
 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

64

MACHINE LEARNING PIPELINE FOR MULTI-

CLASS TEXT CLASSIFICATION

Orobor, Anderson Ise,

Computer Science Department

Federal University of Petroleum Resources, Effurun, Delta State, Nigeria

Obi, Nneka Obiageli

Computer Engineering Department

Federal University of Petroleum Resources, Effurun, Delta State, Nigeria

Abstract— Machine Learning (ML) pipeline is a sequential

step that orchestrates the flow of data from data pre-

processing to model training and prediction. This paper

presents the development of a ML pipeline based on

Natural Language Processing (NLP) for multi-class text

classification using the 20 newsgroups text dataset. The

study experimented the performance of six classifiers

which are Multinominal Naïve Bayes (MNB), Logistic

Regression (LR), K Nearest Neighbors (KNN), Random

Forest (RF), eXtreme Gradient Boosting (XGB), and

Stochastic Gradient Descent (SGD) in Google Colab.

Experimental results show that TF-IDF Vectorizer

performed better than Count Vectorizer when used as the

vectorizer in most cases. KNN consistently had the least

performance in most of the cases. MNB and SGD had the

best performance with an accuracy of 76% and 74% and a

computation speed of 10min 14s and 1h 28min 21s

respectively. The study suggests that improved accuracy

can be obtained using a hybrid model or deep learning

approach.

Keywords— Natural Language Processing, 20 Newsgroups,

Text Classification, Machine Learning, Pipeline

I. INTRODUCTION

Research has demonstrated that information concealed in

unstructured data can play an important part in decision-

making. This significant portion of organisational information

that is unstructured may contain the knowledge that is required

for strategic planning [1]. The majority of the unstructured

data are in form of text from different sources. Since

analysing, interpreting, organising, and sorting through text

data is difficult and time-consuming, several organisations do

not use it to its full potential despite all of the inherent

benefits. To begin to derive insight, a text classification

approach can be adopted. The approach can be utilised to

organise, arrange, and classify virtually any form of text,

including documents, medical research, files, and text found

all over the internet. The process of text classification is a

method of Machine Learning (ML) that involves the

assignment of a set of predetermined categories to free-form

text. Text classification is one of the fundamental problems

involved in Natural Language Processing (NLP), and it has a

wide range of applications, including intent detection, topic

labelling, spam detection, and sentiment analysis.

Text classification is more significant for many businesses

since it reduces the need for manual data classification, which

is a technique that is more expensive and takes more time to

complete [2]. Text classification allows businesses to swiftly

and cost-effectively organise all kinds of relevant content,

such as emails, legal papers, social media, complaints,

surveys, and many more sorts of content. It is one of the most

important aspects of ML since it enables businesses to get

profound insights that can guide future decision-making. The

classification of text can either be done manually or

automatically. Automatic text classification can be

accomplished in three major ways, which are through machine

learning-based systems, rule-based systems, or hybrid

systems. In the process of manually classifying texts, a human

annotator is required. This individual reads the text, analyses

its meaning, and then assigns it to one of several categories.

Although it is time-consuming and costly, this approach has

the potential to produce satisfactory outcomes.

In this paper, we developed a ML pipeline for multi-class text

classification. We experimented different ML classifier

performances, explore common NLP techniques, and

suggested potential approaches to developing a more accurate

classifier.

The rest of the paper is organised as follows. Related works

are discussed in section II. The research methodology is

presented in section III. The experimental setup and results are

presented in section IV. Section V is the discussion of the

results obtained and the Conclusion is in section VI.

II. RELATED WORKS

The Support Vector Machines (SVM) was utilized in the

process of classifying English text and documents, as

described in [3] article. The author carried out two separate

analytical tests with English documents in order to validate the

classifiers that were chosen. Rocchio classifier produces the

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

65

best performance when the size of the feature set was small,

but the SVM surpasses all of the other classifiers. The

experiments were carried out on a set of 1033 text documents.

Experimental results show that the classification rate increases

to more than 90 percent when more than 4000 features are

utilised.

[2] conducted a comparative study of text classification in

which they studied and compared the effectiveness of several

ML algorithms on various datasets. In the study, the authors

focused on text classification. The work makes use of Support

Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic

Regression (LR), Multinomial Naive Bayes (MNB), and

Random Forest (RF). A comparison of these algorithms was

carried out using two distinct datasets in order to get the most

accurate results. According to the findings obtained from the

proposed system, the results show that LR and SVM perform

better than the other classifiers for the IMDB dataset, while

kNN performs better than the other classifiers for the SPAM

dataset.

In the work of [4], named entities were used as features for the

purpose of classifying news articles into a pre-constructed

hierarchy of international relations. The implementation of the

feature selection was based on the named entities that were

connected with the local categories. The authors trained SVM

and according to the findings of the experiments, the use of

named entities resulted in an improvement in the effectiveness

of hierarchical text classification when applied to newspaper

articles.

In their research, [5] investigated the problem of multi-class

text classification for the Uzbek-language texts that were

available. A dataset was developed specifically for the articles

that were chosen from the online news version of the Uzbek

newspaper "Daryo" consisting of 10 categories. SVM,

Decision Tree (DT), RF, LR, and MNB were the six different

machine learning techniques that were experimented with. As

feature extraction methods, the TF-IDF algorithm, word-level,

and character-level n-gram models, and character-level n-gram

models were utilized and experimental results achieved

maximum accuracy of 86.88 %.

[12] study introduced a research paper categorization system

that can cluster research papers into the meaningful class in

which papers are very likely to have similar subjects. The

system can do this by using a clustering algorithm. By

utilizing a Latent Dirichlet Allocation (LDA) scheme, the

aforementioned system is able to extract representative

keywords from the abstracts of each publication and topic.

After that, the K-means clustering algorithm is used to

categorize the full papers into research papers that have

subjects that are comparable to one another. This classification

is done based on the Term frequency-inverse document

frequency (TF-IDF) values of each paper.

[13] study objective was to get over the limitations of single-

label classification (SLC) and multi-label classification

(MLC). The authors suggested an approach that leverages the

Word2Vec paradigm for textual representation.

[14] suggest an innovative method for representing text texts

that is based on an approach known as feature clustering.

Textual records can be given a symbolic representation in the

form of an interval-valued representation by utilizing the

method that has been suggested. The authors evaluated the

accuracy of classification gained by comparing it to the

accuracy achieved by various current classifiers such as Naive

Bayes, k-NN, Centroid based, and SVM classifiers. The

findings of the experiments indicate that the acquired

classification accuracy is superior to that of the approaches

that are already in use.

The purpose of the study conducted by [15] was to apply ML

techniques in order to automatically identify high-quality,

content-specific articles for a given time period in the field of

internal medicine and compare their performance with that of

previous Boolean-based PubMed clinical query filters. The

selection criteria used by the ACP Journal Club for

publications in internal medicine served as the foundation for

determining high-quality articles in the fields of etiology,

prognosis, diagnosis, and therapy. According to the findings of

the study, it is possible to automatically build models for the

purpose of retrieving high-quality articles.

III. RESEARCH METHODOLOGY

The goal of the paper is to explore a basic workflow to train

and evaluate a model capable of classifying text based on its

content. The dataset used is “The 20 Newsgroups Text

Dataset” which comprises over 18000 newsgroups articles on

20 topics that are originally spitted into training and testing

sets [6]. These articles are unstructured in nature. In this paper,

we will use a set of NLP techniques to prepare the dataset,

training different supervised ML classifiers to classify articles

and evaluate the models to determine the best performing

classifier.

A. Data Visualisation
This gives a pictorial representation of the datasets available.

This enables us to visualise concepts and data patterns. It gives

us a clear idea of what the information means and also the

distribution of data whether it is skewed towards any of the

classes. Figure 1 shows the class distribution of the original

dataset.

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

66

Fig 1. Dataset Distribution

From Fig 1, the output variable shows a near equal distribution

hence, the dataset does not require resampling. Based on the

even distribution, we are sure that our model will not be bias.

Fig 2 shows the total number of articles and the different

classes/categories the dataset is organised. A sample article

contained in the dataset is depicted in Fig 3.

Fig 2. Dataset Categories

Fig 3. Sample Text Article

B. Data Pre-processing

Having visualised the dataset, we need to prepare the raw data

and make it suitable for a ML model to accept. We performed

two basic tasks here:

1. Data cleaning - this involves removing article metadata,

converting text to lowercase, and removing stop words,

alphanumeric characters, and punctuations. The article

metadata was stripped out at the point of fetching the

dataset by specifying a parameter remove. This enables us

to avoid our classifiers from overfitting hence lacking the

ability to generalised with other documents.

2. Data transformation – this entails transforming the

cleaned text into numerical values that can be analysed

statistically. This can be done using the sklearn API,

which allows us to extract features that will be utilised to

train the classifier. Two prominent approaches for feature

extraction are TF-IDF Vectorizer and Count Vectorizer.

 In addition to the above, we performed stemming,

lemmatization, and ngram to determine their effect on the

classifier performance.

C. Building a Pipeline

A ML pipeline is a sequential step that orchestrates the flow of

data from data pre-processing to model training and

prediction.

The automation of the ML model life cycle processes is the

primary advantage that can be gained from utilising ML

pipelines [11]. Scikit-learn provides a Class called Pipeline,

which allows us to a create pipeline for a classifier. This has a

very simplified interface that allows us to specify our

vectorizer and classifier function as a parameter. We used the

pipeline to chain part of the pre-processing task that is

involved in training the classifier. We started our classification

with one of the most common classifiers for discrete

classification, MNB. By simply defining the classifier function

in the pipeline as shown in Fig 4, five other classifiers were

trained and evaluated.

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

67

Fig 4. A Simple Pipeline

D. Model Evaluation

The model built in the previous section is evaluated at this

stage to obtain the performances of the different classifiers.

Standard metrics such as Accuracy, Receiver Operator

Characteristic-Area Under Curve (ROC AUC) score, and

Confusion Matrix are used for the evaluation. The various

performances obtained from the experimentation processes are

shown in Table 1 and Table 2. These results are based on our

first attempt, in which the performances shown can be

improved by performing hyperparameter tuning on the

classifiers.

E. Grid Search for Parameter Tuning

All classifiers can be turned to obtain optimal performance

through their parameters. At this stage of the evaluation, we

created a list of parameters for each classifier. Scikit-learn

GridSearchCV was used to fine-tune the parameters. The

GridSearchCV searches and find the best hyperparameter

value for the classifier. The performance of the various

classifiers is shown in Table 3 after performing a grid search.

IV. EXPERIMENTAL SETUP AND RESULTS

The ML pipeline was developed in python programming

language with extensive use of Sklearn libraries. The

experimentation of the pipeline was performed on Google

Colab. Colab is a platform developed by Google Research that

makes it possible for anyone with access to the internet to

write and run Python code directly within a web browser. The

use of Colab is completely free, and it requires no installation

or configuration on your local computer. Because Google

hosts your Jupyter notebook and allows you to use their GPU

at no additional cost, it is especially helpful for PCs that move

at a snail's pace. It provides access to two key platforms for

processing resources, namely the GPU and the CPU.

The experimental results are shown in Tables 1-3. Table 1

shows the different classifier performances on test data with

and without parameter tuning. Fig 5 shows the confusion

matrix of the best classifier.

Fig 5. MNB Classifier Confusion Matrix

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

68

Table 1. Classifiers Performances on Test Data

Classifiers

Metrices MNB RF LR KNN XGB SGD

Using Count Vectorizer

Accuracy (%) 58.28 58.43 60.07 16.31 58.20 55.27

ROC AUC score 0.90 0.91 0.92 0.61 0.92 -

Training Time 1.83 s 1min 1s 41 s 1.83 s 3min 45s 5.44 s

Using TF-IDF Vectorizer

Accuracy (%) 60.51 58.92 67.18 08.44 57.68 69.19

ROC AUC score 0.94 0.91 0.94 0.53 0.92 -

Training Time 1.99 s 59.2 s 43.6 s 1.97 s 5min 30s 3.56 s

Using TF-IDF Vectorizer + Stopwords

Accuracy (%) 67.51 62.08 68.64 07.59 58.15 69.25

ROC AUC score 0.95 0.93 0.95 0.52 0.92 -

Training Time 1.82 s 58 s 39.6 s 1.78 s 4min 12s 3.06 s

Using TF-IDF Vectorizer + Stopwords + Stemming

Accuracy (%) 66.52 61.49 68.50 8.80 58.94 69.59

ROC AUC score 0.95 0.92 0.95 0.53 0.92 -

Training Time 48.5 s 1min 31s 1min 16s 48.8 s 4min 37s 49.4 s

Using TF-IDF Vectorizer + Stopwords + Lemmatization

Accuracy (%) 66.87 62.02 68.37 6.87 59.14 69.64

ROC AUC score 0.95 0.93 0.95 0.52 0.92 -

Training Time 19.7 s 1min 8s 56.9 s 22.4 s 4min 25s 23.2 s

Table 2. Classifiers Performances on Test Data with Ngrams

 Classifiers Accuracy (%)

ngrams MNB RF LR KNN XGB SGD

Unigram 65.34 61.88 68.57 06.54 58.68 69.41

Unigram+Bigram 65.57 62.50 68.26 06.49 58.40 70.43

Bigram 51.03 39.93 50.53 06.50 34.26 53.08

Table 3. Classifiers Performances on Test Data with Hyperparameter Tuning

 Classifiers

Metrics MNB RF LR KNN XGB SGD

Best Score (%) 76 6

73 11 64 74

Best Params alpha:

0.005

max_depth: 5

max_features: 3

min_samples_leaf: 3

n_estimators: 300

penalty:

'l2'

n_neighbors: 5

weights:

'distance'

learning_rate:

0.1

n_estimators:

200

alpha: 0.05

loss: 'hinge'

penalty: 'l2'

random_state:

5

Wall Time 10min

14s

4h 12min 20s

6min 46s 16min 8s 2h 4min 40s 1h 28min 21s

V. DISCUSSION

From Table 1, we observed that TF-IDF Vectorizer performed

better than Count Vectorizer when used as the vectorizer in

most cases. Hence, we selected TF-IDF Vectorizer as our

choice vectorizer. TF-IDF Vectorizer focuses on the frequency

of words in the corpus as well as their relevance. This allows

us to exclude words that are not as significant for analysis and

also reduces the input dimension.

Using TF-IDF Vectorizer, we removed stopwords from the

data and an improved performance was achieved across all

classifiers except KNN. The data was further stemmed and

lemmatized. We observed that lemmatization offered better

performance in all classifiers when compared to stemming

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

69

except in KNN and LR. Table 2 shows the performances when

ngram was applied to extract text data to form the vectorizer.

Ngram decreases performance for MNB, KNN, and XGB but

with little increase in RF, LR, and SGD.

Further performance improvement was gained through hyper

parameter tuning as shown in Table 3. It was observed that

KNN consistently had the least performance in all cases. With

hyper parameter tuning, performance increased a bit but with

very high training time in most of the classifiers. It is observed

that MNB and SGD had an accuracy of 76% and 74% and a

computation speed of 10min 14s and 1h 28min 21s

respectively.

VI.CONCLUSION

This paper trained and experimented the performance of six

different classifiers (MNB, LR, KNN, RF, XGB, and SGD) in

an NPL pipeline. Experimental results showed that MNB

Classifier outperformed other state-of-the-art classifiers when

its parameter is tuned. The classifier achieved an overall

accuracy of 76 % and had the least computation speed except

for LR. SGD outperformed all other models when tuned with

Using TF-IDF Vectorizer + Stopwords + Lemmatization +

Ngram (Unigram+Bigram).

In this study, the results obtained using a single and traditional

ML model are relatively low. We suggest that a hybrid model

or deep learning approach could yield better performance. In

future work, we will experiment using a hybrid classification

model for the same task. Research has shown that most hybrid

model generally performs better compared to a single model

[7-8]. In the hybrid model, we will leverage the advantage of

deep learning techniques by finding a classifier that best

combines with Convolutional Neural Networks (CNN) which

are known to be very efficient in document classification [9-

10] to achieve better accuracy.

VII. REFERENCE

[1] Orobor A.I. (2016). Integration and Analysis of

Unstructured Datafor Decision Making: Text Analytics

Approach. International Journal of Open Information

Technologies, 4(10, 82-88

[2] Hassan, S.U., Ahamed, J. & Ahmad, K. (2022).

Analytics of Machine Learning-Based Algorithms For

Text Classification. Sustainable Operations and

Computers, 3, 238–248

[3] Luo, X. (2021). Efficient English text classification

using Selected Machine Learning Techniques.

Alexandria Engineering Journal, 60, 3401–3409

[4] Gui, Y., Gao, Z., Li, R., & Yang, X. (2012).

Hierarchical Text Classification for News Articles

Based-on Named Entities. In: Zhou, S., Zhang, S.,

Karypis, G. (eds) Advanced Data Mining and

Applications. ADMA 2012. Lecture Notes in Computer

Science, 7713, Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-35527-1_27

[5] Rabbimov, M. & Kobilov, S.S. (2020). Multi-Class

Text Classification of Uzbek News Articles using

Machine Learning. Journal of Physics: Conference

Series, in IV International Scientific and Technical

Conference, 1546

[6] Scikit-learn 5.6.2. The 20 Newsgroups Text Dataset,

2022. Available at: https://scikit-

learn.org/0.19/datasets/twenty_newsgroups.html.

(Accessed: 12 May 2022)

[7] Fan, X., Lung, C., & Ajila, S. (2018). Using Hybrid and

Diversity-Based Adaptive Ensemble Method for Binary

Classification. International Journal of Intelligence

Science, 8, 43-74

[8] Dang, C.N., Moreno-García, M.N., & Prieta, F.D.

(2021). Hybrid Deep Learning Models for Sentiment

Analysis," Complexity, 2021, 1-16

[9] Albawi, S., Mohammed T.A., & Al-Zawi, S. (2017).

Understanding of a Convolutional Neural Network.

International Conference on Engineering and

Technology (ICET), 1-6

[10] Gultepe, E., Kamkarhaghighi, M., & Makrehchi, M.

(2018). Latent Semantic Analysis Boosted

Convolutional Neural Networks for Document

Classification, 5th International Conference on

Behavioral, Economic, and Socio-Cultural Computing

(BESC), 93-98

[11] Hapke, H. & Nelson C. (2020). Building Machine

Learning Pipelines. O'Reilly Media, Inc.

[12] Kim, S.W. & Gil, J.M. (2019). Research Paper

Classification Systems Based on TF-IDF and LDA

Schemes. Hum. Cent. Comput. Inf. Sci. 9, 30.

https://doi.org/10.1186/s13673-019-0192-7

[13] Mustafa, G., Usman, M., Yu, L., Afzal, M.T.,

Sulaiman, M. & Shahid, A. (2021). Multi-label

Classification Of Research Articles Using Word2Vec

and Identification of Similarity Threshold. Sci Rep, 11,

21900. https://doi.org/10.1038/s41598-021-01460-7

[14] Harish, B.S. & Udayasri, B. (2014). Document

Classification: An Approach Using Feature Clustering.

In: Thampi, S., Abraham, A., Pal, S., Rodriguez, J.

(eds) Recent Advances in Intelligent Informatics.

Advances in Intelligent Systems and Computing, 235.

Springer, Cham. https://doi.org/10.1007/978-3-319-

01778-5_17

[15] Aphinyanaphongs, Y., Tsamardinos, I., Statnikov, A.,

Hardin, D., & Aliferis, C.F. (2005). Text categorization

models for high-quality article retrieval in internal

medicine. Journal of the American Medical Informatics

Association : JAMIA, 12(2), 207–216.

https://doi.org/10.1197/jamia.M1641

