
 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

55

ACO OPTIMIZED FACT AND RULE BASED BAD

SMELL DETECTION TECHNIQUE FOR OOPS

PROGRAMMING
 Sunita Sharma Er. Manmeen Brar

Department of CSE Department of CSE

SVIET, Banur, Punjab, India SVIET, Banur, Punjab, India

Abstract— Code smell (CS) is a sign that tells something

has gone incorrect, somewhere in the code. Such problems

are neither bugs nor they are technically wrong.

Moreover, they do not prevent the program from its

functioning. CS indicates the flaws in the design that may

be a reason to slow down the development in the near

future. From software engineer’s perspective, detecting CS

remains major concern so to enhance maintainability.

However, it is a time consuming task. Current CS

detection tools are not equipped with functionality to

assess the parts of code where improvements are required.

Hence, they are unable to re-factor the actual code.

Further, no functionality is available to permanently

remove the CSs from the actual code thereby increasing

the Risk factor. In this research work we find the bad

smells in the code form like unused empty- catch, unused

variable, dead code ,switch statements and long method. In

this approach implemented to detect the bad smell in two

ways i.e., fact and rules and Ant colony optimization

algorithm. Our proposed algorithm is an OOPs based

concept which supports multiple languages (C,C++, Java

and .Net). Bad smell means to code in a wrong way. It is

not a standard form. Bad smell may lead to overall

performance reduction in the software system leading to

high time consumption, high space complexity, high

software maintenance cost etc. Therefore, to detect the bad

smells to reduce these kinds of parameters with false

acceptance rate, false rejection rate and accuracy and

compared with existing parameters.

Keywords – Code smell, object-oriented programming,

optimization, software maintenance, OOPS Metrics.

I. INTRODUCTION

Code Smells are the unwanted parts of code which may
serve as fertile ground for errors. They can be because of

lack of time, clear requirements , experience, proper testing

etc. These smells can be detected manually or automatically

with a tool. Manual detection is static and performed by the

developer itself or by special team. Many formal or
informal techniques are used for this purpose. Every detail

can be noted down and alternates can be suggested for the

code smells detected. There are various pros and cons of

both manual and automatic detection. Manual detection is

time consuming, tiresome and may miss some smells but it

is considered to be more accurate as only the humans

should take the final decision about refactoring the code.

Automatic Detection using tools is easier, consumes less

time, is cost effective but can be error prone as it may

consider some code weaknesses falsely to be errors. Here

we have developed a tool for the detection of some major
Code Smells like Long Method, Dead Functions, Un-Used

Variables, Un-used Catch, Switch Statements.

1.1 Overview of Detection Methods

Detection of code smells from the source code can be

performed using various techniques. We achieve this

using Facts and Rules. All the statements in the source
code are traversed . The statements which are actually

keywords in the language used like if,else,for,while etc

are not included while calculation of FAR and FRR.

Symbols are also excluded like }, {, ; etc. An Abstract

Syntax Tree is build and studied or parsed to find the

exactly matching smells. To do this facts and rules are

applied along with Ant Colony Optimization algorithm .

We use ant colony algorithm to optimize the results. As

shown in the figure below when the code is queried for a

matching syntax (which are actually code smells), facts

and rules are applied and if a match happens it indicates
that a code smell has been successfully detected.

 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

56

 Fig. 1. Detection Method

1.2 Refactoring

Factoring is a term used in mathematics to divide or express

any term in to its multiples. It expresses the same statement in

a much cleaner manner. Same is the gist of Refactoring :

Clean Code. Fowler’s work inspired the IT industry to use

refactoring technique on code. Fowler mentions 4 advantages

of code Refactoring:

 Improvisation in design – Code starts to decay in
the process of modifications as the structure is

changed. Refactoring confirms that the process

actually makes the code more portable, scalable and

flexible.

 Ease of understanding – Simplicity or Ease of

understanding the code is an important and reach of

the product to the masses depends on the

understanding of the product.

 Detecting Defects – Better code structure is helpful

in detecting the defects that are currently latent or

masked and are not causing any problem but may

cause a potential threat in future.

 Efficiency – Performance of the product basically

depends on the usage of standard and fast coding

practices.

Refactoring is the most basic process used in industry. For

better rationality, modularity, portability, readability and

robustness refactoring is a must. Refactoring of code is now

moving towards automatic detection but it still needs manual

intervention.

1.6.1 Techniques of Refactoring

 Move Method

 Extract Class

 Pull Up Method

 Extract Method

 Replace Temp with Query

 Inline Method.

 Replace Array With Object

 Inline Class

1.3 Ant Colony Optimizaton Algorithm

Ant Colony Optimization (ACO) combines proposed

promising solutions with already existing ones. We aim to

achieve the best solution by merging the already available

solutions with the most probable solutions and keep on

rejecting until we achieve the best answer to our questionThe

main characteristic of ACO algorithms is that they try to make

the best possible use of the available information .

II. RELATED WORK

W. Abdelmoez et al., 2014 [40] considered the concept of

Risk. The tool that he developed was based on risk to detect

code smells. He uses the tool to study the problems
encountered in c# code. He detects 4 code smells which are

empty catch,Message chain, Long Parameter list and Long

Method. Risk level increases with the increase in the

frequency of ocuurence of bad smells. Risk level also

increases if the smell is strong.Anshu Rani et al.,2014[41]

Describes that refactoring improves performance of the code

without making any changes to its behaviour. It removes the

bad smells and thus contributes in increasing the

maintainability of code. He also mentions that most of the

tools available are platform dependent. Some tools work only

on java code and some only on c# code and so on .
Nonetheless they are more efficient than humans in detection

of code smells. More work needs to be done on windows

based GUI applications to make more developers use

refactoring.Van Noije, et al., 2014 [42] He uses the term

crowd smells to collectively find many code smells. It prefers

collaborative enviornment for development of a product and

detection of code smells in java code. It uses collective

intelligence. Users from all over the world connect themselves

to a cloud server to access information. It leads to accurate

code without any major defects leading to a secure and robust

product. PhongphanDanphitsanuphan, et al., 2012 [44] This

paper propses OOP based metrics for the detection of bad
smells in source code of software. Certain software metrics are

used to detect bad smells. It makes use of an eclipse plug in.

Many code smells were detected using the tool developed in

this paper some of which are: Data class,Switch

statement,Lazy Class, Large class,Long method, heirarchy of

parallel inheritance. KarnamSreenu, 2012[46] This paper takes

in to account 2 code smells which are Temporary Fields and

Lazy Class. It describes some new methods of refactoring for

the identification of smells. After identification of these bad

smells we need to use refactoring methods which are most

suitable for the smell. It uses Replace Temp and Merge Class
methods to refactor code. These refactoring methods can be

applied on the source code directly and reduce the length of

code to make significant improvement in the source code. It

also considers Depth of Inheritance for detection of smells.

http://martinfowler.com/refactoring/catalog/pullUpMethod.html

 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

57

III. SIMULATION MODEL

Code Smells detection tool that we make in Microsoft Visual

Studio Ultimate will be based upon the risk based strategy.

The detection methodology is determined by feature selection

using fact and rules and ACO algorithm.The software program

made by us will look for dead code,long method,unused

catch,switch and unused variable and informs the user about

the detected smell on the GUI itself along with a message. It is

a tool which bears a simple Graphic User Interface and easy to

learn and operate. Before we start testing any source code for
the code smells we need to upload the project. After the

project upload is done user is notified with a message. After

uploading the project user selects a code smell to be detected

from the 5 code smells listed on the page. This takes the user

to the specific page of that code smell. Here the user needs to

upload all the files the user needs to test. Files are uploaded in

sequence and after this user needs to select the “Start Testing”

option. All the files are processed one by one and the smells

present in them are highlighted. User can study and analyse

these smells in the code and decide whether to refactor the

smell or not. There are various methods for refactoring and
user can select the one which is most suitable for his code and

functionality. Refactoring does not have any impact on the

behaviour of code. In this manner user can detect all the five

code smells from his files. After all the files uploaded in the

project have been tested for code smells user can check the

Accuracy of detection process which has been stored under the

Results tab. Results page displays the Fault Rejection Rate,

Fault Acceptance Rate and Accuracy percentage. FAR,FRR

and Accuracy values are stable in the project with a minor

variation. Accuracy of the project is stable at 99 % whereas

the FAR is stable at 0.006 and FRR is stable at 0. 004. The

values of FAR and FRR represent the errors in calculations
which is quite low and Accuracy of 99 % obviously indicates

the results are exact and correct.

Graphic User Interface of the tool is quite simple and self

explanatory. No special expertise is required to operate the

tool. It is very beneficial for naïve developers who need expert

guidance on coding practices. Code after completion can be

uploaded to this tool for detection of smells. Code Smells are

shown in a very clear manner as a list of methods in the

message displayed on the screen. User can now analyse the

code and refactor it if required to make it simpler, robust,

secure, flexible and compact. This refactored code is easier to
maintain and more scalable as compared to the longer version

of it. Hence, Code Smell Detection tool has a simple and

userful design and operation.

 Fig.2. Flowchart of Proposed Work

 IV. EXPERIMENT AND RESULT

Code Smell Detection Tool has a simple and user friendly

Graphic User Interface. After launching the tool and uploading

the project we are ready for detection of bad smells. We select

among the 5 Bad Smells the tool detects. For Example we

select the Long Method. Now the tool scans the project’s code

and names the methods which are longer than the specified

limit. These methods are named in a message after which it is

user’s discretion to take appropriate action.

 Fig.3. Project Upload Window

 Fig.4. Upload Completion message

 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

58

After upload user selects the type of smell to be detected.For

ex. we select Long Method and test the file.

 Fig.5. Selection of Code Smell

After testing the functions which are long are displayed along

with message to the user.These methods can be now

refactored.

 Fig.6.Detection of Long Methods

 Fig.7. Result of Project

As per the execution of various files uploaded by the user for

code smell detection the results are executed and displayed on

the results page. Results page consists of three parameters

which are FAR, FRR and Accuracy respectively. We have

executed all the project files four times and shown the results

obtained in the form tables and graphs.

 Fig.8. Accuracy

Fig.9. Comparison of Proposed and Existing Accuracy
Parameters

False Rejection Rate measures the likelihood that a system will
reject the valid input as invalid one whereas False Acceptance
Rate measures the likelihood that the system will accept the
invalid input as valid one.

 Fig.10. False Rejection Rate

The above figure shows the proposed FRR in graphical
form.

 Table 1.Performance based False Rejection Rate

The above table displays the comparison of Base and Proposed
FRR performance data of the tool.

 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

59

 Fig. 11. False Acceptance Rate

 Table 2. Performance based False Acceptance Rate

The above table displays the comparison of Base and Proposed
FAR performance data of the tool. Based on these results the
performance of Code Smell Detection Tool can be judged.

IV. CONCLUSION

Various techniques and tools are available in market for the

study and analysis of bad smells from the software system in

different languages (C, C++, Java and .net) as discussed in

literature survey. Comparison of these detection tools is a

complex task, and in some projects using them is not advised

or necessary. Various code smells are detected in our source

code using graphical user interface application. The calculated

object oriented metrics show the value of each metric in their
respective code smells detected in the coding. The purpose of

this research work was not to evaluate the tools, but to explain

our experience in using them and draw the difficulties in the

comparison task. The first experiential study on the result of

code smells on software conservation effort in a prohibited

industrial setting. As a verification of concept, it developed an

automatic risk based code smells detection tool. Our proposed

approach uses optimized (Ant Colony Optimization) algorithm

which is available to find various bad smells in various

languages (C,C++,Java and .Net). The proposed algorithm

perform better in terms of various parameters like false

acceptance rate, false rejection rate and accuracy.
In the future scope, researchers can develop a refactoring

approach which is able to refactor the code for various

languages in our system. It can implement a hybrid approach

(PSO+Firefly) and a designer based research to duplicate

Mantyla’s designer study and on an investigation of the

difficult implication of smell suppression. The consequences

accessible now will be the principle of many smell revisions

and will receive additional searching in this area, to enhance

the maintenance of software system and different fields. The

performance can be optimized through some other

optimization algorithms and refactoring of bad smells for
some other parameters of code. The performance of proposed

algorithm can also be enhanced through adding some other

bad smells in the code.

V. REFERENCES

[1] Hazelwood, K., and Smith, M. D. ,” Generational

cache management of code traces in dynamic

optimization systems”, In Proceedings of the 36th

annual IEEE/ACM International Symposium on

Microarchitecture (p. 169). IEEE Computer

Society,2003.’

[2] W. Humphrey, A discipline for software engineering.
Boston [u.a.]: Addison-Wesley, 2003.

[3] Mens, Tom. "Introduction and roadmap: History and

challenges of software evolution." In Software

evolution, pp. 1-11. Springer, Berlin, Heidelberg,

2008.

[4] Fowler, Martin, and Kent Beck. Refactoring:

improving the design of existing code. Addison-

Wesley Professional, 1999.

[5] Fontana, Francesca Arcelli, PietroBraione, and

Marco Zanoni. "Automat

[6] ic detection of bad smells in code: An experimental
assessment." Journal of Object Technology 11, no. 2

(2012): 5-1.

[7] Chatzigeorgiou, Alexander, and AnastasiosManakos.

"Investigating the evolution of bad smells in object-

oriented code." In Quality of Information and

Communications Technology (QUATIC), 2010

Seventh International Conference on the, pp. 106-

115. IEEE, 2010.

[8] Singh, Gurpreet, and Vinay Chopra. "A study of bad

smells in code." Int J SciEmergTechnol Latest

Trends 7, no. 91 (2013): 16-20.

[9] Van Emden, Eva, and Leon Moonen. "Assuring
software quality by code smell detection." In Reverse

Engineering (WCRE), 2012 19th Working

Conference on. IEEE. 2012.

[10] Counsell, Steve, Robert M. Hierons, HamzaHamza,

Sue Black, and M. Durrand. "Exploring the

eradication of code smells: An empirical and

theoretical perspective." Advances in Software

Engineering 2010 (2011).

[11] Mantyla, Mika V., JariVanhanen, and Casper

Lassenius. "Bad smells-humans as code critics."

In Software Maintenance, 2004. Proceedings. 20th

 International Journal of Engineering Applied Sciences and Technology, 2018

 Vol. 3, Issue 8, ISSN No. 2455-2143, Pages 55-60
 Published Online December 2018 in IJEAST (http://www.ijeast.com)

60

IEEE International Conference on, pp. 399-408.

IEEE, 2004.

[12] Moha, Naouel, Yann-Gael Gueheneuc, Laurence
Duchien, and Anne-Francoise Le Meur. "DECOR: A

method for the specification and detection of code

and design smells." IEEE Transactions on Software

Engineering 36, no. 1 (2010): 20-36..

[13] Munro, Matthew James. "Product metrics for

automatic identification of" bad smell" design

problems in java source-code." In Software Metrics,

2005. 11th IEEE International Symposium, pp. 15-

15. IEEE, 2005.

[14] Mathur, Neeraj, and Y. Raghu Reddy. "Correctness

of Semantic Code Smell Detection Tools."

In QuASoQ/WAWSE/CMCE@ APSEC, pp. 17-22.
2015.

[15] Fokaefs, Marios, NikolaosTsantalis, and Alexander

Chatzigeorgiou. "Jdeodorant: Identification and

removal of feature envy bad smells." In Software

Maintenance, 2007. ICSM 2007. IEEE International

Conference on, pp. 519-520. IEEE, 2007.

