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Abstract— Wind turbines (WTs) are usually 

operated in harsher environment and, therefore, have 

relatively higher failure rates. The faults in WTs can be 

classified into two categories. wear-out failures and 

temporary random faults. Wear-out failures are long-term 

and permanent events. Repairing or replacing a failed 

component needs additional costs and results in a loss of 

energy production. Data-driven approaches have gained 

increasing interests in the fault detection of wind turbines 

(WTs) due to the difficulty in system modeling and the 

availability of sensor data. A new fault detector based on a 

recently developed unsupervised learning method, 

denoising auto encoder (DAE), which offers the learning of 

robust nonlinear representations from data against noise 

and input fluctuation. Temporary random faults can 

usually be cleared by temporarily shutting down and 

restarting the components with faults or the WTs. In 

addition, we apply the sliding window technique to 

consider temporal information inherent in time series data 

by including the current and past information within a 

small time window. Using the information obtained from 

the condition monitoring process, fault diagnosis can be 

performed to detect, locate, and identify occurring faults 

and monitor the development of the faults from defects 

into failures; and prognosis can be performed to predict 

the development of a defect into a failure, when the failure 

occurs, and the remaining useful life of the WT component 

with the defect. Fault diagnosis and prognosis are 

important extensions of condition monitoring. Based on 

the diagnostic and prognostic information, the appropriate 

maintenance strategy can be taken to minimize the 

maintenance cost, reduce WT downtime, and improve WT 

reliability and lifespan. 

 

Keywords— Wind Turbines(Wts), Denoising Auto Encoder 
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I. INTRODUCTION 

Wind turbine condition monitoring technologies have been 

widely adopted in recent years to provide diagnostic 

information on the health condition of various wind turbine 

components and subsystems, which allows maintenance to be 

scheduled and taken before a failure or a critical malfunction 

occurs. Compared with offline condition monitoring 

techniques which require the wind turbine to be taken out of 

service to allow inspection by maintenance personnel, online 

condition monitoring enjoys the benefit of no interruption on 

the wind turbine operation and provides a deeper insight into 

the condition of wind turbine components and subsystems. 

              The online condition monitoring systems (CMSs) can 

be classified according to the type of sensors used (e.g. 

vibration, acoustic, temperature, etc.) or the method of data 

transmission (e.g., wired or wireless). Most commercially 

available wind turbine drive train CMSs use vibration signals 

because most drive train faults and defects will excite new 

vibration modes or change the existing vibration modes of the 

drive trains. The sensors and data acquisition devices used in 

vibration-based CMSs have high costs. Moreover, the 

performance of vibration-based CMS depends on the locations 

of vibration sensors. Recently, wind turbine generator current 
signals have been used successfully for fault diagnosis of wind 

turbine blades, shaft, bearings, and gearboxes. Compared to 

vibration signals, the use of generator current signals for drive 

train condition monitoring has the advantage of lower cost, 

nonintrusive, independence of sensor locations. In, a 

comparative study on vibration-and current-based approaches 

was conducted; the effectiveness of a current-based method 

for wind turbine gearbox fault diagnosis was validated; and it 

concluded that current signals were less sensitive to 

environment noise. 

Bratcu et al., (2008) proposed an as exhaustive as 

possible review of the control methods dedicated to 
optimizing the dynamic behavior of variable speed wind 

energy conversion systems (WECS) from various viewpoints. 

Different performance criteria can be defined for WECS - e.g., 

the energy optimization can be achieved by operating the 

system at variable speed. The exploitation experience and 

grid-integration of WECS has presently concluded the 

necessity of solving multi-purpose optimization problems, 

which require advanced control approaches being employed. 

Some of the most pertinent approaches belonging to this trend 
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and implemented by variable-speed operation are overviewed 

and assessed here, that allows for suggesting future research 

issues and perspectives. 13 With rapid development of wind 
power technologies and significant growth of wind power 

capacity installed worldwide, various wind turbine concepts 

have been developed.  

 

The wind energy conversion system is demanded to 

be more cost-competitive, so that comparisons of different 

wind generator systems are necessary. An overview of 

different wind generator systems and their comparisons are 

presented Li & Chen (2008). First, the contemporary wind 

turbines are classified with respect to both their control 

features and drive train types, and their strengths and 

weaknesses are described. The promising permanent magnet 
generator types are also investigated. Then, the quantitative 

comparison and market penetration of different wind generator 

systems are presented. Finally, the developing trends of wind 

generator systems and appropriate comparison criteria are 

discussed. It is shown that variable speed concepts with power 

electronics will continue to dominate and be very promising 

technologies for large wind farms. 

 

Masoud Barakat et al., (2009) have focused on 

maximum wind power extraction for a WECS composed of a 

wind turbine, a squirrel-cage induction generator, and a MC. 
At a given wind velocity, the mechanical power available 

from a wind turbine is a function of its shaft speed. In order to 

track maximum power, the MC adjusts the induction generator 

terminal frequency, and thus, the turbine shaft speed. The MC 

also adjusts the reactive power transfer at the grid interface 

toward voltage regulation or power factor correction. A 

Maximum Power Point Tracking (MPPT) algorithm is 

included in the control system. Conclusions about the 

effectiveness of the proposed scheme are supported by 

analysis and simulation results. 

 Raguraman et al., (2013) developed an ANN and an 

MLR model to predict the overall heat transfer coefficient 
(OHTC) of coal slurry in an agitated vessel used in coal 

gasification. Arnaud et al (2013) performed the validation of 

the reconfigurable digital controller for the Wind Energy 

Conversion Systems (WECS) with Doubly Fed Induction 

Generator (DFIG) topology using a Hardware-in-the-Loop 

(HIL) reconfigurable platform including a Field 

Programmable Gate Array (FPGA) chip. Antonio et al (2013) 

presented an efficient hardware implementation of 

configurable circuits as add-in modules for existing fuzzy 

hardware in FPGA or application-specific integrated circuit 

(ASIC) for the realization of diverse fuzzy t-norm and t-
conorm operations. Pawel szcze´sniak et al., (2013) have done 

a comparative study on drive system with a permanent magnet 

synchronous moto fed by a MC and a voltage source inverter 

with diode rectifier stage. A rotor-oriented vector control is 

implemented in the drive control. SVM techniques are used 

for both converters in the output current modulation process. 

Initial simulation test results and comparison are presented. 

The advantages of both solutions are indicated. Special 

attention is given to the drive control in the low speed range. 
The main aim of this article is to present drive systems with a 

MC as an interesting alternative solution for automation 

systems for precision control of speed and position. 

 

       In the traditional CMSs for electric power system 

assets, condition monitoring data are mostly transmitted 

through wired communication channels, which require 

installation of dedicated communication cables and regular 

maintenance. Compared to wired communication systems, 

wireless communication systems, such as wireless sensor 

network (WSN), have the advantages of easier installation and 

lower capital, installation, and maintenance costs and, 
therefore, provide an alternative and promising technology for 

transmitting condition monitoring data to enhance the 

reliability of the electric power system assets. In this paper, 

WSN is adopted for collect the data received from a WSN can 

be corrupted due to malfunctions of sensors or sensor nodes or 

interference in the communication channels, which will reduce 

the accuracy of condition monitoring and fault diagnosis or 

even lead to false fault diagnosis. Fault-tolerant protocols have 

been used to verify and correct corrupted data due to 

interference in communication channels. 

       The rest of the paper is organized as follows. Proposed 
algorithm is explained in section II. Experimental results are 

presented in section III. Concluding remarks are given in 

section IV. 

II. PROPOSED ALGORITHM 

       Wind turbines (WTs) are complex aero-electromechanical 

energy systems, which consist of hundreds of components and 

subsystems, including rotor hub, blades, gearbox, generator, 

power electronics, etc. They are exposed to variable weather 
conditions and harsh environments and therefore are prone to 

various faults/failures of sensors, actuators, and components. 

The unexpected failures and unscheduled maintenance result 

in high maintenance and operation (O&M) costs, which are 

more significant for offshore WTs due to their inaccessibility 

and harsher operating environments. In order to reduce O&M 

costs and improve the availability of WTs, it is highly 

desirable to develop fault detection systems to provide early 

warnings of imminent faults, thus helping avoid secondary 

damages and catastrophic accidents as well as enabling better 

maintenance planning and logistics.Numerous studies of WT 
fault detection and diagnosis have been reported in the 

literature, which could be categorized as model-based 

approaches and data-driven approaches. Model-based 

approaches mainly rely on an accurate mathematical model of 

the WT and its subsystems, including pitch system, drivetrain, 

and generator, etc., and typically include observer based 

techniques, Kalman filter and estimators, and parity equations. 
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However, in practice, model-based approaches often fail to 

work due to the difficulty in modeling multiple coupling in 

system parameters and unexpected disturbances, which are 
common especially in large utility-scale WTs.  

Wang et al., (2009) write when the wind passes 

through the turbine, the rotating blades will absorb some 

amount of wind energy and cast wind in the downwind 

direction, increasing wind turbulence and the reduction of the 

wind speed, which is called the wake effect. After that, the 

wind speed would be gradually recovered, and the recovered 

value of the wind speed is related to the distance between the 
upstream and the downstream wind turbines. Therefore, if 

wind turbines were too dense, the wind speed is unable to 

adequately recover when reaching the downstream wind 

turbine, which reduces or stops the output of the downstream 

wind turbine. In this case, the benefit of power generation is 

smaller and the investment cost of average unit output is 

larger. On the contrary, if wind turbines in wind farm were too 

scattered, the total installed capacity of the whole wind farm is 

very small, and the investment cost of average unit capacity 

and the operation maintenance fee are, obviously, high. 

Therefore, according to the specific condition of the local 
wind energy of wind farm, once the capacity of wind turbine 

is selected, the number of the wind turbines and corresponding 

placement scheme is most important to improve the economy 

of the wind farm. 

Zhang et al., (2007) layout of wind turbines in the 

wind farm is about optimization of technical, economic, legal, 

environmental and social aspects. A general conclusion can be 

drawn with minimum one year data of wind speeds and 

direction. As each wind turbine will slow down the wind 

leaving it, the space between turbines should be as far as 

possible in the prevailing direction. Here the wind rose 

becomes extremely useful. There should be fewer obstacles 
and smoother terrain in prevailing wind directions. Based on 

experience wind turbines are usually spaced between 5 to 9 

rotor diameters apart in the prevailing wind direction and 

between 3 to 5 rotor diameters apart in the direction 

perpendicular to the prevailing winds.  

Mohamed et al., (2012) write on hills wind speeds are 

higher than in the surrounding area. As a result, wind turbines 

are commonly placed on hills or ridges overlooking the 

surrounding landscape. If the hill is steep or has uneven 

surface, significant amounts of turbulence occur and the 

advantage of higher wind speeds may be lost. The air becomes 

compressed on the windy side of hills or mountains, and its 

speed increases considerably between obstacles. This is 
known as "the tunnel effect". Placing a wind turbine in a 

natural tunnel is one way of obtaining higher power outputs. 

To obtain a good tunnel effect the tunnel should be "softly" 

embedded in the landscape. Rough and uneven hills produce 

wind turbulence that may negate the wind speed advantage; 

the changing winds may inflict a lot of useless tear and wear 

on the wind turbine. 

   In contrast, data-driven approaches do not require physical 
or accurate mathematical models but directly use the measured 

sensor data to infer the fault detection system. A distinct 

feature of data-driven approaches is that no prior information 

about the system is necessary, which is more suitable for such 

complex WT systems with highly nonlinear dynamics and 

uncertainty. On the other hand, most modern WTs have 

installed standard supervisory control and data acquisition 

systems to collect operational data and status data.Normally, 

sensory data measured from WTs are multivariate in nature 

and highly correlated due to the interaction and dependence 

between different subsystems in a WT, which is similar to 
many other industrial processes or systems like semiconductor 

process, gas turbines, electric vehicles, etc. Indeed, the health 

of a component or subsystem of a WT is related to multiple 

sensor variables. Usually, when a fault occurs in a certain 

component, multiple sensor signals may change 

simultaneously, and also correlations of multivariate data 

might be affected. Therefore, it is better to monitor the 

relations in multiple variables to detect and identify faults 

well. This paper focuses on the multivariate correlations 

modelling and the reconstruction error based fault detection 

approach. Recently, traditional multivariate process 

monitoring approaches like principal component analysis 
(PCA) have been used to detect sensor and gearbox faults in 

WTs. However, PCA is based on the assumption of linear 

process behavior which may not be suitable for WT systems. 

To overcome its shortcomings, the auto encoder neural 

network and the newly developed deep auto encoder model 

have been applied to WT monitoring and fault detection, and 

yield better performance.However, some challenges in fault 

detection of WTs still remain. One major challenge lies in 

their nonlinearity, unknown disturbances as well as significant 

measurement noise. Practically, WTs are driven stochastically 

by the wind and subject to various disturbances, leading to 
more noise and variations of data, and increasing the difficulty 

to discover abnormal pattern from noisy multivariate data.  
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                           Fig. 1.Block Diagram Of Proposd System 

        In this case, the existing traditional PCA-based and AE-

based approaches will lead to biased monitoring results due to 

their sensitivity to the disturbances. Another challenge is the 

temporal dependency in multivariate time series data, which is 
often ignored by many static monitoring approaches assuming 

that the current sampling data are statistically independent of 

the previous observation. In the field of industrial process 

monitoring, to address the above similar issue, one common 

strategy is to incorporate previous information into current 

observation vector to account for the serial correlation of the 

data, as in dynamic PCA (DPCA), dynamic partial least square 

(DPLS), and other similar approaches. This strategy is also 

adopted in our approach to incorporate temporal information 

in sensor data of WTs. We first developed a fault detector 

based on a recently emerged algorithm, denoising auto 
encoder (DAE), to address the first challenge mentioned 

above. Recent studies in deep learning have shown that DAE 

can learn more robust representation from corrupted data, have 

improved generalization capability, and produce the state-of-

the-art performance on many challenging feature learning 

tasks, such as image classification, object tracking, saliency 

detection, etc. Motivated by the successful applications and 

the excellent properties of DAE, we adopted DAE to deal with 

complex multivariate noisy data from WTs. Our goal is to 

provide a robust signal reconstruction in the case of small 

perturbations or disturbances presented in sensor data while 

capturing nonlinear correlations embedded in multivariate 
data. Meanwhile, in order to incorporate temporal information, 

we adopted the sliding window technique to include the 

current and previous information within a small time window. 

Thus, a sliding window denoising auto encoder approach 

named SW. 

III. EXPERIMENT AND RESULT 

The Proposed system use Arduino, which make more 

power efficient and more reliable to use. This system uses 

microchip wireless digital chips to communicate to other 

devices, this communication network now as Wi-Fi module. 

This system has current sensors sense the current in output of 

the wind turbine generation. The sensor is connected to the 

controller. The sensor information is displayed in the mobile 
through Wi-Fi. IR sensor, voltage sensor air speed sensor and 

Temperature sensor is connected to the arduino. The pitot tube 

and MPXV7002DP are connected and wired to the Arduino 

board, the user should take some basic analog readings to test 

the system and its response. You can do this by blowing into 

the pitot tube or using a fan. The first thing to note is the 

baseline value. It should be 1023/2 = 511.5, however, this 

value is not an integer - so we can blindly assume either 511 

or 512 are the expected baseline values. Now, in my case, the 

baseline was a bit higher (534), so I implemented an offset 

average in the setup portion of the Arduino code. The screw 
terminals of the ASC712 Current Sensor Module board are 

connected in series with the wind motor. Then connect the 

VCC, GND and OUT of the ASC712 board to +5V, GND and 

A0 of Arduino. Connect the “S” and “–” pins of the Voltage 

Sensor to A0 (Analog Input) and GND of Arduino 

respectively. Then connect the external voltage pins (voltage 

to be measured) to the screw terminal (check for polarity). 

 

 

              Fig. 2.Circuit Diagram Of Proposd System 
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                  Fig. 3.Simulation Output Of Proposd System 

IV. CONCLUSION 

       Thus the new multivariate data-driven fault detection 

approach SW-DAE for WTs. In the proposed approach, we 
first apply the sliding window on multivariate time series data 

and then build the DAE model to capture the nonlinear 

correlations among multiple sensor variables and the temporal 

dependency of each sensor variable simultaneously. The 

proposed approach builds the reference model offline using 

multivariate normal data and then identifies potential faults 

online by comparing monitoring indicators derived from 

residuals. Compared with the static approaches (DAE, AE, 

and PCA) and the extended dynamic approaches (DPCA and 

SW-AE), our proposed method achieved better fault detection 

performance in terms of AUC metric in both simulated and 
real case studies. The results also proved the advantages of 

DAE in dealing with multivariate noisy data over PCA and the 

basic AE, especially in capturing nonlinear correlations and 

providing robust signal reconstruction. More importantly, 

incorporating the temporal information has greatly improved 

the fault detection performance, which indicates the 

importance of temporal dependency in time series data in the 

design of fault detection algorithms. We are still working on 

exploring new strategies to incorporate and utilize more 

complex temporal information. 
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