
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 50-54
 Published Online December – January 2016 in IJEAST (http://www.ijeast.com)

50

ELUCUBRATION OF ASPECT ORIENTED

PROGRAMMING

 Shivam Verma, Ved Prakash Singh, Vaibhav Varshney

 G.L. Bajaj Institute of Technology

 Sahil Aggarwal

 Asst. Professor

 G.L. Bajaj Institute of Technology

ABSTRACT - Aspect oriented programming is an

addition to OOP rather than a replacement of it.

This programming approach is considered to be

more efficient than just OOP when handling

properties of non-functional component like,

logging, synchronisation, tracking, security, data

validation fault tolerance and exception handling.

This programming pattern actually complements

the primitive Object Oriented Programming

Paradigm to enhance its efficiency while handling

critical issues like cross cutting concerns. This

research document throws some light on the use of

Aspect oriented programming pattern for achieving

better results in modularity of the code. It

concludes that Aspect oriented software

development is essentially an attempt to modularize

those concerns that we can’t modularize very well

with traditional object oriented languages or

statement oriented languages and it deserves more

attention being a promising programing pattern.

The paper has been divided into individual sections

which particularly explain every corner of this

programming approach.

I. INTRODUCTION

The term Aspect oriented programming was coined

by et. Al Kiczales in 1997[1]. He had a fore sight

of the problems that are yet to be faced by

programmers of the modern era and proposed a

solution for the same.

Nowadays we are building; larger, complex much

more distributed systems and these very large

systems have lots of concerns that cannot compete

with each other like security, auditing, tracking,

synchronization, exception handling, fault-

tolerance, logging etc.

There have been found many programming

problems for which neither procedural nor object-

oriented programming techniques are sufficient to

clearly capture some of the important design

decisions that the program must implement. Aspect

Oriented Programming is developed in order to get

better results modularity and separation of concerns

(SoC) when used in collaboration with Object

Oriented Programming.

AOP when used along with the primitive Object

oriented programming pattern has proved to deliver

better results by making the program less

superfluous, less scattered and tangled as compared

to Object Oriented Programming Paradigm solely.

Even though this pattern sounds a promising

programming methodology, there have been doubts

about applicability and effectiveness of AOP.

Therefore this paper presents an in-depth study

regarding issues discussed further in this paper, and

how AOP proves to be a potential solution to these

problems.

II. IMPLEMENTATION OF AOP

Dissimilar to the programming approach of the

primitive programming paradigms, AOP provides

external support for enhancing the quality of the

code. It provides explicit support for modularizing

programs; rather than scattering the code related to

a non-functional requirement or a concern

throughout a program [2].

These are some essential terminologies required for

better understanding of this advanced programming

pattern:

 An aspect is modularised implementation for a

crosscutting concern. It merges the scattered code

that of a crosscutting concern in a module. A

process in which an aspect is added to an object is

called weaving. It can be executed in the compiling

time or during the running time of the program [3].

A well-defined position in the program as throwing

an exception or invoking a method is called a Join

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 50-54
 Published Online December – January 2016 in IJEAST (http://www.ijeast.com)

51

point [4].Crosscutting Concerns are the aspects of a

program that affect other concerns. These concerns

often cannot be cleanly decomposed from the rest

of the system in both the design and

implementation, and can result in either scattering

(code duplication), tangling (significant

dependencies between systems), or both.

A class of methods/procedures that can alter other

methods and the code whose execution is triggered

when a join point is reached is called an ADVICE

whereas Pointcut is a set of join points which

executes the corresponding advices whenever

reached.

2.1 AspectJ

 AspectJ [5][6] is the most efficient and widely

used tool that AOP developers use for software

production. It is an extension to the already present

and in use java programming language and uses

syntax similar to that of java. It supplied as a part

of java software development kit (SDK) from the

official website. All the java programs are valid in

AspectJ in addition to the special extended version

of a class which is called an Aspect [7]. In addition

to the components of a standard class an aspect has

some additional entities such as pointcuts and

advices. In order to generate the java byte codes

AspectJ needs a special compiler. The byte code so

generated has more difference as compared to the

general java byte code files.

III. ADVANTAGES OF AOP

According to Kiczales [1], there are many

programming problems for which neither

procedural nor object- oriented programming

techniques are much sufficient to clearly capture

some of the important design decisions the program

must implement.

AOP has presented itself as a promising approach

and as an effective solution for conventional

programming approaches problems.

According to R. Laddad [8], using AOP for

implementing software systems will certainly

enhance software quality in many ways including:

3.1 Improved modularity

AOP provides better modularization by combining

the code that deals with the same aspect in one

module avoiding the duplication of crosscutting

concern. It also leads to a better software

development process because each developer could

use their own skills with the module.

3.2 Lesser line of code

 By use of AOP we can use the same set of code for

each time we require that module. This enhances

the space complexity by providing improved

reusability because it prevents intermixing of

crosscutting concerns from the core concerns and

by creating reusable aspects.

3.2.1 Non-intrusive conditional analysis

 Unlike the conventional programming techniques

this pattern does not waste time and space checking

whether the functionality is needed by the object or

not.

3.2.2 Concordant implementation

 In contrast to the traditional implementation of

crosscutting concerns, AOP provides concordant

implementation by having each aspect handled

once.[11]

3.2.3 Better skill transfer

 This programming pattern inculcates features like

reusability and transferability. Therefore,

developers learning time and cost will be reduced

even if they want to learn other languages at the

same time as the core concerns and design pattern

are common to all.

This technique allows the software developers to

implement a wide range of contracts. While using

mock objects, testing of software technology is

used in the operation of this technique. Some of the

conditions are not tested because of the

complications which results into network failure.

This programming pattern makes the make testing

process more convenient without much need of

alternation in the core code structure

IV. PROS AND CONS

Extensive research has been done regarding this

approach which claims it to have great benefits in

software engineering.

Ali et al. [9] explained the comparative facts of this

paradigm. They have discussed the advantages and

shortcomings of it in detail on the basis of the

following standards:

Performance, code size, modularity, cognition,

language mechanism, evolvability. Each of these

standards is further explain in this section.

The use of this paradigm improve execution

performance by decreasing the response time and

minimising the usage of memory and hardware cost

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 50-54
 Published Online December – January 2016 in IJEAST (http://www.ijeast.com)

52

which in turn provided a better space and time

complexity of the program software. Though the

results were unnoticeable when tests were carried

in UNIX based operating system.

Kiczales [1] stated that inculcating this approach by

replacing the conventional technique of object

oriented paradigm, would create a considerable

reduction in the code size because of separation of

crosscutting concern as discussed in the prior

sections.

Fig B: The structural difference between AOP, OOP and

FP.

An elaborated research [12] concluded that there

was a significant reduction in the size of code

approximately by 39.5% which implies that there

was a reduction in the line of code as well, because

of separation of crosscutting concern. This

connotes that AOP is actually effective in reducing

the size of code positively most of the time.

Due to the reason that this programming paradigm

is not so popular yet, the programs written

according to this approach were not adapted to

because when looking through the development

time and understandablity the results were

insignificant.

Evolvablity: - This means the programs ability to

allow changes to be done in the programs

according to the requirement. This technique

yielded a better result for this standard as compared

to the use of conventional technique of object

oriented paradigm.

The overall structure of the program is modernised

by replacing the conventional technique of object

oriented paradigm, because the way AOP deals

with the code is different from the prevailing

approach. The use of this technique has improved

the modularity of the code significantly by

separating the crosscutting concerns which is done

by placing them in a separate aspect.

Each criteria was studied and was concluded with

one of the four possible results:

 Positive: when they note improvement of

the criteria with AOP compared to non

AOP implementation.

 Negative: when involvement of

introducing aspects are not profitable in

the context.

 Mixed: when the effect were positive and

negative in some cases.

 Insignificant: when the difference is not

noteworthy.

Fig C: Graphical Comparison of different Standards

between AOP(left) and OOP(right)

V. CHALLENGES

AOP has not been adapted widely because of some

disadvantages and challenges associated with it.

Programmers are required to read the code and

analyse that what exactly has to be done to prevent

errors. The debugging process is much harder in

AOP,[7] as compared to OOP because the

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 50-54
 Published Online December – January 2016 in IJEAST (http://www.ijeast.com)

53

programmers face difficulties in understanding the

crosscutting concerns because programmers are

required to perceive the core module

implementation details.

Moreover, if there is a logical error formed in

expressing crosscutting concerns, it results in the

widespread failure of the program. Aspect-oriented

programming is patented, [1] and thus is not freely

implementable.

According to Luca and Depsi [10], AOP faces

some challenges as a new programming technique.

There are approximately 1900-2000 programmers

who are aware of the AOP concepts and are in

AOP community worldwide and only few of them

are experienced enough to use this approach in

OOP environment. AOP has provided some new

aspects and a new approach in to programming. It

provides better modularity (Separation of concerns)

but when the system reaches to a certain extent of

complexity, such separations are hard enough to

obtain.

VI. CONCLUSION AND FUTURE SCOPE

As many studies have been conducted to look into

the consequences of AOP compared to primitive

technique on features regarding software

development process and the software which have

already been developed in the late 90's.

Here it is found that most of the reviewed studies

have resulted into both positive and of no

significant effect on this paradigm when compared

to the traditional approaches. As thoroughly

discussed in the previous sections, AOP provides

better modularity plus it helps to reduce the code

size by separating cross cutting concerns and

placing them into a separate Aspect. This facilitates

the user to modify the program according to the

demand. The effect on the understandably and

development time were not significant but the

implementing this technique gave the user a

considerable increase in the performance of the

code software by improving the space and time

complexity of the program

However, crosscutting concerns are difficult to

understand because programmers are required to

perceive the core module implementation details.

Though this programming technique is not so in

use yet but, deserves to take its righteous place in

the programming community. Only then could

researchers study AOP effectively and efficiently.

VII. REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar,

C. Maeda, C.Videira Lopes, J.M.

Loingtier, J. Irwin, “Aspect Oriented

Programming”, In Proc. Europ. Conf. on

Object-Oriented Prog.(ECOOP), Finnland,

Springer Verlag LNCS 1241, June 1997.

[2] S.R. Chidamber, C.F. Kemerer, “A

metrics suite for object oriented design,”

IEEE Transaction on Software

Engineering, 1994, vol. 20, no. 6, pp. 476–

493

[3] D. Zhengyan, “Aspect Oriented

Programming Technology and the

Strategy of Its Implementation,” In

Proceedings of International Conference

on Intelligence Science and Information

Engineering (ISIE), 2011, pp.457, 460,

20-21

[4] Heba A. Kurdi “Review on Aspect

Oriented Programming” Computer

Science Department Imam Muhammad

Ibn Saud Islamic University Riyadh, Saudi

Arabia pp: 22-24

[5] G. Kiezales, E. Hilsdale, J. Hugunin, M.

Kersten, J. Palm, W.G. Griswold, “An

overview of AspectJ,” In Proceedings of

the 15th European Conference on Object-

Oriented Programming (ECOOP’01),

2001, pp. 327–353.

[6] AspectJ: an aspect-oriented extension to

Java.

http://www.eclipse.org/aspectj/doc/release

d/progguide/language.ht ml

[7] T. Xie, J. Zhao, “A framework and tool

supports for generating test inputs of

AspectJ programs,” In Proceedings of

AOSD, 2006, pp. 190– 201.

[8] R. Laddad, “Aspect-oriented programming

will improve quality,” IEEE Software,

2003, vol.20, no. 6, pp. 90-91.

[9] M. Ali, M. Babar, L. Chen, K. Stol, “A

systematic review of comparative

evidence of aspect-oriented

programming,” Information and Software

Technology, 2010, vol.52, no.9, pp. 871-

887.

[10] L. Luca, I. Despi, “Aspect Oriented

Programming Challenges,” Anale Seria

Informatica, 2005.vol. 2, no. 1, pp. 65-70.

[11] S.R. Chidamber, C.F. Kemerer, A metrics

suite for object oriented design, IEEE

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 50-54
 Published Online December – January 2016 in IJEAST (http://www.ijeast.com)

54

Transactions on Software Engineering 20

(1994) 476–493.

[12] L. Hatton, How accurately do engineers

predict software maintenance tasks?, IEEE

Computer 40 (2007) 64–69

