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Abstract— Machine Learning (ML) pipeline is a sequential 

step that orchestrates the flow of data from data pre-

processing to model training and prediction. This paper 

presents the development of a ML pipeline based on 

Natural Language Processing (NLP) for multi-class text 

classification using the 20 newsgroups text dataset. The 

study experimented the performance of six classifiers 

which are Multinominal Naïve Bayes (MNB), Logistic 

Regression (LR), K Nearest Neighbors (KNN), Random 

Forest (RF), eXtreme Gradient Boosting (XGB), and 

Stochastic Gradient Descent (SGD) in Google Colab. 

Experimental results show that TF-IDF Vectorizer 

performed better than Count Vectorizer when used as the 

vectorizer in most cases. KNN consistently had the least 

performance in most of the cases. MNB and SGD had the 

best performance with an accuracy of 76% and 74% and a 

computation speed of 10min 14s and 1h 28min 21s 

respectively. The study suggests that improved accuracy 

can be obtained using a hybrid model or deep learning 

approach. 
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I. INTRODUCTION 

Research has demonstrated that information concealed in 

unstructured data can play an important part in decision-

making. This significant portion of organisational information 

that is unstructured may contain the knowledge that is required 

for strategic planning [1]. The majority of the unstructured 

data are in form of text from different sources. Since 

analysing, interpreting, organising, and sorting through text 

data is difficult and time-consuming, several organisations do 

not use it to its full potential despite all of the inherent 

benefits. To begin to derive insight, a text classification 

approach can be adopted. The approach can be utilised to 

organise, arrange, and classify virtually any form of text, 

including documents, medical research, files, and text found 

all over the internet. The process of text classification is a 

method of Machine Learning (ML) that involves the 

assignment of a set of predetermined categories to free-form 

text. Text classification is one of the fundamental problems 

involved in Natural Language Processing (NLP), and it has a 

wide range of applications, including intent detection, topic 

labelling, spam detection, and sentiment analysis.  

Text classification is more significant for many businesses 

since it reduces the need for manual data classification, which 

is a technique that is more expensive and takes more time to 

complete [2]. Text classification allows businesses to swiftly 

and cost-effectively organise all kinds of relevant content, 

such as emails, legal papers, social media, complaints, 

surveys, and many more sorts of content. It is one of the most 

important aspects of ML since it enables businesses to get 

profound insights that can guide future decision-making. The 

classification of text can either be done manually or 

automatically. Automatic text classification can be 

accomplished in three major ways, which are through machine 

learning-based systems, rule-based systems, or hybrid 

systems. In the process of manually classifying texts, a human 

annotator is required. This individual reads the text, analyses 

its meaning, and then assigns it to one of several categories. 

Although it is time-consuming and costly, this approach has 

the potential to produce satisfactory outcomes. 

In this paper, we developed a ML pipeline for multi-class text 

classification. We experimented different ML classifier 

performances, explore common NLP techniques, and 

suggested potential approaches to developing a more accurate 

classifier. 

The rest of the paper is organised as follows. Related works 

are discussed in section II. The research methodology is 

presented in section III. The experimental setup and results are 

presented in section IV. Section V is the discussion of the 

results obtained and the Conclusion is in section VI. 

 

II. RELATED WORKS 

The Support Vector Machines (SVM) was utilized in the 

process of classifying English text and documents, as 

described in [3] article. The author carried out two separate 

analytical tests with English documents in order to validate the 

classifiers that were chosen. Rocchio classifier produces the 
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best performance when the size of the feature set was small, 

but the SVM surpasses all of the other classifiers. The 

experiments were carried out on a set of 1033 text documents. 

Experimental results show that the classification rate increases 

to more than 90 percent when more than 4000 features are 

utilised. 

[2] conducted a comparative study of text classification in 

which they studied and compared the effectiveness of several 

ML algorithms on various datasets. In the study, the authors 

focused on text classification. The work makes use of Support 

Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic 

Regression (LR), Multinomial Naive Bayes (MNB), and 

Random Forest (RF). A comparison of these algorithms was 

carried out using two distinct datasets in order to get the most 

accurate results. According to the findings obtained from the 

proposed system, the results show that LR and SVM perform 

better than the other classifiers for the IMDB dataset, while 

kNN performs better than the other classifiers for the SPAM 

dataset.  

In the work of [4], named entities were used as features for the 

purpose of classifying news articles into a pre-constructed 

hierarchy of international relations. The implementation of the 

feature selection was based on the named entities that were 

connected with the local categories. The authors trained SVM 

and according to the findings of the experiments, the use of 

named entities resulted in an improvement in the effectiveness 

of hierarchical text classification when applied to newspaper 

articles. 

In their research, [5] investigated the problem of multi-class 

text classification for the Uzbek-language texts that were 

available. A dataset was developed specifically for the articles 

that were chosen from the online news version of the Uzbek 

newspaper "Daryo" consisting of 10 categories. SVM, 

Decision Tree (DT), RF, LR, and MNB were the six different 

machine learning techniques that were experimented with. As 

feature extraction methods, the TF-IDF algorithm, word-level, 

and character-level n-gram models, and character-level n-gram 

models were utilized and experimental results achieved 

maximum accuracy of 86.88 %. 

[12] study introduced a research paper categorization system 

that can cluster research papers into the meaningful class in 

which papers are very likely to have similar subjects. The 

system can do this by using a clustering algorithm. By 

utilizing a Latent Dirichlet Allocation (LDA) scheme, the 

aforementioned system is able to extract representative 

keywords from the abstracts of each publication and topic. 

After that, the K-means clustering algorithm is used to 

categorize the full papers into research papers that have 

subjects that are comparable to one another. This classification 

is done based on the Term frequency-inverse document 

frequency (TF-IDF) values of each paper. 

[13] study objective was to get over the limitations of single-

label classification (SLC) and multi-label classification 

(MLC). The authors suggested an approach that leverages the 

Word2Vec paradigm for textual representation. 

[14] suggest an innovative method for representing text texts 

that is based on an approach known as feature clustering. 

Textual records can be given a symbolic representation in the 

form of an interval-valued representation by utilizing the 

method that has been suggested. The authors evaluated the 

accuracy of classification gained by comparing it to the 

accuracy achieved by various current classifiers such as Naive 

Bayes, k-NN, Centroid based, and SVM classifiers. The 

findings of the experiments indicate that the acquired 

classification accuracy is superior to that of the approaches 

that are already in use. 

The purpose of the study conducted by [15] was to apply ML 

techniques in order to automatically identify high-quality, 

content-specific articles for a given time period in the field of 

internal medicine and compare their performance with that of 

previous Boolean-based PubMed clinical query filters. The 

selection criteria used by the ACP Journal Club for 

publications in internal medicine served as the foundation for 

determining high-quality articles in the fields of etiology, 

prognosis, diagnosis, and therapy. According to the findings of 

the study, it is possible to automatically build models for the 

purpose of retrieving high-quality articles. 

 

III. RESEARCH METHODOLOGY 

The goal of the paper is to explore a basic workflow to train 

and evaluate a model capable of classifying text based on its 

content. The dataset used is “The 20 Newsgroups Text 

Dataset” which comprises over 18000 newsgroups articles on 

20 topics that are originally spitted into training and testing 

sets [6]. These articles are unstructured in nature. In this paper, 

we will use a set of NLP techniques to prepare the dataset, 

training different supervised ML classifiers to classify articles 

and evaluate the models to determine the best performing 

classifier. 

 

A. Data Visualisation 
This gives a pictorial representation of the datasets available. 

This enables us to visualise concepts and data patterns. It gives 

us a clear idea of what the information means and also the 

distribution of data whether it is skewed towards any of the 

classes. Figure 1 shows the class distribution of the original 

dataset. 
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Fig 1. Dataset Distribution 

 

From Fig 1, the output variable shows a near equal distribution 

hence, the dataset does not require resampling. Based on the 

even distribution, we are sure that our model will not be bias.  

Fig 2 shows the total number of articles and the different 

classes/categories the dataset is organised. A sample article 

contained in the dataset is depicted in Fig 3. 

 
Fig 2. Dataset Categories 

 
Fig 3. Sample Text Article 

 

B. Data Pre-processing 

Having visualised the dataset, we need to prepare the raw data 

and make it suitable for a ML model to accept. We performed 

two basic tasks here: 

1. Data cleaning - this involves removing article metadata, 

converting text to lowercase, and removing stop words, 

alphanumeric characters, and punctuations. The article 

metadata was stripped out at the point of fetching the 

dataset by specifying a parameter remove. This enables us 

to avoid our classifiers from overfitting hence lacking the 

ability to generalised with other documents.  

2. Data transformation – this entails transforming the 

cleaned text into numerical values that can be analysed 

statistically. This can be done using the sklearn API, 

which allows us to extract features that will be utilised to 

train the classifier. Two prominent approaches for feature 

extraction are TF-IDF Vectorizer and Count Vectorizer.  

 In addition to the above, we performed stemming, 

lemmatization, and ngram to determine their effect on the 

classifier performance. 

 

C. Building a Pipeline 

A ML pipeline is a sequential step that orchestrates the flow of 

data from data pre-processing to model training and 

prediction.  

The automation of the ML model life cycle processes is the 

primary advantage that can be gained from utilising ML 

pipelines [11]. Scikit-learn provides a Class called Pipeline, 

which allows us to a create pipeline for a classifier. This has a 

very simplified interface that allows us to specify our 

vectorizer and classifier function as a parameter. We used the 

pipeline to chain part of the pre-processing task that is 

involved in training the classifier. We started our classification 

with one of the most common classifiers for discrete 

classification, MNB. By simply defining the classifier function 

in the pipeline as shown in Fig 4, five other classifiers were 

trained and evaluated. 



                         International Journal of Engineering Applied Sciences and Technology, 2022    
                                                Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 64-69 

                                       Published Online June 2022 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

67 

 
Fig 4. A Simple Pipeline 

 

D. Model Evaluation 

The model built in the previous section is evaluated at this 

stage to obtain the performances of the different classifiers. 

Standard metrics such as Accuracy, Receiver Operator 

Characteristic-Area Under Curve (ROC AUC) score, and 

Confusion Matrix are used for the evaluation. The various 

performances obtained from the experimentation processes are 

shown in Table 1 and Table 2. These results are based on our 

first attempt, in which the performances shown can be 

improved by performing hyperparameter tuning on the 

classifiers. 

 

 

E. Grid Search for Parameter Tuning 

All classifiers can be turned to obtain optimal performance 

through their parameters. At this stage of the evaluation, we 

created a list of parameters for each classifier. Scikit-learn 

GridSearchCV was used to fine-tune the parameters. The 

GridSearchCV searches and find the best hyperparameter 

value for the classifier. The performance of the various 

classifiers is shown in Table 3 after performing a grid search. 

 

IV. EXPERIMENTAL SETUP AND RESULTS 

The ML pipeline was developed in python programming 

language with extensive use of Sklearn libraries. The 

experimentation of the pipeline was performed on Google 

Colab. Colab is a platform developed by Google Research that 

makes it possible for anyone with access to the internet to 

write and run Python code directly within a web browser. The 

use of Colab is completely free, and it requires no installation 

or configuration on your local computer. Because Google 

hosts your Jupyter notebook and allows you to use their GPU 

at no additional cost, it is especially helpful for PCs that move 

at a snail's pace. It provides access to two key platforms for 

processing resources, namely the GPU and the CPU. 

The experimental results are shown in Tables 1-3. Table 1 

shows the different classifier performances on test data with 

and without parameter tuning. Fig 5 shows the confusion 

matrix of the best classifier. 

 
Fig 5. MNB Classifier Confusion Matrix 
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Table 1. Classifiers Performances on Test Data 

Classifiers 

Metrices MNB  RF LR KNN XGB SGD 

Using Count Vectorizer 

Accuracy (%) 58.28 58.43 60.07 16.31 58.20 55.27 

ROC AUC score 0.90 0.91 0.92 0.61 0.92 - 

Training Time 1.83 s 1min 1s 41 s 1.83 s 3min 45s 5.44 s 

Using TF-IDF Vectorizer 

Accuracy (%) 60.51 58.92 67.18 08.44 57.68 69.19 

ROC AUC score 0.94 0.91 0.94 0.53 0.92 - 

Training Time 1.99 s 59.2 s 43.6 s 1.97 s 5min 30s 3.56 s 

Using TF-IDF Vectorizer + Stopwords 

Accuracy (%) 67.51 62.08 68.64 07.59 58.15 69.25 

ROC AUC score 0.95 0.93 0.95 0.52 0.92 - 

Training Time 1.82 s 58 s 39.6 s 1.78 s 4min 12s 3.06 s 

Using TF-IDF Vectorizer + Stopwords + Stemming 

Accuracy (%) 66.52 61.49 68.50 8.80 58.94 69.59 

ROC AUC score 0.95 0.92 0.95 0.53 0.92 - 

Training Time 48.5 s 1min 31s 1min 16s 48.8 s 4min 37s 49.4 s 

Using TF-IDF Vectorizer + Stopwords + Lemmatization 

Accuracy (%) 66.87 62.02 68.37 6.87 59.14 69.64 

ROC AUC score 0.95 0.93 0.95 0.52 0.92 - 

Training Time 19.7 s 1min 8s 56.9 s 22.4 s 4min 25s 23.2 s 

 

Table 2. Classifiers Performances on Test Data with Ngrams 

 Classifiers Accuracy (%)  

ngrams  MNB  RF LR KNN XGB SGD 

Unigram  65.34 61.88 68.57 06.54 58.68 69.41 

Unigram+Bigram  65.57 62.50 68.26 06.49 58.40 70.43 

Bigram 51.03 39.93 50.53 06.50 34.26 53.08 

 

Table 3. Classifiers Performances on Test Data with Hyperparameter Tuning 

 Classifiers 

Metrics  MNB  RF LR KNN XGB SGD 

Best Score (%) 76  6 

 

73 11 64 74 

Best Params alpha: 

0.005 

max_depth: 5 

max_features: 3 

min_samples_leaf: 3 

n_estimators: 300 

 

penalty: 

'l2' 

n_neighbors: 5 

weights: 

'distance' 

learning_rate: 

0.1 

n_estimators: 

200 

 

alpha: 0.05 

loss: 'hinge' 

penalty: 'l2' 

random_state: 

5 

Wall Time 10min 

14s 

4h 12min 20s 

 

6min 46s 16min 8s 2h 4min 40s 1h 28min 21s 

 

V. DISCUSSION 

From Table 1, we observed that TF-IDF Vectorizer performed 

better than Count Vectorizer when used as the vectorizer in 

most cases. Hence, we selected TF-IDF Vectorizer as our 

choice vectorizer. TF-IDF Vectorizer focuses on the frequency 

of words in the corpus as well as their relevance. This allows 

us to exclude words that are not as significant for analysis and 

also reduces the input dimension.  

Using TF-IDF Vectorizer, we removed stopwords from the 

data and an improved performance was achieved across all 

classifiers except KNN. The data was further stemmed and 

lemmatized. We observed that lemmatization offered better 

performance in all classifiers when compared to stemming 
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except in KNN and LR. Table 2 shows the performances when 

ngram was applied to extract text data to form the vectorizer. 

Ngram decreases performance for MNB, KNN, and XGB but 

with little increase in RF, LR, and SGD.  

Further performance improvement was gained through hyper 

parameter tuning as shown in Table 3. It was observed that 

KNN consistently had the least performance in all cases. With 

hyper parameter tuning, performance increased a bit but with 

very high training time in most of the classifiers. It is observed 

that MNB and SGD had an accuracy of 76% and 74% and a 

computation speed of 10min 14s and 1h 28min 21s 

respectively.  

 

VI.CONCLUSION 

This paper trained and experimented the performance of six 

different classifiers (MNB, LR, KNN, RF, XGB, and SGD) in 

an NPL pipeline. Experimental results showed that MNB 

Classifier outperformed other state-of-the-art classifiers when 

its parameter is tuned. The classifier achieved an overall 

accuracy of 76 % and had the least computation speed except 

for LR. SGD outperformed all other models when tuned with 

Using TF-IDF Vectorizer + Stopwords + Lemmatization + 

Ngram (Unigram+Bigram). 

In this study, the results obtained using a single and traditional 

ML model are relatively low. We suggest that a hybrid model 

or deep learning approach could yield better performance. In 

future work, we will experiment using a hybrid classification 

model for the same task. Research has shown that most hybrid 

model generally performs better compared to a single model 

[7-8]. In the hybrid model, we will leverage the advantage of 

deep learning techniques by finding a classifier that best 

combines with Convolutional Neural Networks (CNN) which 

are known to be very efficient in document classification [9-

10] to achieve better accuracy. 
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