
 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

610

FAULT TOLERATING MECHANISM IN

DISTRIBUTED COMPUTING ENVIRONMENT

 Lokendra Gour Dr. Akhilesh A. Waoo
 Department of Computer Science Department of Computer Science

AKS University, Satna, Madhya Pradesh, India AKS University, Satna, Madhya Pradesh, India

Abstract— Large scale distributed systems encompass

heterogeneous computational machines, workloads and

sub-systems dispersed diversely across the cloud

environment. These sub-systems frequently encounter

faults and failures due to different data structures,

hardware/software malfunction, and communication

delay. To speed up computation in such a situation a fault

tolerating infrastructure is implemented by adopting a

machine learning approach. Under machine learning, an

artificial neural network (ANN) captures, manipulates,

and updates the states and behaviors of the sub-systems in

the servers and worker's machines. Multiple layers of

neurons (i. e., deep learning) can handle large scale

distributed systems with large datasets. Adopting the

variants of a stochastic gradient descend algorithm on sub-

systems (also known as computational nodes) the

efficiency, and reliability of a distributed system are

enhanced significantly. In high-performance computing

(HPC) applications fault tolerance mechanisms must be

embedded to recover from system failures.

Keywords— Distributed System, Cloud Environment, Fault

Tolerance, Machine Learning, Artificial Neural Network

I. INTRODUCTION

At present, the size of available data for training deep models

has increased significantly. Exchanging the model parameters

increases the communication overhead which causes the

bottleneck problem in a distributed learning algorithm. For

instance, calculating the sparse on the gradients to zero-out the

non-important values will reduce the communication bit-rate.

One of the great challenges in distributed computing is to
identify the faults and failures that become the sever cause of

failure of the system. There are so many algorithms are

available to handle that problem, but most of them are not

appropriate for large scale distributed systems. The machine

learning model can manage such kind of problem easily and

appropriately.

The Cloud computing system “Calheiros et al. (2009)

suggested the cloud platform” has become the most versatile

system under the umbrella of a distributed system. Cloud-

centric applications are multifaceted multi-component

software which can exhibit rich and complex behaviors [1-2].

Distributed systems are kinds of software system which

exchange bits and bytes among various computing nodes [3,
5]. It provides infrastructures and services to the cloud users

and both small and large business enterprises. The Cloud

system is playing a very important role in our society in terms

of sharing fundamental computing resources. Reliability and

availability must be the prime priority of the cloud system. To

achieve this objective the cloud system must embody the fault-

tolerant infrastructure in its core system. Adopting a fault

tolerating sub-system, “Kochar et al. (2017)”, in a cloud

environment allows the cloud system to function its targeted

operations smoothly, even at a low-level efficiency “

Programs running on a centralized uniprocessor

system are capable of tolerating faults due to the existence of
many powerful solutions [6-8]. In contrast, programs running

on a distributed computing environment with multiple multi-

core processors face the greater challenges of faults and

failures. Fault tolerance can be categorized as proactive fault

management and reactive fault management, “Patil et al.

(2011)”. This paper gives a survey of pieces of work

performed on the fault tolerance mechanism in a distributed

system with a focus on the machine learning-based approach,

“Hazan (2016), He et al. (2016)”.

II. ANALYSIS OF DISTRIBUTED SYSTEM

Distributed systems may be homogeneous, or heterogeneous

like Grid and Cloud. Several shortcomings occur in such types

of systems, like the quality of service, resource selection, load

balancing, and fault tolerance. Fault tolerance is a major

concern concerning the design of distributed systems

“Engelmann et al. (2009), Kakade et al. (2012) highlighted the

design of distributed systems”. Whenever the failures occur in

the software system, it causes a partial or an entire breakdown

in the operational system and we refer it, as a fault [9-10]. To

allow the system to execute its functionalities, even in the

occurrence of these faults, some sophisticated techniques must
be implemented to tolerate the faults “Swartz et al. (2014),

Zinkevich (2003)”. The objective of these techniques is to

detect, identify, and correct the errors. This paper introduces

an overview of the basic framework of distributed systems and

their associated failure types “Hatcher et al. (2018), Chen et al.

(2016)”. Java offers more options to realize distributed

applications.

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

611

From the Java perspective, the bottom layer is represented

by sockets. A socket facilitates transmitting un-interpreted
data streams from one computer system to another. All others

build on this mechanism. Java's java.net package provides the

infrastructure needed for the direct use of sockets. From the

programmer's point of view, another abstraction is more

appropriate: sending messages to remote objects. This

technique is called Remote Method Invocation (RMI) and is a

part of Java's java.rmi package. Despite this, RMI is limited to

Java1 and you have to know the location of a remote object or

the registry's location.

The Jini(Java Intelligent Networking Infrastructure) manifests

a basic structure which provides, register, and obtains

distributed services associated with its specification. A Jini
system has of the following parts:

 A set of components that provides the basic

infrastructure for federating services in a distributed

system

 A set of programming model that enhances the

production of reliable distributed services

The Jini technology infrastructure is centric to Java

technology. The Jini sub-system of Java gains its accessibility

by considering that the Java programming language is the

language for potential components.

III. OVERVIEW OF CLOUD COMPUTING

The Cloud indicates to a Network or the Internet. In other

words, the Cloud computing hierarchy provides various

services over private and public networks, i.e., LAN, WAN,

MAN, or VPN. Applications such as e-mail, customer
relationship management (CRM), and web conferencing

execute on a cloud platform. Cloud computing

provides platform independence, as the software is not

required to be installed locally on the PC at users’ end. Now

the Cloud system is creating and boosting our business

applications [11-12]. Cloud Computing refers to organizing,

manipulating, configuring, and accessing the software and

hardware resources remotely. It offers on-demand online data

storage, infrastructure, and software services “Yuan et al.

(2015), Zhu et al. (2017) and Ujjwalkarm (2016)”.

Cloud computing is extended under the scaling of
distributed computing. The Cloud system, “Nielsen (2018),

Blanchard et al. (2017) and Li et al. (2014) presented scaling

distributed machine”, offers computing resources,

infrastructure, and services. Various technologies are available

to contribute to Cloud Computing. Some of the state-of-the-art

techniques are:

 Virtualization technology: Virtualization refers to

executing multiple virtual computers or virtual

machines into a single physical machine. Cloud

virtualization is a technique for creating a virtual

platform for an operating system, storage, network,

data, and server “McMahan et al. (2017)”. Virtual

machine techniques, such as VMware, and AWS

offer virtualized computational infrastructures on

demand [13-16]. Virtualization “Shaw et al. (2017),

Singh et al. (2003) highlighted the virtualization”, is

the basic framework for cloud computing.

 Coordination of cloud nodes: For smooth functioning

of Cloud Computing there must be proper

coordination among the various computing nodes

“Bokhari et al. (2016) attempt to address cloud

computing services”. In the cloud system, every

small cloud also known as cloudlet shares computing

recourses. These cloudlets run various virtual

machines. Therefore coordination and

synchronization must be implemented among these

cloudlets for the smooth functioning of cloud

computing “Chen et al. (2012), Dong et al. (2011)”.

 Web service: Computing Cloud services are normally

exposed as Web services, which follow the industry

standards such as WSDL (Web Services Description

Language), SOAP (Simple Object Access Protocol),

and UDDI (Universal Description, Discovery, and

Integration). WSDL is a protocol for exchanging or

sharing information in a distributed computing

environment [17-20]. It is an XML-based language.

SOAP is a protocol for exchanging information over

the Internet. UDDI protocol is applicable for

publishing the network-oriented software

components. Amazon Web Services (AWS) “Garzon

et al. (2008) proposed network based process”, is a

form of web services offers various IT services in the

global market. AWS technology is constructed via

server clusters spread all over the world.

IV. FAULT-TOLERANT APPROACHES IN CLOUD
COMPUTING

The objective of creating a fault-tolerant system is to prevent

faults arising from a single point of failure, ensuring the high
availability and business continuity.

Cloud computing offers numerous services and

various computing resources via the internet “Gomez et al.

(2006)”. On the service provider’s side, a data center (DC)

provides facility to keep computer systems as well as their

associated components, like networking, storage,

uninterruptible power supply, etc.

Primary Backup Replication (PBR):

https://www.sciencedirect.com/topics/computer-science/remote-method-invocation
https://www.imperva.com/learn/availability/high-availability/
https://www.imperva.com/learn/availability/high-availability/
https://www.imperva.com/learn/availability/business-continuity-planning/

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

612

Primary backup applies several replications to enhance system

reliability. Active replication does not assign any replica as the
primary replica, so it removes the centralized control of

primary backup. All replicas receive the system’s activation

and then reply to the result. So it sustains a high cost for

keeping all replicas synchronized. The fault-tolerant

controlling system generally replicates the constituent

components to recover from the failure “Guo et al. (2008)”.

Primary-backup replication protocols are very common in

distributed computing [21-22].

Message Logging:

Message logging protocol is used for building a fault

tolerating system. The message logging scheme is applicable

in the model of message passing distributed system. This

policy registers custom messages. Most users exploit the

message logging facility because of its usefulness for

analyzing network simulations [23]. In this scheme, each

message received by a process must be recorded in the

message log and the process’s state is saved as a checkpoint

“Jialei et al. (2016)”. The logged messages are saved properly
to recover the system from faults or failures. In high-

performance computing (HPC) every process logs all the

messages sent to any other process. It creates potential storage

overhead. This scheme works as: A request is forwarded to the

API then the messages are registered. After that, the API

response is returned and finally, the message appears on the

application log “Kalyani et al. (2016)”. There are two kinds of

message passing protocol:

 Pessimistic Message Logging Protocol

 Optimistic Message Logging Protocol

A pessimistic message logging scheme is the synchronous

event logging scheme. In the pessimistic message logging
protocol, each message is recorded in the machine’s local

memory [41].

An optimistic message logging system guarantees to

obtain the recoverable system state. However, it has a

drawback that it is less efficient than a pessimistic logging

scheme.

Scheduling:

Scheduling is a decision-making process that a distributed

system incorporates to determine the execution order of the

available resources [23-26]. Scheduling is important for

managing incoming task requests and determining which task

to execute next. Scheduling is also one of the techniques to

tolerate fault in a distributed system “Lebiednik et al (2016)”.

It is used to reduce the drawback of check-pointing in a

distributed environment. It is categorized as time-sharing

scheduling and space-sharing scheduling. There are three

approaches to scheduling such as space, time, and hybrid [27-

30].

Check-Pointing:

The Checkpointing technique provides fault tolerance for a

distributed computing system. It saves a snapshot of the

application program state, therefore application can resume

from the point where the fault occurred. Checkpoints must be

coordinated for recovery from the faults and obtaining optimal

stable storage requirements “Li et al. (2015)”.

There are two kinds of checkpointing:

 Coordinated

 Uncoordinated

In a coordinated checkpointing scheme, the process

must confirm that their checkpoints are consistent. It is

achieved by two-phase commit protocol algorithms. It has two

advantages: 1. Recovery is simple and 2. Garbage collection is

easy. It has some major drawbacks: 1. It is expensive due to

energy consumption 2. All processes are competing for

writing their checkpoints at the same point.

In the uncoordinated checkpointing protocol, there is

no requirement for synchronization between the processes at

checkpoint time [31]. It has some major drawbacks: 1. If no
checkpoint forms a global state, the application has to resume

from the starting of the event of a failure. 2. The recovery cost

is not acceptable and 3. Garbage collection becomes more

complex to implement.

K-Modular Redundancy (KMR):

KMR is a widely used fault tolerance mechanism in software

engineering. KMR is a kind of version programming, hence it
is also known as N-Version Programming (NVR) [32-36]. It is

based on the principle of function ranking. Higher Kth

significant functions are recognized and selected for

invocation. This strategy performs parallel executions that are

functionally equivalent and then take priority voting to

calculate the final output. Triple Modular Redundancy (TMR),

a kind of KMR, is a fault tolerance form. In which three

subsystems execute a process and the final result is obtained

by the majority voting subsystem [37-40].

The advantage of this system is if any one of the

three subsystems fails, the other two subsystems can correct
the error and mask or remove the faults. TMR system contains

three similar logic circuits to compute the basic Boolean

function. The output is obtained by combining the three

intermediate results by using another logic circuit [41-43]. The

concept of TMR can apply to many forms of redundancy

which are found in many fault-tolerant computer systems

“Patidar et al. (2011)”. The TMR is used in space satellite

systems.

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

613

V. CONCLUSION

The objective of fault tolerating a distributed system is to make
a distributed system capable of defending against the faults and

failures. Fault tolerance strategies are very crucial in the

distributed system, especially cloud-centric applications. In

large scale distributed system failures lead to the collapse of

the entire system. A fault may occur at any constituent

computational node or machine. This becomes the cause of a

partial breakdown in the system therefore the throughput and

performance of the system degrade severely.

A plethora of research has been going on the

direction of the fault-tolerant system. Recently machine

learning especially deep learning is emerged as a promising

approach to enhance fault tolerance in the distributed system.
By principle, a deep learning approach incorporates multiple

processing units to handle voluminous heterogeneous

computing resources scattered over distinct geographical

locations. A distributed deep machine learning algorithm has

become a promising approach to implement fault-tolerant

systems.

VI. ACKNOWLEDGMENTS

I would like to express my deep gratitude to Dr. Akhilesh A.

Waoo, Head of the Department, AKS University Satna, and

my research supervisor, for their patient guidance, enthusiastic

encouragement, and useful suggestions of my entire research

work. I would also like to thank Professor Dr. Rakesh Kumar

Katare, Dr. Navita Shrivastava, APS University Rewa, for

their advice and assistance in keeping my progress in the right

direction. This research paper would not have been possible

without the exceptional assistant of my fellow Ms. Sonali

Singh. My special thanks to the academic and technical staff
of AKS University and RGCCAT Satna, for their

encouragement and valuable suggestions.

 Finally, I wish to thank my parents and brothers for

their continuous support and encouragement throughout my

research.

VII. REFERENCE

[1] Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R.

(2009). CloudSim: A Novel Framework for Model and

Simulation of Cloud Computing Infrastructures and

Services, (pp. 1-9).

[2] Kocher, D., Hilda, A.K.J. (2017). An approach for faults

tolerance in cloud computing using machine learning

technique. Int. J. Pure Appl. Math. 117(22), (pp. 345-

351).

[3] Bekkerman, R., Bilenko, M., and Langford, J. (2011).

Scaling up machine learning: Parallel and distributed

approaches. Cambridge University Press.

[4] Bernstein, J., Xiang Wang, Y., Azizzadenesheli, K. and

Anandkumar, A. (2018). Signsgd: Compressed

optimization for non-convex problems. In International

Conference on Machine Learning, (pp. 559-568).

[5] Bijral, A. S., Sarwate, Anand D., and Srebro N. (2016).

On data dependence in distributed stochastic

optimization. arXiv preprint arXiv:1603.04379.

[6] Chaturapruek, S., John, C. D. and C. R´e, C. (2015).

Asynchronous stochastic convex optimization: the noise

is in the noise and sgd don’t care. In Advances in Neural

Information Processing Systems, (pp. 1531-1539).

[7] Patil, A., Shah, A., Gaikwad, S., Mishra, A.a., Kohli, S.S.,

Dhage, S. (2011). Fault Tolerance in Cluster Computing

System. In: 2011 Int. Conf. P2P, Parallel, Grid, Cloud

Internet Comput., (pp. 408-412).

[8] Hazan, E. Introduction to online convex optimization.

Foundations and Trends in Optimization (2016). 2(3-4):

(pp. 157–325).

[9] He, K., Zhang X., Ren, S. and Jian S., Deep residual

learning for image recognition. (2016). In Proceedings of

the IEEE conference on computer vision and pattern

recognition, (pp 770-778).

[10] Engelmann, C., Vallée, G.R., Naughton, T., Scott, S.L.

(2009). Proactive fault tolerance using preemptive

migration. In: Proc. 17th Euromicro Int. Conf. Parallel,

Distrib. Network-Based Process. PDP 2009, (pp. 252-

257).

[11] Kakade, S. M., Shwartz, S. S. and Tewari, A. (2012).

Regularization techniques for learning with matrices.

ournal of Machine Learning Research, 13(Jun):1865-

1890.

[12] Shwartz, S. S. and David, S. B. (2014). Understanding

machine learning: From theory to algorithms, Cambridge

University press.

[13] Zinkevich, M. (2003). Online convex programming and

generalized infinitesimal gradient ascent. In International

Conference on Machine Learning, (pp. 928-936).

[14] HATCHER, W. G., and YUA, W. (2018). Survey of Deep

Learning: Platforms, Applications and Emerging

Research Trends, IEEE Access, May 24.

[15] Chen X.W. and Lin X. (2016). Big data deep learning:

Challenges and perspectives, IEEE Access, vol. 2, 2014.

14. Y. Ding, S. Chen, and J. Xu, Application of deep

belief networks for opcode based, (pp. 514-525)

[16] Malware detection, in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), (pp. 3901-3908).

[17] Yuan, Y. and Jia K. (2015). A distributed anomaly

detection method of operation energy consumption using

smart meter data, in Proc. Int. Conf. Intell. Inf. Hiding

Multimedia Signal Process. (IIH-MSP), (pp. 310-313).

[18] Zhu, D., Jin, H., Y, Y., Wu, D. and Chen, W. (2017).

DeepFlow: Deep learning based malware detection by

mining Android application for abnormal usage of

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

614

sensitive data, in Proc. IEEE Symp. Comput. Commun.

(ISCC), (pp. 438-443).

[19] Nielsen, M. (2018). Neural Networks and Deep Learning.

[Online]. Available: 19. Dan Alistarh, Zeyuan Allen-Zhu,

and Jerry Li.

[20] Byzantine stochastic gradient descent. In Advances in

Neural Information Processing Systems, (pp. 4613-4623).

[21] Blanchard, P., Guerraoui, R., and Stainer, J. (2017).

Machine learning with adversaries: Byzantine tolerant

gradient descent. In Advances in Neural Information

Processing Systems, (pp. 119-129).

[22] Li, M., G., D., Andersen, Park, J. W., Smola, A. J.,

Ahmed, Josifovski, A., Long, J., J., I., Shekita, and Yiing

B. Su. (2014). Scaling distributed machine learning with

the parameter server. In proceedings of the 11th USENIX

Conference on Operating Systems Design and

Implementation, OSDI’14, Berkeley, CA, USA, 2014.

USENIX Association, (pp. 583-598)

[23] McMahan B. and Ramage, R. (2017). Federated learning:

Collaborative machine learning without centralized

training data. Google Research Blog, 3.

[24] Alistarh, D., Allen-Zhu, Z., Li, J. (2018): Byzantine

stochastic gradient descent. In: Advances in Neural

Information Processing Systems, (pp. 4613-4623).

[25] Blanchard, P., Guerraoui, R., Stainer, J., et al. (2017):

Machine learning with adversaries: byzantine tolerant

gradient descent. In: Advances in Neural Information

Processing Systems, (pp. 119-129).

[26] Chen, L., Wang, H., and Papailiopoulos, D. (2016):
Draco: robust distributed training against adversaries. In:

2nd SysML Conference. Obermeyer, Z., and Emanuel, E.

J.: Predicting the future-big data, machine learning, and

clinical medicine. New Engl. J. Med. 375(13), 1216.

[27] Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., Chen,
M., 2019: In-edge AI: intelligentizing mobile edge

computing, caching and communication by federated

learning. IEEE Network 33(5), (pp. 156-165).

[28] Yu, H., Yang, S., Zhu, S. (2019): Parallel restarted SGD
with faster convergence and less communication:

demystifying why model averaging works for deep

learning. In: Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, (pp. 5693-5700).

[29] M. Deisenroth, D. Fox, and C. Rasmussen. (2015).
Gaussian processes for data-efficient learning in robotics

and control. IEEE Transactions on Pattern Analysis &

Machine Intelligence, 37(2): (pp. 408-423).

[30] Pandey, S., Wu, L., Guru, S.M., Buyya, R. (2010). A

particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing

environments. In: 24th IEEE International Conference on

Advanced Information Networking and Applications, (pp.

400-407).

[31] Prathiba, S., Sowvarnica, S. (2017). Survey of failures

and fault tolerance in cloud. In: Proc. 2017 2nd Int. Conf.

Comput. Commun. Technol. ICCCT 2017, (pp. 169-172).

[32] Rimal, B.P., Choi, E., Lumb, I. (2009). A taxonomy and

survey of cloud computing systems. In: NCM 2009 - 5th

Int. Jt. Conf. INC, IMS, IDC, (pp. 44-51).

[33] Savu, L. (2011). Cloud computing: deployment models,

delivery models, risks and research challenges. In: 2011

Int. Conf. Comput. Manag. CAMAN 2011.

[34] Shaw, R., Howley, E., Barrett, E. (2017). An Advanced

Reinforcement Learning Approach for Energy-Aware

Virtual Machine Consolidation in Cloud Data Centers,

(pp. 61-66).

[35] Shwe, T., Aye, W. (2008). A fault tolerant approach in

cluster computing system. In: 5th Int. Conf. Electr. Eng.

Comput. Telecommun. Inf. Technol. ECTI-CON 2008,

vol. 1, (pp. 149-152).

[36] Singh, P., Cabillic, G. (2003). A Checkpointing

Algorithm for Mobile Computing Environment, (pp. 65–

74).

[37] Agbaria, A., Sanders, W.H. (2004). Distributed snapshots

for mobile computing systems. In: Proc. - Second IEEE

Annu. Conf. Pervasive Comput. Commun. PerCom, no.

Cic, (pp. 151-186).

[38] Alomari, E., Manickam, S., Gupta, B.B., Karuppayah, S.,

Alfaris, R. (2012). Botnet-based distributed denial of

service (DDoS) attacks on web servers: classification and

art. arXiv preprint arXiv:1208.0403.

[39] Ataallah, S.M.A., Nassar, S.M., Hemayed, E.E. (2015).
Fault tolerance in cloud computing Survey. In: 11th Int.

Comput. Eng. Conf., no. 1, (pp. 241-245).

[40] Bokhari, M.U., Shallal, Q.M., Tamandani, Y.K. (2016).

Cloud computing service models: a comparative study. In:

IEEE Int. Conf. Comput. Sustain. Glob. Dev. INDIACom,

(pp. 16-18).

[41] Chen, W., Deelman, E. (2012). WorkflowSim: A toolkit

for simulating scientific workflows in distributed

environments. In: 2012 IEEE 8th Int. Conf. E-Science, e-

Science 2012.

[42] Chen, Z., Son, S.W., Hendrix, W., Agrawal, A., Liao,

W.K., Choudhary, A. (2014). NUMARCK: machine

learning algorithm for resiliency and check pointing. In:

Int. Conf. High Perform. Comput. Networking, Storage

Anal. SC, vol. 2015-Janua, no. January, (pp. 733-744).

[43] Dong, Z., Rojas-Cessa, R. (2011). Non-blocking memory-

memory-memory Close network packet switch. In: 2011

34th IEEE Sarnoff Symp. SARNOFF 2011, (pp. 1-5).

[44] Frincu, M.E., Craciun, C. (2011). Multi-objective meta-

heuristics for scheduling applications with high

availability requirements and cost constraints in

multicloud environments. In: Proc.- 2011 4th IEEE Int.

Conf. Util. Cloud Comput. UCC 2011, (pp. 267-274).

 International Journal of Engineering Applied Sciences and Technology, 2020
 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 610-615

 Published Online August 2020 in IJEAST (http://www.ijeast.com)

615

[45] Garzon, D.B., Gomez, C., Gomez, M.E., Lopez, P.,

Duato, J. (2014). FT-RUFT: a performance and fault-
tolerant efficient indirect topology. In: Proc. - 2014 22nd

Euromicro Int. Conf. Parallel, Distrib. Network-Based

Process. PDP 2014, (pp. 405-409).

[46] Gomez, C., Gomez, M., Lopez, P., Duato, J. (2006). A

Dynamic and Compact Fault Tolerant Strategy for Fat-
tree. In: Proc. IFIP Int’l Conf. Netw. Parallel Comput., no.

January.

[47] Gomez, C., Gilabert, F., Gomez, M.E., Lopez, P., Duato,

J. (2008). RUFT: Simplifying the fat-tree topology. In:

Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, (pp.

153-160).

[48] Greenberg, A. et al. (2009). VL2: A Scalable and Flexible

Data Center Network. In: ACM SIGCOMM Conf. Data

Commun. (pp. 51-62).

[49] Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.

(2008). DCell: a scalable and fault tolerant network

structure for data centers. In: Proc. ACM SIGCOMM

2008 Conf. Data Commun. - SIGCOMM ’08, (pp. 75-86).

[50] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X. (2009).

BCube: a high performance, server centric network

architecture for modular data centers. In: SIGCOMM ’09

Proc. ACM SIGCOMM 2009 Conf. Data Commun., (pp.

63-74).

[51] Jialei Liu, I., Wang, Shangguang, Senior Member, IEEE,

Zhou, Ao, Kumar, Sathish A.P., Yang, Fangchun, Senior

Member, IEEE, Buyya, Rajkumar, Fellow. (2016). Using

proactive fault-tolerance approach to enhance cloud

service reliability. IEEE Trans. Cloud Comput., (pp. 1-1).

[52] Kalyani, Z., Amune, A., Chas, M., Chas, M. (2016).

Review on Secure Distributed Deduplication Systems

with Improve, 5(1).

[53] Lebiednik, B., Mangal, A., Tiwari, N. (2016). A survey

and evaluation of data center network topologies, 1–12.

arXiv preprint arXiv:1605.01701.

[54] Li, J., Chen, X., Huang, X., Tang, S., Xiang, Y., Member,

S. (2015). Secure Distributed Deduplication Systems with

Improved Reliability, 64(12), (pp. 3569-3579).

[55] Patidar, S., Rane, D., Jain, P. (2011). A survey paper on

cloud computing. In: Proc. - 2012 2nd Int. Conf. Adv.

Comput. Commun. Technol. ACCT 2012, (pp. 394-398).

