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Abstract— This is the author’s second ‘Review Paper’ on 

the fascinating, exciting and challenging world of 

“Quantum Computing”. While, in the first paper, the 

author took the reader, supposedly having no knowledge 

of Quantum Mechanics and Quantum Computing, on a 

“Beginner’s” journey into the interesting world of 

Quantum Physics and Quantum Computing, this review 

paper tries to dig deep into the curious world of the Qubit, 

its states and all the associated mysteries surrounding a 

Qubit and its ‘simultaneous’ many states. 
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I. INTRODUCTION 

For the “classical” computers that we know of, use or interact 

with in some form or shape, every day or pretty much thereof, 

the ‘Bit’ is the fundamental unit of storing, retrieving and 

processing information. Just as the “classical” (conventional) 

computers are made up of Bits, Quantum Computers are made 

up of what are called Quantum Bits, or simply, Qubits. 

 

A ‘classical Bit’ can be thought of having a state which is 

either 0 or 1. Similarly, a Qubit also has got a state. 

The author’s discussion, in this “review paper”, precisely 

revolves around a Qubit and its state. Readers willing to 

pursue an in-depth study and understanding of the other 

concepts of the field of Quantum Computing should 

immensely benefit by referring to some of or all the materials 

[1 – 15] specified in the ‘REFERENCE’ section below. 

II. SYSTEM AND METHOD 

A.  State Space – 

While the state of a ‘classical bit’ is a number, either 0 or 1, a 

qubit’s state is a vector. 

In fact, a qubit’s state is a vector in a two-dimensional vector 

space, which is known as the state space. ----- i 

B. Computational Basis States - 

Just like the ‘classical bit’, a qubit also has states (call those 

“Quantum States” rather than merely “states” for a qubit) that 

correspond to a classical bit’s 0 and 1 states. In fact, it is better 
to say that these two states are special quantum states of a qubit 

and are called computational basis states. 

A qubit’s quantum state that corresponds to the classical bit 

state of 0 is usually denoted by ∣0⟩. Similarly, a qubit’s 
quantum state that corresponds to the classical bit state of 1 is 

usually denoted by ∣1⟩.  

These state notations using ∣ and ⟩ are referred to as ket 

notations, and ∣0⟩ and ∣1⟩ are called kets. The symbols 

∣ and ⟩ usually have no special meanings, except for the fact 
that those are used to symbolize quantum states. 

A ket is simply a vector. Therefore, in terms of vector 

notations, kets ∣0⟩ and ∣1⟩ are represented as follows. 

 

 

NOTE: - 

Although a ket is a vector, a ket is used to denote 

quantum state notations like ∣0⟩ or ∣1⟩. 

We do not usually refer to a normal vector notation like 

 or as a ket – we will still refer to them 
as a ‘vector’. 

C. Concept of Superposition - 

Thus far, we have come to know that a qubit can have two 

possible quantum states of ∣0⟩ and ∣1⟩, which are called 

computational basis states. However, qubits can exist in many 
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more possible states – remember that a qubit’s quantum state is 

a two-dimensional vector in the state space. ----- from i above 

Let us consider the following diagram, for example. 

 

Fig. 1. Diagrammatical illustration of the vector nature of a qubit’s 
quantum state in the two-dimensional vector state space 

The figure represents that the qubit’s quantum state 

“0.8∣0⟩ + 0.6∣1⟩” is 0.8 times the ∣0⟩ vector plus 0.6 times 

the vector ∣1⟩. 

 

 

At this point, it would probably be good to introduce the 
fact that a qubit’s quantum state is a two-dimensional complex 

vector in the state space. In other words, the vector can have 

complex numbers as entries. However, do take note of the fact 

that the immediately previous vector calculation had involved 

only real number entries. Similarly, the vector notations of the 

computational basis states also involve real number entries 

only. 

However, a general quantum state does involve complex 

number entries. For example, let us consider the following 

quantum state vector. 

 

 

Therefore, we can now say that a qubit’s quantum state is a 

two-dimensional vector in a complex vector state space. 

And, now, the time is ripe to get introduced to the concept 

of Superposition. If we again consider the qubit’s quantum 

state “0.8∣0⟩ + 0.6∣1⟩”, we can technically say that the 

quantum state is a superposition of the computational basis 

states ∣0⟩ and ∣1⟩. Technically speaking, we can also say that 

the qubit’s quantum state “0.8∣0⟩ + 0.6∣1⟩” is a linear 

combination of the computational basis states ∣0⟩ and ∣1⟩. 

 

D. Amplitude - 

An amplitude is the coefficient of a qubit’s superposition 

quantum state. If we consider the qubit’s superposition 

quantum state “0.8∣0⟩ + 0.6∣1⟩”, we can say that the 

amplitude for ∣0⟩ is 0.8, and the amplitude for ∣1⟩ is 0.6. 

 

It is worth noting that the sum of the squares of the 

amplitudes must be equal to 1. Thus, for the qubit’s 

superposition quantum state “0.8∣0⟩ + 0.6∣1⟩”, (0.8)2 + (0.6)2 

= 0.64 + 0.36 = 1. 

If we are to generalize this, let us assume that α and β be 

the amplitudes of a qubit’s superposition quantum state. We 

must remember here that the amplitudes can be complex 

numbers. So, the qubit’s superposition quantum state becomes 

α ∣0⟩ + β ∣1⟩, such that ∣α∣2+∣β∣2=1, and this is what is 

known as the Normalization Constraint. 

E. Normalization Constraint – 

Let us consider the following diagram. 
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Fig. 2. Diagrammatical illustration of a qubit’s computational 

basis states and superposition quantum state 

 

From the above figure, it can be inferred that d = 0.8. And, b = 

d = 0.8. a = 0.6. 

 

Using the Pythagorean theorem, also known as Pythagoras' 

theorem, a2 + b2 = c2 

 c2 = (0.6)2 + (0.8)2 ----- ii 
 c2 = 0.36 + 0.64 

 c2 = 1 ----- iii 
 c = √1 

 c = 1 ----- iv 

 

In other words, the radius of the circle is 1. Therefore, you can 

think of the lengths of a qubit’s computational basis states ∣0⟩ 
and ∣1⟩ as being 1. ∣0⟩ and ∣1⟩ are, therefore, orthonormal 

vectors. 

 

 A vector having a unit length (length of one) is said 

to be a normal vector. ∣0⟩ and ∣1⟩ are, therefore, 

normal vectors because each has a unit length. 
 If two vectors are at right angles to each other, they 

are said to be orthogonal. Looking at Figure 2, it is 

evident that ∣0⟩ and ∣1⟩ are orthogonal vectors. 

 The dot product of two orthogonal vectors is zero. 

 

 

 
 

 

   = 0 
 Two normal, orthogonal vectors are said to be 

orthonormal. It can, therefore, be concluded that ∣0⟩ 
and ∣1⟩ are orthonormal vectors. 

 

Also, from ii, iii and iv, it can be inferred that the 

normalization constraint means that a qubit’s superposition 

quantum state has a unit length; in other words, a qubit’s 

superposition quantum state is a unit or normalized vector and 

that is also a reason why the constraint ∣α∣2+∣β∣2=1 is called 

the normalization constraint. 

 

Now, taking into consideration all the ideas till this point, we 

can say that a qubit’s quantum state is a unit length vector in a 

two-dimensional complex vector space that is known as the 

state space. 
 

NOTE: - 

A qubit’s computational basis state ∣0⟩ should not be 

misunderstood as the zero vector, often denoted by 0 in the 

vector space. If you look at Figure 2, the zero vector is at the 

exact center point of the circle. 
 

 
 

However, the qubit’s computational basis state ∣0⟩ vector is 

something that is fundamentally different from the zero vector. 
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III. CONCLUSION 

So, to conclude, I would like to mention that the most common 
description of a qubit’s superposition quantum state is 

probably that the qubit is simultaneously in the computational 

basis states ∣0⟩ and ∣1⟩ when it is in some superposition 

quantum state. 
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