DESIGN AND ANALYSIS OF A MICRO CD-NOZZLE FOR GENERATING SUPersonic FLOW

Parameshwar Banakar
Department of Aeronautical Engg
KLS Gogte Institute of Technology
Belagavi, Karnataka, India

Venkatesh Kusnur
Department of Aeronautical Engg
KLS Gogte Institute of Technology
Belagavi, Karnataka, India

Mayur Anvekar
Department of Aeronautical Engg
KLS Gogte Institute of Technology
Belagavi, Karnataka, India

Abstract—This paper aims at design and analyses of a Convergent–Divergent nozzle in order to attain a supersonic flow at the exit of the nozzle which produces shock diamonds. Area ratios, diameters, and lengths for inlet, throat and exit are calculated mathematically with respect to a standard compressor and corresponding Mach numbers are calculated. Based on analytical results a Convergent–Divergent nozzle is designed in Catia V5 and the flow field analysis of CD nozzle is carried using Ansys Fluent work bench. Both fluent results and analytical results are compared to quantify.

Keywords—Convergent-Divergent nozzle, supersonic flow, shock diamonds

I. INTRODUCTION

The nozzle is basically designed to increase the velocity of the fluid flow across it by converting heat and pressure into kinetic energy of fluid. In Aero-engines, it is used to produce efficient thrust. The fluid from subsonic velocity is accelerated to supersonic velocity using a Convergent-Divergent nozzle.

A Convergent-Divergent nozzle is a duct that is nipped in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a hot, pressurized gas passing through it to a higher supersonic speed in the axial (thrust) direction, by converting the heat energy of the flow into kinetic energy.

If the pressure & the mass flow rate through the nozzle are sufficient to reach the sonic speeds then choking occurs at the throat of a Convergent-Divergent nozzle and it produces supersonic flow downstream of throat. It means the entry pressure to the nozzle to be significantly more than the ambient at all the times. In addition, the pressure of the gas at the exit of the expansion portion of the exhaust of a nozzle must not be low. The exit pressure can be significantly below ambient pressure it exhausts into, but if it is too far below ambient, then the flow will cease to be supersonic. In practice, the nozzle exit pressure must be-around 2-3 times higher than the ambient pressure to attain supersonic flow.

The flow in the throat is sonic which means the Mach number is equal speed of sound. Downstream of the throat, the geometry diverges and the flow is isentropically expanded to a supersonic Mach number that depends on the nozzle area ratio.

If the flow is over expanded, at the nozzle exit shock diamonds are formed where as if the flow is under expanded then the expansion fans with shock diamonds will be formed.

II. METHODOLOGY

Mathematical modelling of CD nozzle

Designing of CD nozzle using Catia tool

Analytical Calculations considering appropriate boundary conditions

Analysis of CD nozzle using Ansys fluent

Fig.1 Methodology

Research starts with considering the capacity of a compressor of 8 bar and based on its pressure input design parameters are calculated for a Convergent-Divergent nozzle like nozzle dimensions and inlet mass flow rate, velocity and pressure. After that Convergent-Divergent nozzle is modelled using catia software.

The area relation for a given Mach number is given below:

III. INPUT AND DESIGN PARAMETERS CALCULATIONS
a) Effect of Compressors Mass Flow Rate on Design Parameters
Mass Flow Rate, \(m = \frac{P_0 A \sqrt{T_0}}{0.0414}\)
Where, \(m\) = mass flow rate in Kg/s
\(P_0\) = Inlet Pressure in Pa
\(T_0\) = Absolute Temperature in Kelvin
\(A\) = Throat Area in m²

b) Specification of Compressor

<table>
<thead>
<tr>
<th>Model Number</th>
<th>TS 03 120 HN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston displacement</td>
<td>311 lpm</td>
</tr>
<tr>
<td>Free air delivery</td>
<td>250 lpm</td>
</tr>
<tr>
<td>Motor power</td>
<td>3 HP, 2.2 kW</td>
</tr>
<tr>
<td>Compressor rpm</td>
<td>925 rpm</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>2</td>
</tr>
<tr>
<td>Air receiver capacity</td>
<td>160 litres</td>
</tr>
<tr>
<td>Dimensions in mm</td>
<td>15955001000</td>
</tr>
</tbody>
</table>

Table.1 A two-stage reciprocating compressor specifications

c) Calculation for Throat Diameter

\[0.00936 = \frac{8 \times 10^5 \sqrt{A}}{\sqrt{300}} (0.0414)\]
\[\sqrt{A} = 0.00936 \times \sqrt{300} (0.0414)\]
\[A = 3.915 \times 10^{-6} \text{ m}^2, A = \text{Throat Area in m}^2\]
\[D=2.49 \text{ mm}\]

d) Calculation for Exit Diameter and Area Ratio

\[\left(\frac{A}{A}\right) = \left(\frac{\gamma + 1}{2}\right) \left(\frac{\gamma + 1}{\gamma + 1}\right) \left(2 + (\gamma - 1)M^2\right)\left(\frac{\gamma + 1}{\gamma + 1}\right)\]

Where \(A\) = Exit area in m²
\(\gamma\) = Specific heat ratio
\(M\) = Mach number
\[\left(\frac{3.915 \times 10^{-6}}{2.49}\right) = \left(\frac{1.4 + 1}{2}\right) \left(\frac{1.4 + 1}{\gamma + 1}\right) \left(2 + (1.4 - 1)1.5^2\right)\left(\frac{1.4 + 1}{\gamma + 1}\right)\]
\[A=7.23 \times 10^{-6} \text{ m}^2, D=3.041 \text{ mm}\]

e) Calculation of Nozzle Pressure Ratio (Npr)

\[\frac{P_0}{P_t} = \left(1 + \frac{\gamma - 1}{2} (M_t)^2\right)^\gamma\]
\[P_t = 0.2724\]

f) Calculation of Temperature Ratio

\[\frac{T_0}{T} = \left[1 + \frac{\gamma - 1}{2} \rho^2\right]\]
\[\frac{T_0}{T} = 1.45\]

IV. MODELLING

An unstructured mesh is generated with mesh size of 0.01mm with effective grid independent studies.

V. RESULTS
Analytical Results

<table>
<thead>
<tr>
<th>Mach number</th>
<th>P/Po</th>
<th>P output in Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>0.412</td>
<td>329600</td>
</tr>
<tr>
<td>1.5</td>
<td>0.272</td>
<td>217600</td>
</tr>
<tr>
<td>2</td>
<td>0.127</td>
<td>101600</td>
</tr>
<tr>
<td>2.2</td>
<td>0.093</td>
<td>74400</td>
</tr>
<tr>
<td>2.5</td>
<td>0.058</td>
<td>46400</td>
</tr>
<tr>
<td>2.7</td>
<td>0.042</td>
<td>33600</td>
</tr>
<tr>
<td>3.0</td>
<td>0.027</td>
<td>21600</td>
</tr>
<tr>
<td>3.2</td>
<td>0.020</td>
<td>16000</td>
</tr>
<tr>
<td>3.5</td>
<td>0.013</td>
<td>10400</td>
</tr>
<tr>
<td>4</td>
<td>0.0065</td>
<td>4800</td>
</tr>
</tbody>
</table>

Table 2: Mach number with respect to pressure ratios

<table>
<thead>
<tr>
<th>Mach number</th>
<th>P/Po</th>
<th>P output in Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.412</td>
<td>329600</td>
<td>1.49</td>
</tr>
<tr>
<td>0.272</td>
<td>217600</td>
<td>1.81</td>
</tr>
<tr>
<td>0.127</td>
<td>101600</td>
<td>1.907</td>
</tr>
<tr>
<td>0.093</td>
<td>74400</td>
<td>2.02</td>
</tr>
<tr>
<td>0.058</td>
<td>46400</td>
<td>2.52</td>
</tr>
<tr>
<td>0.042</td>
<td>33600</td>
<td>2.60</td>
</tr>
<tr>
<td>0.027</td>
<td>21600</td>
<td>2.97</td>
</tr>
<tr>
<td>0.020</td>
<td>16000</td>
<td>3.02</td>
</tr>
<tr>
<td>0.013</td>
<td>10400</td>
<td>3.48</td>
</tr>
<tr>
<td>0.0065</td>
<td>4800</td>
<td>3.81</td>
</tr>
</tbody>
</table>

Table 3: CFD Obtained Mach numbers

VI. CONCLUSION

By calculating analytically and solving through ansys fluent software it is found that both values are matching with little deviation but the design of Convergent-Divergent nozzle was able to achieve supersonic speed with taken conditions. And also it's recommended to fabricate and test the Convergent-Divergent nozzle with above said dimensions.

VII. ACKNOWLEDGEMENT

The authors are grateful to the Department of Aeronautical Engineering for its support in R&D activities and they also thank each and everyone who supported directly or indirectly for this work.

VIII. REFERENCE

