
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

400

OPTICAL DATA COMMUNICATION USING

PYTHON AND ARDUINO µC

Abstract – Optical communication is a

communication technology that uses light

propagating in free space to transmit AV or

telecommunication data overseas. There is

always a need for a high data rate between two

communicating nodes. For this fiber optic

communication technology has been massively

developed along with the development of new

capacity enhancing components. Over years

these components became advanced in optical

communication and ultimately, they cost more to

which only corporates can afford.

However, our project is still in the developing

phase and we have designed just the sender

system(node). In this paper, we have framed our

idea, path to implementation and observation for

optically data transmission between two

computers using Arduino µC.

Further, we have discussed how our idea can be

efficient with parallel computing using python3

and how it would be a cross-platform solution.

Keywords: Optical communication, fiber optics,

python programming, parallel computing,

Arduino µC.

I. INTRODUCTION

The Arduino microcontroller is used in art and

design as an open-source programmable tool to
create interactive works. It can drive various

peripheral devices that support I2C protocol.

Python is a powerful high-level, object-oriented

Programming language created by Guido van

Rossum. Our python-based project will

communicate with Arduino µC via serial

communication from standard USB-COM port.

Serial sequentially, over a communication channel

or computer bus [1-3].

Our idea integrates the above technologies to

transmit data optically with cost-efficient

hardware/software.

Here the performance or speed of data transmission

is directly proportional to the degree of pipelining

available in both the sender and receiver.

II. RESEARCH FINDINGS

To analyze various parameters like delay, data rates,

the timeout value for USB-COM, laser intensity.

III. DESIGN OF OPTICAL TRANSMITTER

3.1 USB and Serial communication

Serial is used for communication between the

Arduino board and a computer or other devices. All

Arduino boards have at least one serial port (also

known as a UART or USART): Serial. It

communicates on digital pins 0 (RX) and 1 (TX) as

well as with the computer via USB.

There are two primary forms of serial transmission:

Synchronous and Asynchronous [5].

Arduino µC works on UART (Universal

asynchronous receiver/transmitter) [1,5].

The below-given figure is the data frame of

asynchronous serial communication

Fig 1 Data frame of UART

3.1.1 Setting Baud rate and necessary USB

connections

The baud rate is a measure of the number of bits per

second that can be transmitted or received by the

UART. Generally, Arduino boards support the baud

rate from 300 – 200000. We have kept default baud

rate i.e 9600 throughout our experiment.

Arduino works with either USB 2.0 or USB 3.0 but

it requires USB type A to B cable to work. We have

implemented USB – Serial communication with

Fatehsingh Parab,

Department of EXTC,

Rizvi College of

Engineering,

Maharashtra, India

Rahil Shaikh,

Department of EXTC,

Rizvi College of

Engineering,

Maharashtra, India

Samved Sangle,

Department of EXTC,

Rizvi College of

Engineering,

Maharashtra, India

Prof. Nargis Shaikh,

Department of ETRX,

Rizvi College of

Engineering,

Maharashtra, India

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

401

Arduino µC by installing necessary certified drivers

and default serial communication libraries with

python3.

3.2 Digital file storage and data accumulation

with python3

Data in digital storage is stored either in 1’s or 0’s

with applications of flip-flops in memory chips or

with magnetic effects in HDDs [6].

A file with extension as txt, png, jpeg, mp3, etc. All

bits are stored at a specific memory address.

Python3 is case sensitive object-oriented language.

We are using the inbuilt ‘open()’ function of

python3 with attributes ‘rb’ to read the file as

binary. Without ‘rb’ attribute python will read the

file as default txt file and encodes it, due to this

except genuine text file all files will go corrupt.

Basically, we’re harvesting raw data viz. 1’s & 0’s.

 Fig2 Reading text file as binary with python3

 Fig3 Reading png file as binary with python3

In Fig2 and Fig2 we have created a variable ‘file’.

In Fig2 we are reading a text file in binary format

(rb) and storing the binary content in variable

‘data’, similar has been done with png file [7,11].

In these cases, variable ‘data’ is of datatype

‘Array’ or ‘list’(an array in python). Larger the data,

larger the size of an array.

This array has byte value in it. Python reads a file in

binary as by grouping total 8 bits and appending its

byte value into variable ‘data’. Fig4 shows the byte

content of the text file.

 Fig4 Binary data of a text file

3.3 Programing Arduino (Mega 2560 Rev3) for

serial communication

Arduino boards are programmed using ‘C

embedded’ language. Most of the code resembles

the traditional C code, but there are some exclusive

functions that can be used in Arduino IDE only. Any

Arduino 𝜇𝐶 has two basic functions: void
setup() and void loop().

Void setup() can be called an initializing

function. This function is called once when Arduino

boots from the power-off state. This function
contains that code that needs to runs at once. Things

like pin initialization, declaring a variable, setting

baud rate or running a loop code for once.

Void loop() function keeps on looping like a

‘while loop’ this function executes its code

repeatedly and won’t stop until the board is reset or

power down.

In our optical transmitter we have connected a laser

of 650nm 5V at pin 9 of Arduino mega 2560 and

also has set a counter variable to count total byte

transferred.
Variable ‘count’ is used to check the total no of

bytes that were sent by the transmitter.

3.4 Syncing between Python shell and Arduino

µC

Synchronization between both python-shell and

Arduino µC is necessary because the host(Operating

system) on which python-shell is running is

operating at clock speed GHz, whereas Arduino µC
is running at a clock speed of MHz (to be precise

16MHz).

This signifies that the job of both these components

to be streamed with sync.

To let these components sync we have to tweak two

Object-function from each i.e python shell and

Arduino µC [8]. Those two are:

1. Serial.setTimeout(*args) > Arduino µC

2. Time.sleep(*args) >> python3 code

/* code to initialize laser

pin and counter */

int laser = 9;

int count = 1;

Fig5 Code for laser module initialization

file = open(“source.txt”,”rb”)

data = file.read()

file = open(“source.png”,”rb”)

data = file.read()

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

402

Serial.setTimeout(*args) – This function takes

argument (*args) in decimal format as ms

(milliseconds). By default for serial communication

in Arduino, this timeout is set at 1000ms (∴ 1 sec).

Time.sleep(*args) – This object code is available

in python shell only after importing the standard

library ‘time’. This library has several other useful

objects, one of them is ‘sleep()’. The sleep functions

take an argument in decimal/floating number as

secs.

Both these line-code argument values are decided by

calibrating the system repeatedly until a satisfying

result is achieved. There is no formula either to

calculate these values.

Since there is a difference in clock speed of order

103 Hz, we have two options left either sync these

components for seconds or milliseconds.

Our motto is to transfer data optically but also with

optimum faster speed hence we decided to set time

constraints in milliseconds.

 ∴ set python shell sleep time in ms.

Below tabulated values are calibrated for data
length of 100.

 Table1 Recorded observations while calibrating timeout

The below Figure is the graphical representation of

Table1.

 Fig6 Graphical representation for calibrating timeout

Finally, we have set the timeout value for python

shell as 18ms and for Arduino µC as 3ms because

at these time constraints, there was no loss of byte.

3.5 Pseudo Code of the transmitter

1. Initialize Arduino board

connection with python shell

2. Read the file as binary with

python3.

3. Load file data into a list
datatype variable.

4. Run ‘for loop’ up to the length

of list variable.

1. At each incremental loop

send serial data of byte to

Arduino µC.

2. Wait for 18ms

3. Repeat

1. read serial data from the python

shell

 1. wait for 3ms

 2. store this data into

Integer datatype.

 3. write analog at the

 desired pin with the stored

 integer value.

 4. Modulate laser intensity

2. goto line 1 and repeat

Fig8 Psuedo code for Arduino

µC µC µC

Fig7 Pseudo code for python

Python shell
Arduino

µC

Total length of

data received

 15ms 0ms 193

16ms 1ms 205

17ms 2ms 104

18ms 3ms 100

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

403

3.6 Block Diagram of transmitter and receiver

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

404

IV. OBSERVATIONS

Every type of file can be transmitted, whether to be a

PNG, JPEG, TXT, PDF, etc. can be transmitted

Such files have a byte value between 0 to255.

Laser beam intensity can be modulated for value from

0 – 255. For a file of size 5KB, it took 1 minute and

10 seconds. No byte was lost during transmission.

V. CONCLUSION

Fig7 is a collaged image of different bytes value and

Fig8 is image negative of Fig7. The negative of the

image lets us see the difference in the light pattern at

every byte value.

Note: Observe the black shaded region for every byte.

For a 5KB file, it took 1 minute and 10 seconds then,
5KB = 70 sec

1KB = 14 sec

∴ 1000 byte = 14 sec

∴ 1 byte = 0.014 sec

∴ 8 bits = 0.014 sec

Hence it is efficient to send 8 bits in 0.014 secs

instead of single bit (1’s or 0’s) in 0.014 secs.

∴ The observed data transfer speed or bandwidth is

approx.

71Bps (Bytes per second) or 568 bps (bits per

second)

Fig7 Image of light intensity at different byte value Fig8 Image negative of Fig7

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 400-405
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

405

VI. REFERENCES

[1] McRoberts Michael (2013), “Beginning

Arduino”. DOI: 10.1007/978-1-4302-5017-3.

[2] Ghelot Anita, Singh Rajesh, Gupta Raj, Singh

Bhupendra, and Swain Mahendra, (2019) “Basics of

Arduino”. DOI: 10.1201/9780429284564-4.

[3] Kleveno Clasrisaa, (2020), “Arduino code

explained”. DOI:10.1007/978-1-4842-5671-8_4.

[4] Blum Jeremy, (2019), “The I2C Bus”. DOI:

10.1002/9781119405320.ch10

[5] Blum Jeremy, (2019), “USB Serial

Communication”.DOI:10.1002/9781119405320.ch.

[6] Fry T.F, (1977), “Computer Storage”. DOI:

10.1016/B978-0-408-00239-4.50010-X.

[7] Pilgrim Mark, (2009), “Dive into Python 3”.

DOI: 10.1007/978-1-4302-2416-7.

[8] Liechti Chris, (2017), “Welcome to pySerial’s

documentation”. Website:

http://pyserial.readthedocs.io/en/latest/.

[9] Klotzkin David, (2020), “Introduction: The

Basics of Optical Communications”. DOI:

10.1007/978-3-030-24501-6_1 .

[10] Hui Rongqing, (2020), “Introduction to Fiber-

Optic Communications”. DOI: 10.1016/B978-0-12-

805345-4.00002-0.

[11] Documentation on python ‘open’ function.

Website:https://docs.python.org/3/library/functions

.html#open.

[12] Rolt Stephen, (2020), “Laser and Laser

applications”.DOI:10.1002/9781119302773.ch12.

[13] Sills J.A, Wood Jr J.F, (1996), “Optimal baud-

rate estimation ”.

DOI: 10.1109/MILCOM.1996.571435.

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1201%2F9780429284564-4
http://pyserial.readthedocs.io/en/latest/

