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Abstract— Sequential pattern mining is used to find rele-

vant patterns from data, where the values are delivered in 

a sequence. Sequential mining can be used in different 

areas like marketing strategy, medical treatment, stock 

marketing, crime detection, DNA sequencing and so on. 

This paper presents the analysis of common existing se-

quential pattern mining algorithms, which has not been 

reviewed earlier. The paper presents a study of sequential 

pattern-mining algorithms based on four major classes: 

apriori based algorithm, breadth first search based algo-

rithms, depth first search based algorithms and pattern 

growth based algorithms. A comparative analysis has 

been done on the basis of important key features support-

ed by various algorithms. This study gives an enhance-

ment in the understanding of the approaches of sequen-

tial pattern mining. 

Keywords— Sequence pattern mining, pattern growth, 

candidate pruning 

I.  INTRODUCTION  

Sequential pattern mining is an important research area in the 

field of data mining. It is an extension of the association rule 

mining [12]. Sequence mining has a wide range of real-life 

applications. Sequential mining algorithms solve the problem 

of discovering the presence of frequent sequences in sequen-

tial database [1]. The database consists of a set of sequences 

called as data sequences. Each data sequence is a list of cus-

tomer transaction, and each transaction is a set of items. The 
transaction time is associated with each transaction in the 

sequence database. The sequential pattern mining is almost 

similar to the association rule mining, but the difference is 

that, in sequence mining the events are linked with time. The 

sequential pattern mining discovers the correlation between 

the different transactions, but in case of association rule min-

ing it discovers the relationship of items in the same transac-

tion. Association rule mining is used to discover different 

frequent items brought together by various customers where-

as sequential pattern mining is used to discover the items that 

are brought in a particular order by a single customer. The 

sequential pattern mining is very useful in various domains 

such as marketing, stock marketing, crime detection, DNA 
sequencing.  

Several algorithms for sequential pattern mining have been 

proposed and most algorithms are based on apriori property 

proposed by Agrawal and Srikant in 1994 [3]. The apriori 

property states that a frequent pattern contains sub-patterns 

that are in turn frequent. Based on this assumption, a succes-

sion of algorithms has been proposed. In 1995, the algorithms 

AprioriAll, AprioriSome, DynamicSome have been proposed 

by Agrawal and Srikant [1]. The apriori-based horizontal 

formatting method (GSP) has been presented in 1996 by 

Agrawal and Srikant [2]. In the year 2010, Gauda K., et al.  
proposed PRISM [11], Fournier P., et al. in 2011 proposed 

RuleGrowth [7], Steeps algorithm was proposed by Liu J. in 

2012 [14]. In 2013, Tseng V., et al. [19] proposed an algo-

rithm TNS.  Fournier P., et al. proposed an algorithm 

ERMiner in 2014[6]. In 2014 Fournier P., et al. upgraded the 

algorithms SPADE, SPAM and named them as CM-SPADE, 

CM-SPAM respectively. Details on the above mentioned 

algorithms is given in the next section. 

II. LITERATURE REVIEW 

Various researchers have proposed algorithms for sequential 

pattern mining. Some of the proposed algorithms rebated on 

apriori  and some are pattern growth based sequential pattern 

mining algorithms. The study and review of some of the al-

gorithms proposed in the field of sequential pattern mining is 
presented in the subsequent paragraphs. 

Agrawal R. et al. [1] presented three algorithms to solve the 

problem for generating sequential patterns and empirically 

evaluate their performance using synthetic data. Two of the 

proposed algorithms, AprioriSome and AprioriAll have com-

parable performance although AprioriSome performs a little 

better when the minimum number of customers that must 

support a sequential pattern is low. AprioriSome and 

AprioriAll have excellent scale-up properties with respect to 

the number of transactions per customer and the number of 

items in a transaction. Another algorithm, DynamicSome 
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skips counting candidate sequences of certain lengths in the 

forward phase. 

Zaki J. [21] proposed an algorithm named SPADE (full 

form). This technique divides the problems into sub-problems 

and each sub-problem can be solved independently in main 

memory using efficient lattice search technique. This reduces 
the I/O cost because it requires only three database scan to 

generate all patterns. It has linear scalability with respect to 

the number of input sequences and a number of other data-

base parameters. 

Ayres J. et al. [5] proposed SPAM (full form) algorithm 

which integrates a depth-first traversal of the search space 

with effective pruning mechanisms. The search strategy 

combines a vertical bitmap representation of the database 

with efficient support counting. A salient feature of this algo-

rithm is that it incrementally outputs new frequent itemsets in 

an online fashion. This algorithm is especially efficient when 

the sequential patterns in the database are very long. 

Wang J. et al. [20] proposed an algorithm named as BIDE 

(BI-Directional Extension), an efficient algorithm for mining 

frequent closed sequences without candidate maintenance. It 

prunes the search space using the BackScan pruning method 

and the Scan-Skip optimization technique. A thorough per-

formance study with both sparse and dense real-life data sets 

has demonstrated that BIDE significantly outperforms the 

previous algorithms. It consumes order(s) of magnitude less 

memory and can be more than an order of magnitude faster. 

It is also linearly scalable in terms of database size. 

Gouda K. et al. [11] proposed PRISM algorithm (PRIme en-
coding based Sequence Mining) for mining frequent se-

quences. It utilizes the vertical approach for enumeration and 

support counting. It uses the concept of prime block encoding 

which in turn is based on prime factorization theory. The 

algorithm uses the concept of GCD and LCM for intersection 

and union of data sets.  PRISM algorithm was applied on 

both real and synthetic datasets and compared with other al-

gorithm like SPADE, SPAM and Prefixspan. The comparison 

results shows the superiority of PRISM over other algorithm. 

Fournier P., et al [9] proposed CMRULES, an algorithm for 

mining sequential rules common to many sequences in se-

quence databases. This algorithm uses the existing apriori 
algorithm to find association rules. Then it eliminates associ-

ation rules that do not meet minimum confidence and support 

thresholds according to the time ordering. The performance 

of CMRULES is evaluated on a public dataset in terms of 

execution time. Results show that CMRULES is more effi-

cient for low support thresholds, and has a better scalability. 

Liu J. [14] proposed a new data storage structure called fre-

quent sequence tree and discussed the construction algorithm 

for frequent sequence tree under the name Con_FST. The 

root node of the frequent sequence tree stores the frequent 

sequence tree support threshold and the path from the root 
node to any leaf node represents a sequential pattern in the 

database. Frequent sequence tree stores all the sequential 

patterns with its support that meet the frequent sequence tree 

support threshold. Therefore, when the support is changed the 

algorithm which uses frequent sequence tree as storage struc-

ture could find all the sequential patterns without mining the 

database.  

Fournier P., et al. [7] proposed a novel algorithm for mining 
sequential rules common to several sequences named as 

RuleGrowth. Unlike other algorithms, RuleGrowth uses a 

pattern-growth approach for discovering sequential rules such 

that it can be much more efficient and scalable. RuleGrowth 

performs well  under low support and confidence threshold 

and has much better scalability. A drawback of this approach 

is that it decreases the performance of database as it repeated-

ly performs a costly database projection operation. 

Liu J. [15] gave the idea of structure of sequence tree based 

on projected database, called sequence tree, and proposed 

Steeps algorithm which is used to construct the sequence tree. 

Sequence tree is a data storage structure and is similar to the 
prefix tree. But, the sequence tree stores all the sequences in 

the original database. The path from the root node to any leaf 

node represents a sequence in the database. The structural 

characteristic of sequence tree makes it suitable for incremen-

tal sequential pattern mining. Steeps algorithm works well at 

low support thresholds.  

Tseng V., et al. [19] considers together the problem of time-

consuming to select the parameters to generate a desired 

amount of rules and redundancy in results by proposing an 

efficient algorithm named TNS for mining the top-k non-

redundant sequential rules. TNS is based on depth first search 
and rely on an approximate approach that can guarantee exact 

result under certain conditions. Comparison of the perfor-

mance of TNS with TopSeqRules on three real datasets 

shows that TNS has excellent performance and scalability. 

TNS provides the benefit of eliminating redundancy. This is 

the main improvement of TNS over TopSeqRules algorithm. 

Fournier P., et al. [6] overcome the drawback of RuleGrowth  

by proposing an algorithm named ERMiner (Equivalence 

class-based sequential Rule Miner) for mining sequential 

rules. It uses the concept of searching using equivalence clas-

ses of rules having the same antecedent or consequent. Fur-

thermore, it includes a data structure named SCM (Sparse 
Count Matrix) to prune the search space. ERMiner is up to 

five times faster than RuleGrowth and consumes less 

memory. 

Fournier P., et al. [10] gives a new structure named as CMAP 

(Co-occurrence MAP) for storing co-occurrence information. 

They upgrade the previous algorithms SPAM, SPADE, GSP 

by applying on CMAP data structure and the new algorithms 

are renamed as CMSPADE, CMSPAM, and CM-ClaSP. The 

algorithms are applied on six real-life data set and results 

shows that CM-SPADE and CM-ClaSP have better perfor-

mance for mining sequential patterns and closed sequential 
patterns. 
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III. COMPARISON OF DIFFERENT EXISTING SE-

QUENTIAL PATTERN MINING ALGORITHMS 

The sequence mining algorithm has been classified into the 

following classes: Apriori-like algorithms, BFS (Breadth 

First Search)-based algorithms, DFS (Depth First Search)-

based algorithms, and pattern growth based algorithms. 

A.  Apriori-like algorithms 
CMRULE: Algorithm [9] is specifically designed for mining 

sequential rules common to many sequences. It does not re-

strict the number of events in each rule. The algorithm does 

not rely on a sliding-window approach. Instead, it finds asso-

ciations rules between items to prune the search space to 
items that occur jointly in many sequences. Finally, the asso-

ciation rules that do not meet minimum confidence and sup-

port thresholds according to the time ordering are eliminated. 

Algorithm 

• Consider the sequence database as transactional database. 

• Find all association rules from the transaction database by 

applying an association rule mining algorithm such as 

Apriori  

• Select minsup = minSeqSup and minconf = minSeqConf.  

• Scan the original sequence database to calculate the se-

quential support and sequential confidence  

• Eliminate each rule r such that whose support< minsupport 

• Return the set of rules  
 

Advantages 

• It is easy to implement. 

•  more efficient for low support thresholds, and has a better 

scalability 

 

Disadvantages 

• Its performance decreases as the number of rules increases. 

• It becomes inefficient when the dataset is large. 

B.  BFS-based algorithms  

A number of algorithms were developed in the past using the 

principles of BFS algorithm. Some of them are listed below:  

GSP: Generalized Sequential Patterns (GSP) [13] uses the 

concept of BFS algorithm. This algorithm uses the down-

ward-closure property of sequential patterns  and follows a 

multiple pass candidate generate-and-test approach. The GSP 

algorithm [13] doesn't require finding all the frequent item-

sets. This algorithm allows placing bounds on the time sepa-
ration between adjacent elements in a pattern. GSP is de-

signed for discovering generalized sequential patterns. The 

GSP algorithm makes multiple passes over sequence data-

base. In the first pass, it finds the frequent sequences that 

have the minimum support.  At each pass, every data se-

quence is examined in order to update the occurrence number 

of the candidates contained in this sequence.  

Algorithm  

• Generate frequent 1-sequence after database scan. 

• Do while F(k)!= Null;  

• Generate candidate sets Ck+1  

• If Ck+1 is not empty, find the set of length-(k+1) sequen-

tial patterns  

• Return the set of rule. 

 

Advantages 

• GSP is much faster than the AprioriAll algorithm. 

• GSP scales linearly with the number of data-sequences, and 

has very good scale-up properties with respect to the aver-

age data sequence size. 

 

Disadvantages 

• It requires multiple scans of the database.  

• Algorithm is inefficient for mining long sequential patterns 

MFS: It is a modified version of GSP [21], with the aim to 

reduce the I/O cost needed by GSP. In first pass, it computes 

the rough estimate of all the frequent sequences set as a sug-
gested frequent sequence set and to maintain the set of max-

imal frequent sequences known previously it uses the candi-

date generation function of GSP. The results show that MFS 

saves I/O cost significantly in comparison with GSP.  

C. DFS-based algorithms  

A number of algorithms were developed in the past using the 
principles of DFS algorithm. Some of them are listed below:  

SPADE: Sequential PAttern Discovery using Equivalence 

classes (SPADE) [19][21] uses a vertical id-list database 

format, in which each sequence list is associated with objects 

in which it occurs, along with the time-stamps. The algorithm 

shows that all frequent sequences can be enumerated via 

simple temporal joins (or intersections) on id-lists. It uses a 

lattice-theoretic approach to decompose the original search 

space (lattice) into smaller pieces (sub-lattices) which can be 

processed independently in main-memory. It requires three 

database scans, or only a single scan with some pre-processed 

information, thus minimising the I/O costs. It uses two differ-
ent search strategies for enumerating the frequent sequences 

within each sub-lattice: breadth-first and depth-first search. 

Algorithm 

• Given the vertical id-list database, compute all frequent 1-

sequences. 

• Compute the frequent 2-sequences. 

• Frequent sequences are generated by joining the id-lists of 

all pairs of atoms and checking the cardinality of the result-

ing id-list against min sup.  

• Process is repeated until all frequent sequences have been 

enumerated. 

• Once all the frequent sequences for the next level have 
been generated, delete the current level sequences.  

• Return the set of rule. 
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Advantages 

• SPADE is about twice as fast as GSP.  

• SPADE uses a more efficient support counting method 

based on the id-list structure.  

 

SPAM: Sequential PAttern Mining (SPAM) [5] uses the con-
cept of Depth First Search. SPAM assumes that the entire 

database completely fit into main memory. SPAM uses a 

vertical bitmap data layout which allows simple and efficient 

counting. The algorithm considers lexicographical ordering 

of the items in the database. Each sequence in the sequence 

tree can be considered as either a sequence-extended se-

quence or an item-set extended sequence. A sequence-

extended sequence is a sequence generated by adding a new 

transaction consisting of a single item to the end of its par-

ent’s sequence in the tree. An item-set extended sequence is a 

sequence generated by adding an item to the last item-set in 
the parent’s sequence.  

 

Algorithm 

• Initialize the variables for sequence and item-set extension. 
• Generate the sequence-extension. 
• Check for frequent sequence-extended. 
• Call DFS pruning 
• Generate item-set extension 
• Check for frequent item-set extension. 
• Call DFS pruning. 
• Return the set of rule. 
 

Advantages 

• SPAM performs so well for large datasets. 

• SPAM handles counting process efficiently. 

 

Disadvantages 

• SPAM is quite space-inefficient. 

 

CMSPADE and CMSPAM: CMSPADE and CMSPAM 

algorithms [10] are the integrated version of SPADE and 

SPAM. The difference between SPADE and CMSPADE, 

SPAM and CMSPAM,  is of data structure and pruning 

mechanism. SPADE and SPAM algorithms are applied on 

data structure CMAP and renamed as CMSPADE and 

CMSPAM respectively. Co-occurrence MAP (CMAP) is a 
structure mapping each item k є I to a set of item succeeding 

it.  It uses two CMAP named CMAPi and CMAPs to store 

itemset extension and sequence extension respectively. Prun-

ing is done using two properties. 

Property 1 (pruning an i-extension): Let A be a frequent 

sequential pattern and k be an item. If there exists an item j in 

the last itemset of A such that k belongs to cmi(j), then the i-

extension of A with k is infrequent. 

Property 2 (pruning an s-extension): Let A be a frequent 

sequential pattern and k be an item. If there exists an item j ∈  

A such that the item k belongs to cms(j), then the s-extension 

of A with k is infrequent. 

Advantages of CMSPADE and CMSPAM: 

• Eight times faster than original SPADE, SPAM. 

• Memory consumption is very low. 

• Prune large amount of candidates. 

D. Pattern growth based algorithms 

RuleGrowth: RuleGrowth algorithm relies on a pattern-

growth approach [7]. RuleGrowth first find rules between 

two items and then recursively grow them by scanning the 

database for single items that could expand their left or right 
parts (these processes are called left and right expansions). 

Like PrefixSpan, RuleGrowth also includes some ideas to 

prevent scanning the whole database every time. It takes as 

parameters a sequence database and the minsup and minconf 

thresholds. This procedure first generates all rules r of size 

1*1 such that sup(r) ≥ minsup and then call two recursive 

procedures for growing each rule. 

Algorithm 

• Scan the database. Read the each sequence. 
• rules   ←Ф ; 
• check first and last occurrence of each item 
• check the support 
• Expand left and right part of rule if support>=minsup. 
• Check the confidence. 
• Confidence>=minconf, the generated  rule is valid 
 
The algorithm is applied on three real databases having dif-

ferent characteristics and representing three real-life situa-

tions and result shows that the algorithm is much more effi-

cient and scalable.  

 

Advantages 

• RuleGrowth does not utilises more memory space as it 

relies on the pattern-growth approach instead of a gener-

ate-candidate-and-test approach. 
• More efficient and scalable than CMRule and CMDeo 

 
Disadvantages 

• It repeatedly performs a costly database projection opera-

tion, which decrease performance of  datasets. 

 

ERMiner: ERMiner (Equivalence class based sequential 

Rule Miner) [6]  relies on vertical representation of the data-

base to avoid performing database projection and the novel 

idea of exploring the search space of rules using equivalence 

classes of rules having the same antecedent or consequent. It 

includes a data structure named SCM (Sparse Count Matrix) 

to prune the search space. ERMiner first scans the database to 

build all equivalence classes for frequent rules of size 1 * 1. 
Then, it recursively performs left/right merges on the identi-
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fied equivalence classes to generate the other equivalence 

classes. 

The problem of duplicity of rule is solved by not allowing a 

left merge after a right merge, rather by allowing a right 

merge after a left merge.  

Algorithm 

•  leftStore ← Ф; 

•  rules   ←Ф; 

•  Scan SDB once to calculate EQ, the set of all    equiva-

lence classes of rules of size 1*1; 

•  Call left-search for find left equivalence classes 

•  Call right-search for find right equivalence classes 

•  Store equivalence class in left store. 

•  Return set of rules. 

 

Advantages  

• Five times faster than RuleGrowth algorithm. 

• Does not generate duplicate rule. 

• Does not require rescanning of database. 

 

Disadvantages 

• Memory consumption is high 

 

TNS: TNS (Top-K Non-Redundant Sequential Rules) [19] is 

based on depth first search. This algorithm is an improvement 

over TopSeqRule algorithm. This algorithm is designed to 

removes the redundant rule and to reduce the time for select-

ing parameters. It is based on a recently proposed approach 

for generating sequential rules that is named “rule expan-

sions” and adds strategies to avoid generating redundant 

rules. 

 

Algorithm 

• Consider a sequence database, an integer k and the minconf 

threshold. Set minsup=0 

• First scans the database to identify single items that appear 

in at least minsup sequences. 

•  Recursively grow rule by adding items to its antecedent or 

consequent 

• Expand the left and right part of the rule. 

• Check minsup  of rule 

• Repeat the procedure. 

• Return the set of rules. 

 

Advantages 

• Work better for low threshold value. 

• TNS always guarantee that the k rules returned are non-

redundant 

 

BIDE: BIDE (BI-Directional Extension) [20], an efficient 

algorithm for mining frequent closed sequences without can-

didate maintenance. It mines efficiently the complete set of 

frequent closed sequences. It does not store historical fre-

quent closed sequence (or candidate) for a new pattern’s clo-

sure checking.  

Algorithm 

• First scans the database once to find the frequent 1-

sequences. 

• Builds pseudo projected database for each frequent 1-

sequence 

• Check frequent 1-sequence using BackScan pruning meth-

od  

• Computes the number of backward-extension-items 

• Compute the number of forward-extension-items 

•  If there is no backward-extension-item nor forward-

extension-item, output S  as a frequent closed sequence. 

• Grow S  with each locally frequent item in lexicographical 

ordering to get a new prefix and build the pseudo projected 
database for the new prefix  

• Check if it can be pruned, if not, compute the number of 

backward-extension-items  and call itself. 

 
Advantages 

• It  outperforms when the support threshold is low 

• Consumes much less memory and can be an order of mag-

nitude faster than CloSpan 

• It has linear scalability in terms of base size; 

•  Pruning method is very effective. 

 

IV. CHARACTERISTICS OF SEQUENTIAL MINING ALGO-

RITHM  

This section discusses the different parameters on which the 

sequential mining algorithms are characterised. 

Statical Database: A database consisting of ‘information-

based relationships’, one that is rigorously structured to facil-

itate retrieval and update in terms of inherent relationships. 

Database MultiScan: Scanning of database multiple times. 

Generate & Test: The process of forming n-length candidate 

and frequent pattern is repeated until there is no more fre-

quent pattern combination found. 

Pattern Growth: It uses the concept of divide and conquer 

approach. It recursively partition the dataset based on fre-

quent patterns generated and then it mines them for frequent 

patterns in each of the partition. 

DFS Based Approach: is an algorithm for traversing or 

searching tree or graph data structures. It starts at the root and 

explores as far as possible along each branch before back-

tracking. 

http://www.dictionary.com/browse/database
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BFS Based Approach: is an algorithm for traversing or 

searching tree or graph data structures. It starts at the tree root 

and explores the neighbor nodes first, before moving to the 

next level neighbors. 

Top-Down Search: In top-down approach the subsets of se-

quential patterns can be mined by constructing the corre-
sponding set of projected data bases and mining each repeti-

tion from top to bottom. 

Bottom-up Search: is the piecing together of systems, thus 

making the original systems into sub-systems of the emergent 

system.  

Database vertical Projection: use vertical data format.   

V. CONCLUSION 

For retrieving useful information from the large amount of 

data, sequence mining plays an important role. A number of 

sequence mining algorithms have been designed like GSP, 

SPADE, CMSPAM, etc. These algorithms have been classi-

fied into four major classes. The paper presents a compara-

tive analysis of important sequence mining algorithms select-

ed from the previously described algorithms based on some 

features. These algorithm can be applied in various applica-
tions like market analysis, mining education data, health rec-

ord, web logs, stock marketing. For example, AprioriAll has 

been used to analyse the probability and intensity of the for-

est fire, PrefixSpan to detect the malware in expert systems. 

Table 1 summarizes the feature of different sequential mining 

algorithms. 

 

 

 

Table - 1 Comparative study of important sequential pattern mining algorithms 

 

 Apriori-Like BFS 

Based 
DFS  Based Patterrn Growth 

Algorithm 

characteristics 
Apriori

All 
CM-

RULE 
GSP SPADE SPAM CM-

SPADE 
CP-

SPAM 
Prefix

Span 
BIDE ER 

Miner 
Rule 

Growth 
TNS 

Statical da-

tabase 
yes yes yes yes yes Yes yes yes yes yes yes yes 

DataBase 

MultiScan 
yes yes yes        yes  

Genrate & 

Test 
yes yes yes yes         

Pattern 

Growth 
        yes  yes yes 

Candidate 

Sequence 

Pruning 

  yes yes  yes yes yes yes    

DFS based 

approach 
   yes yes yes yes yes yes yes yes yes 

BFS based 

approach 
yes yes yes          

Top-down 

search 
     yes yes yes  yes yes yes 

Bottom-up 

search 
 yes yes yes yes        

Database 

vertical pro-

jection 

 yes  yes yes yes yes  yes yes yes yes 

 

 

 

VI. REFERENCES 

1. Agrawal, R. and Srikant, R.., “Mining Sequential Pat-

terns”, In Proceedings of the 11th International Conference 

on Data Engineering, Taipei, Taiwan, pp. 3-14,  1995. 

2. Agrawal, R. and Srikant, R..,  “Mining Quantitative Asso-

ciation Rules in Large Relational Table”, In Proc. of the 

ACM-SIGMOD, Conference on Management of Data, 

Montreal, Canada, 1996. 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology


 

64 

 

3. Agrawal, R. and Srikant, R.., “Fast algorithms for mining 

association rules in large databases” In Proceedings of 20th 

International conference on Very Large Databases, 1994. 

4. Agrawal, R. and Srikant, R..,  “Mining Sequential Patterns: 

Generalizations and Performance Improvements”, In Proc. 

of the 5th  International Conference on Extending Database 

Technology (EDBT), Avignon, France, 1996.  

5. Ayres, J., Flannick, J., Gehrke , J. and Yiu T., “Sequential 

Pattern Mining Using a Bitmap Representation”, In Pro-

ceedings of Conference on Knowledge Discovery and Data 

Mining, pp. 429–435, 2002. 

6. Founier, P., Zida, S., Guenieche, T. and  Tseng V.,  

“ERMiner: Sequential Rule Mining using Equivalence 

Classes”, Advanced in intelligent data Analysis, 13th Inter-

national Symposium, pp . 108-119, 2014.  

7. Founier, P., Nkambou, R. and Tseng V.,”  RuleGrowth: 

Mining Sequential Rules Common to Several Sequences by 

Pattern-Growth”, Symposium on Applied Computing, pp . 

951-960, 2011.  

8. Fournier,  P. and Tseng, V. S.” Mining Top-K Sequential 

Rules”, In Proc. of the 7th International Confrence on Ad-

vanced Data Mining and Applications (ADMA 2011), Bei-

jing, China,  2011.  

9. Fournier, P., Faghihi, U., Nkambou, R. and Nguifo, E., “ 

CMRULES: An Efficient Algorithm for Mining Sequential 

Rules Common to Several Sequences”,  Association for the 

Advancement of Artificial Intelligence, 2010. 

10. Fournier, P., Gomariz, A., Campos, M. and Thomas, R., 
“Fast Vertical Mining of Sequential Patterns Using Co-

occurrence Information” PAKDD 2014, Part I, LNAI 8443, 

pp. 40–52, 2014. 

11. Gouda, K., Hassaan, M. & Mohammed Zaki, J.,  

“PRISM: An effectinve approach for frequent sequnce min-
ing via prime block encoding” Journal of Computer and 

System science, pp. 88-102, 2010.  

12. Han, J. and Kamber, M., “Data Mining: Concepts and 

Techniques”, Morgan Kaufman publishers, 2001. 

13. Kao, B., Zhang, M. and Cheung, D., “A GSP-based effi-

cient algorithm for mining frequent sequences”, In Proc. of 

IC-AI’2001, Las Vegas, Nevada, USA, 2001. 

14. Liu, J.  “The design of storage structure for sequence in 

incremental sequential patterns mining,” Networked Com-

puting and Advanced Information Management (NCM), pp. 

330 - 334, 2010. 

15. Liu, J. “The design of frequent sequence tree in incre-

mental mining of sequential patterns,” Software Engineer-

ing and Service Science (ICSESS), pp. 679- 682, 2012. 

16. Liu,J., Pan, Y., Wang, K. and Han, J. “Mining frequent 

item sets by opportunistic projection” In ACM SIGKDD in-

ternational conference on knowledge discovery in data-

bases, 2002. 

17. Masseglia, F., Poncelet, P. and Teisseire, M., "Incremen-

tal mining of sequential patterns in large databases", Data & 

Knowledge Engineering, Vol. 46, No.1, pp. 97-121, 2003. 

18. Pei, J., Han, J. and  Wang,  W., "Constraint-based se-

quential pattern mining: the pattern-growth methods", Jour-

nal of Intelligent Information Systems, Vol:28, No: 2 

,pp:133-160, 2007. 

19. Tseng, V. and Fournier, P., “TNS: Mining Top-K Non-

Redundant Sequential Rules” Proc. 28th Symposium on 

Applied Computing (ACM SAC 2013). ACM Press, 2013. 

20. Wang, J., Han, J., “BIDE: Efficient Mining of Frequent 

Closed Sequences” , In Proc. of 2004 Int. Conf. on Data 

Eng., Boston, pp 79–90, 2004. 

21. Zaki, J., “SPADE: An Efficient Algorithm for Mining 

Frequent Sequences”, Kluwer Academic Publishers. Manu-

factured in The Netherlands, Machine Learning, pp. 42, 31–

60, 2001. 

22. Zaki, J., “Scalable algorithms for Association Mining”, 

IEEE Transactions on Knowledge and Data Engineering., 

pp. 372-390, 2000. 


