International Journal of Engineering Applied Sciences and Technology, 2016
Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

PASSWORD HASHING

Pankit Arora
Department of IT
Amity University, Noida, India

Abstract— Passwords play a critical role in online
authentication. Unfortunately, passwords suffer from two
seemingly intractable problems: password cracking and
password theft. In this paper, we propose PasswordAgent,
a new password hashing mechanism that utilizes both a
salt repository and a browser plug-in to secure web logins
with strong passwords. Password hashing is a technique
that allows users to remember simple low-entropy
passwords and have them hashed to create high-entropy
secure passwords. PasswordAgent generates strong
passwords by enhancing the hash function with a large
random salt. With the support of a salt repository, it gains
a much stronger security guarantee than existing
mechanisms. PasswordAgent is less vulnerable to offline
attacks, and it provides stronger protection against
password theft. Moreover, PasswordAgent offers some
usability advantages over existing hash-based mechanisms,
while maintaining users’ familiar password entry
paradigm. We build a prototype of PasswordAgent and
conduct usability experiments.

Keywords— Passwords, Password Hashing, Account
Verification

I. INTRODUCTION
HASHMETHODS

Hash methods are one-way features. Any quantity of
information can be modified into an irreversible fixed-length
"fingerprint" using these features. They also have the feature
that if the feedback changes by even a small bit, the causing
hash is absolutely distinct. This is excellent for defending
security passwords, because we want to shop security
passwords in a type that defends them even if the security
password information file itself is affected, but
simultaneously, we need to be able to confirm that a
customer's security password is appropriate.

ACCOUNT VERIFICATION PROCESS
The common work-flow for account verification and signing
up in a hash-based account program is as follows:

i. Anaccount is created by the user.

51

Akshath Dhar
Department of IT
Amity University, Noida, India

ii. The database stores their password after hashing. The
hard drive never stores the plain-text (unencrypted)
password.

The hash of the password they entered is checked
against the hash of their real password, whenever the
user attempts to login.

iv. Access is granted to the user if the hashes match.
Else, the user is asked to enter valid login credentials.
v. Steps iii and iv repeat whenever someone tries to

login to their account.

In phase 4, never tell the customer if it was the login name or
security password they got incorrect. Always show a general
concept like "Invalid login name or security password." for
avoiding attackors from enumerating legitimate usernames
without understanding their security passwords.

Input Digest
cryptographic |
DFCD 3454 BBEA 788R 751A
Fox —> m’;z;: A 636C 24D3 7009 CASS 2D17
The red ov:rx CWP‘;?S':P“" 0086 46EB FBTD CBE2 823C
&mﬁwm —> g ACCT 6CD1 90B1 EE6Z 3ABC
‘_l‘hr: redwf: crypt:i’:""" 8FDE 7558 7851 4F32 DIC6
]‘;e ;:mdog) B 76B1 7929 ODA4 AEFE 4819
Theredhx cryptographic FCD3 75DB 5SAF2 C6FF 9157
jumpsoevr —» hash D401 CORS 7DIR 46AF FB45
the blue dog function
The reﬂo:x | CWg;:“" 8ACR D682 D588 4C75 4BFY
theiumpshmmg —> Vil 1799 7D88 BCFS 92B3 GAGC

Fig 1.2 Cryptographic hash Functions

It should be pointed out that the hash-functions used to secure
passwords are not the identical to the hash-functions you could
possibly have seen in a D.S course. Only cryptographic hash-
functions could be made use of to apply password-hashing.

International Journal of Engineering Applied Sciences and Technology, 2016
Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

"Hash-functions like SHA256, SHA512, RipeMD, and
WHIRLPOOL are cryptographic hash features."

It's basic to think that all you have to do is run the protection
password through a cryptographic hash operate & users'
protection passwords will be protected. This is far from the
fact. There are many methods to restore protection passwords
from basically hashes very easily. There are several easy-to-
implement methods that create these "attacks" much less
efficient. To encourage the need for these methods, consider
this very web page. On the first web page, you can publish a
record of hashes to be damaged, and get outcomes in less than
a second. Clearly, basically hashing the protection password
does not fulfill our needs for protection.

Il. METHODOLOGY

2.1 HASH CRACKING
2.1.1 Dictionary and Brute Force Attacks

A dictionary strike uses a computer file that contains words,
terms & other post that can be used as a security password.
Every single term in the computer file is hashed and then
compared to security password hash. If they coordinate, that
term is the security password. Further handling is often used to
dictionary information, such as changing terms with their "leet
speak" counterparts ("hello" becomes "h3110"), to make them
more effective.

A brute-force enemy tries each possible mixture of figures up
to a given length. These strikes are very computationally
expensive, and are usually the least effective with regards to
hashes damaged per processer time, but they will always
gradually look for the security password. Security passwords
should be lengthy enough that searching through all possible
personality post to discover it will take a lengthy time to be
beneficial.

2.1.2 Lookup Tables

Lookup-Tables are an efficient means for breaking many
hashes of the similar kind very easily. The common concept is
to pre-compute the hashes of the security passwords in a
security password vocabulary and shop them, and their
corresponding security password, in a search desk information
framework. A good execution of a search desk can procedure
thousands of hash queries per second, even when they contain
many immeasurable hashes.

e The attacker doesn't have to pre-compute a lookUp
table for applying a dictionary or brute-force attack.

o First of all, a lookUp desk is designed by the enemy
which charts the record of the customers having that
hash to each security password hash including in the
data source. The enemy then hashes each security
password think and uses the search desk to get a
record of customers whose security password was the

52

assailant's think. This strike is especially efficient
because it is typical for many customers to have the
same security password.

2.13

e Rainbow Tables : "Rainbow platforms are a time-
memory trade-off strategy. They are like search
platforms, except that they compromise hash
breaking rate to make the search platforms more
compact." Because they are more compact, the
alternatives to more hashes can be saved in the same
amount of area, making them more efficient.
Spectrum platforms that can break any md5 hash of a
security password up to 8 figures are available more
time.

2.2 ADDING SALT

79054025
_ 255fbla2
6e4bc42?2
aet54ebd

Fig 2.3 Adding Salt

Lookup-tables & rainbow-tables perform only when each
security password is hashed in the identical way.two
customers will have identical hashes if they have identical
security passwords. So the hashes need to be randomized to
avoid this strike.

This can be done by appending or prepending a unique
sequence, known as a salt, to the security password before
hashing. As proven in the example above, this creates the
same security password hash into a absolutely different
sequence whenever. To examine if a security password is
appropriate, we need the salt, so it is usually saved in the
customer consideration data source along with the hash, or as
aspect of the hash sequence itself.

International Journal of Engineering Applied Sciences and Technology, 2016
Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

"The salt does not need to be key. Just by randomizing the
hashes, search platforms, opposite search platforms, and
spectrum platforms become worthless."
2.3 SALT IMPLEMENTATION ERRORS

1) Salt Reuse
Using same salt in each hash is the most typical error. This
causes ineffectively as the two customers will have the same
hash for same security passwords. An enemy can still use a
reverse-lookUp-Table strike to run a dictionary strike on every
hash simultaneously.
"A new unique salt must be produced every time a customer
makes an consideration or changes their security password."

2) Short Salt
An attackor can quickly develop a search desk for any
possible brief salt. For eg.," if the sodium has only 3 ASCII
figures, therr are only "95x95x95 = 857,375 possible salts".
This might seem to be a lot, but if each search desk contains
only 1MB of the most typical security passwords, jointly they
will be only 837GB."
This is why, the login name must not be applied as a salt. They
might be exclusive to a particular support, but they are
foreseeable and often recycled for records on other solutions.
"To create it difficult for an enemy to create a search desk for
every possible salt, the salt must be lengthy. A excellent
principle is to use a salt that is the same dimension as the
outcome of the hash operate. For example, the outcome of
SHAZ256 is 256 pieces (32 bytes), so the salt should be at least
32 exclusive bytes."

2.4 HASH COLLISIONS

/

There shall be some information hashing into the same
sequence as hash-functions map irrelavent quantities of
information to fixed-length post. Cryptographic hash features
create these crashes very hard to discover. Every now and
then, cryptographers discover "attacks" on hash features that
create discovering collisions simpler. A latest eg. is the MD5
hash operate, for which collisions have actually been
discovered.

Collision strikes are a indication that it can be more likely for
a sequence except the customer's security password to have
the identical hash. However, discovering crashes in even a

Fig 2.4 Hash Collisions

53

poor hash operate like MD5 needs a lot of devoted processing
energy, so it is very unlikely that these crashes will occur "by
accident” in exercise. Nevertheless, it's a smart concept "to use
a more protected hash operate like SHA256, SHA512,
RipeMD, or WHIRLPOOL if possible.”

2.5 PROPER HASHING TECHNIQUES

Platform CSPRNG

t-2 merypt create iv, ooenssl rando

Fig 2.5 Software Requirements

The salt needs to be exclusive per-user per-password. Every
time a customer makes an consideration or changes their
security password, the security password should be hashed
using a new exclusive salt. Never recycling a salt. The salt
also needs to be lengthy, so that there are many possible salt.
As a concept, make your salt is at least provided that the hash
function's outcome. The salt should be saved in the customer
consideration desk plus the hash.

TO STORE A PASSWORD

i. Create a lengthy unique salt using a CSPRNG.

ii. Prepend the salt to the security password and hash it
with a conventional cryptgraphic hash operate such
as SHA256.

Conserve both the salt and the hash in the customer's
data source history.

TO VALIDATE A PASSWORD
i. Access the customer's salt and hash from the data
source.

ii. Prepend the salt to the given security password and
hash it using the same hash operate.

iii. Evaluate the hash of the given security password with

the hash from the data source. If they coordinate, the

International Journal of Engineering Applied Sciences and Technology, 2016
Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

security password is appropriate. Otherwise, the
security password is wrong.

HTTPS S5L/T0S

Server Side PHP

berypt or scrypt, MD-5 and SHA-3 should never be used for
password hashing and SHA-1/2(password+salt) are a big no-
no as well. Currently the most vetted hashing algorithm
providing most security is berypt. PBKDF2 isn’t bad either,
but if you can use bcrypt you should. Scrypt, while still
considered very secure, hasn’t been around for a long time, so
it doesn’t get recommended a lot, but it seems it will become
the successor of bcrypt, once it has been around a bit longer.
Note that while there are some caveats and password
bruteforcing strategies for PBKDF2 and bcrypt, they are still
considered unfeasable for strong passwords (passwords longer
than 8 characters, containing numbers, letters, signs and at
least one capital letter).

[1]

[2]

3]
[4]

[5]

(g /i delue Co/OwAXSVWRRSNY v 30y Avnjy)
Fig 2.6 DFD
1. CONCLUSION
3.1JAVA CODEOUTPUT
1009 : 4 2800 FF0FEBTEnlcB214ac 2 i0a) 1 0ol b0daP 1 1o 72500008 - c4 33008040 720d 5 Fbatiba 201 dod0ce

f230b5520d284002

320425287923 7069695d6ed7 : 0156634609415 16T pecEDRIALAE

43870520 38dc5 30 5a36cbbdb7cTa

]

[6]

@
10 C124553300bF TaT 00 30 b f Bt inlBc 300 50F140:175d80be 2222d 2650 302088cH6548% 3
@ Siddrarilee
1000 1 de1b3I0b 7038976754060 7O OAfEF D7 14ba 704 5CA2F S0GT21c01441 2500523579 aF Y2 e

43771795000l cel 707551 1 c A0 2448008 F &Y The
5T
e090cad1ecddbBaSIbAd52bbELSCTTaSTIDG2: 054

S raad CATTEETS S S R R 1S

IpITS28363965e20600ce34707

7a3 8febe

Fig3.2C
7d377Ef eadcs
1069:581
eb15083b

26LecaS2d2a5T01 1427800211 0ebCcbADLbACEDIT 1 aSOCCELSE5T656T6a55343322263¢d

TSR ASc0abASOASac0dReD: FIFRafT1casBbabal o) Fad4nnsbas

Fig 3.3 Code3
The report explains that how password hashing works exactly.

All the concepts and topics have been included in the project
report. Passwords should be hashed with either PBKDF2,

54

[71

(8]

IV. REFERENCE

"https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&s
ource=images&cd=&cad=rja&uact=8&ved=0CAYQjB1q
FQOTCPLb0Zjw3MY CFUHnNpgodiisAkw&url=http%3A
%2F%2Fomaristraker.blogspot.com%2F&ei=Bi-
mVfLAPMHOmMwWK14CYCQ&bvm=bv.97653015,d.d
GY &psig=AFQjCNFxSDotyF6fXyPI65nbpbXPTqO-
sQ&ust=1437040739403191"

""security.stackexchange.com/questions/.../how-to-
securely-hash-password..."

"www.codeproject.com"”

"https://en.wikipedia.org/wiki/Cryptographic_hash_functi
on"
"https://www.google.co.in/url?sa=i&rct=j&g=&esrc=s&s
ource=images&cd=&cad=rja&uact=8&ved=0CAYQjB1q
FQOTCM_YKLjx3MY CFalOpgodx3cAfA&url=http%3A
%2F%2Fonewebsqgl.com%2Fblog%2Fhow-to-store-
passwords&ei=VTCmVY_aHKLpmAXH74HgBw&bvm
=hv.97653015,d.dGY &psig=AFQjCNFxSDotyF6fXyPI6
5nbpbXPTq0-sQ&ust=1437040739403191"

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&so

urce=images&cd=&cad=rja&uact=8&ved=0CAYQjBlqF

QoTCJytItHW3MY CFePYpgodL XY ISg&url=http%3A%

2F%2Fblog.codinghorror.com%?2Fspeed-

hashing%2F&ei=fS-

mVdz6leOxmwWit7KHQBA&bvm=bv.97653015,d.dGY

&psig=AFQjCNFxSDotyF6fXyPI65nbpbXPTgO-

sQ&ust=1437040739403191

https://media.blackhat.com/us-13/US-13-Aumasson-

Password-Hashing-the-Future-is-Now-WP.pdf

https://mww.usenix.org/legacy/event/lisa09/tech/full_pape
rs/strahs.pdf

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf

