM leveraging 

machine learning to detect known and unknown 

side channel attacks.

Zero impact to host 

performance, small impact 

to guest

Process change for monitoring events and 

responding to incidents.

Paper [17]

DoS

Host-based DoS Attacks and Defence in the 

cloud 2017 Set of testing programs used No performance over head

Compatibility checks into real usage of 

hypervisors

Able to monitor CPU, disk and network.

Paper [25]

 DoS Hardware-Assisted Secure Resource Leverage SMM internal hardware and a proxy.

High performance 

degradation on high CPU 

processes and workloads Infrastructure changes to faciliate

Deprivilege the hypervisor and control.

[Paper [8]

Vm escape and hyper jacking No Hype

Hypervisor removed from run time to reduce the 

attack surface. Not measured No dynamic resourcing available

Direct vm ti CPU core mapping required

Paper  [10]

Memory is also pre allocated. Benefits of 

virtualization are lost

Vm escape HypSec

Retrofit a hypervisor, reduce the TCB. Split 

between a privileged corevisor and a deprivileged 

hypervisor known as hostvisor.

Up to 19% due to corevisor 

trap and emulation.

Hypervisor changes required to retrofit 

KVM

Hyper jacking

Paper [12]

Vm escape Fwinst - Hardening the hypervisor

FWInst Use a privileged instruction filter to handle 

VM Exit from vm to hypervisor. Less than 2.5%

Maintenance and supportability of the 

instruction filtered list.

DoS

Paper [7]

Vm escape hyper jacking Blind Hypervisor

Uses a master and a host. Requires additional 

hardware components to encrypt and create non-

standard privilege instructions.

No check on performance 

in paper.

Non-standard instructions. Master server 

and additional specific hardware required 

for encryption on the host server.

Paper [6]

Vm escape Hyper PS

Creates a new address space for a privilegd world, 

known as HyperPS world. Uses hooks and a 

gateto forward privileged instructions from the 

hypervisor to HyperPS world.

1.09 times slower vm start-

up.

New virtual memory address space to 

manage per host.

Hyper jacking

Up to 4% performance 

overhead.

Paper [23]

Vm escape Unikernels as processes Complete removal of the Hypervisor

Improvements in 

performance

Removal of all virtualisation, significant 

challenges in supportability and complete 

architecture overhaul

Hyperjacking

Running of Unikernels as processes using a 

tender process that interacts direclty with the 

Linux OS.

Paper [21]

Memory cost savings from 

deduplication.


