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Abstract - In this study, we analyzed the endemic 

equilibrium point of a malaria-hygiene mathematical 

model. We prove that the mathematical model is 

biological and meaningfully well-posed. We also 

compute the basic reproduction number using the next 

generation method. Stability analysis of the endemic 

equilibrium point show that the point is locally stable 

if reproduction number is greater that unity and 

globally stable by the Lasalle’s invariant principle. 

Numerical simulation to show the dynamics of the 

compartment at various hygiene rate was carried out. 
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I. INTRODUCTION 

One of the serious public health problem affecting the 

wealth and health of individuals and nations in Africa is 

Malaria [1, 2]. From 2015-2017, no progress in reducing 

the global case of malaria has been made [3]. Preventive 

and symptomatic treatment of malaria, use of long-lasting 

insecticidal mosquito nets (LLINs) and spraying are 
efforts employed in malaria prevention, these have 

reduced the incidence and mortality of malaria [4, 5]. 

Poor Sanitation system- stagnant water and streams, 
Socio-economic factors are the ideal location for the 

development of malaria transmission vector (Anopheles 

mosquitoes) [6]. The link of the water, sanitation and 

hygiene (WASH) efforts with malaria transmission has 

been neglected. Regular cleaning of the surrounding has 

been associated with malaria infection prevalence [7]. 

Mathematical modelling has been an essential tool for 

understanding disease transmission dynamics [8]. [9] 

proposed a mathematical model of typhoid fever assuming 

budget allocation for protection against the disease as a 
variable. The model analysis revealed that sanitation and 

awareness program has capacity to control the spread of 

the infection.  [10] Formulated a mathematical model of 

cholera using hygiene consciousness as a control strategy. 

Using the next generation, the basic reproduction was 

computed and they showed that the disease free 

equilibrium is locally stable. The numerical simulation 

revealed that hygiene consciousness is effective in 

controlling cholera. [11] model the transmission dynamics 

of cholera establishing the effects of hygiene, famine, 

climate and environment. Numerical simulations was 

carried out to show the evolution of cholera spread. [12] 
proposed a system of non-linear ordinary differential 

equation of TB to study the effects of hygiene as a control 

strategy. The equilibrium points was analyzed and 

established. The local and global stability of the DFE is 

stable when unity is less than one. The result of the 

simulation shows that hygiene consciousness can help 

control TB disease.  Many mathematical models have been 

formulated to study malaria transmission but to the 

knowledge of the author none has studied transmission of 

malaria and hygiene model. 

II. MODEL FORMULATION 

In this model, the total human population denoted by 𝑁𝐻is 

subdivided into Unhygienic susceptible human 

population 𝑆𝑢 , Hygienic Susceptible Human 

population 𝑆ℎ, Unhygienic infected human population 𝐼𝑢, 

hygienic infected human population 𝐼ℎand the Recovered 

Human population 𝑅ℎ. The mosquito population denoted 

by 𝑁𝑣 is subdivided into Non-disease carrier mosquitoes 

𝑆𝑣 and disease carrier mosquitoes 𝐼𝑣. Therefore, we have 

the following sub populations:  

𝑁𝐻 = 𝑆𝑢 + 𝑆ℎ + 𝐼𝑢 + 𝐼ℎ + 𝑅.           (1) 
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𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣 .             (2) 

Let Λ𝐻  be the recruitment rate of the human population. A 

fraction (1 − 𝛼)Λ𝐻enters unhygienic susceptible human 

class while the remaining fraction 𝛼Λ𝐻  enters the hygienic 
susceptible human class. The unhygienic susceptible class 

is increased by the rate at which unhygienic human class 

lose immunity after recovery given as 𝜔, and reduced by 

the rate of progression to hygienic class𝜏1, the force of 

infection for the unhygienic class𝜆𝑢 and natural human 

death rate 𝜇𝐻. The hygienic susceptible human 

compartment is increased by the 𝜏1, while the 

compartment is reduced by natural human death rate 𝜇𝐻 

and the force of infection for the hygienic class (1 − 𝜁)𝜆ℎ. 

The unhygienic infected human class 𝐼𝑢 is increased by 𝜆𝑢 

and reduced by natural human death rate 𝜇𝐻, rate of 

progression from 𝐼𝑢to  𝐼ℎ given as 𝜏2, malaria induced 

death for unhygienic human class 𝛿𝑢 and recovery for 

unhygienic human 𝜃𝑢. The hygienic infected class 𝐼ℎ is 

increased by (1 − 𝜁)𝜆ℎ and 𝜏2then reduced by the 

recovery rate for a hygienic human class given as 𝜃ℎ, 

malaria induced death for hygienic human class 𝛿ℎand 

natural death rate 𝜇𝐻. The Human recovery class 𝑅 is 

increased by 𝜃ℎ and 𝜃𝑢, then reduced by 𝜇𝐻, 𝜔ℎ and 𝜔𝑢 . 

The susceptible mosquito class 𝑆𝑣 is increased by the 

Mosquito recruitment rate given as Λ𝑣, reduced by the 

mosquitoes death rate 𝜇𝑣, and force of infection for 

mosquito g

iven as 𝜆𝑣. The infected mosquito class 𝐼𝑣 is increased by 

𝜆𝑣 and  𝜇𝑣. 

 

Figure 1. Model Schematic Diagram  

Given the above description and definitions of variables 

and parameters in Table 1 and 2, the following are the 

model equations: 

𝑑𝑆𝑢

𝑑𝑡
= (1 − 𝛼)Λ𝐻 − (𝜏1 + 𝜆𝑢 + 𝜇𝐻)𝑆𝑢 +𝜔𝑅            (3) 

𝑑𝑆ℎ

𝑑𝑡
= 𝛼Λ𝐻 + 𝜔𝑅 + 𝜏1𝑆𝑢 − ((1 − 𝜁)𝜆ℎ + 𝜇𝐻)𝑆ℎ ,      (4) 

𝑑𝐼𝑢

𝑑𝑡
= 𝜆𝑢𝑆𝑢 − (𝜏2 + 𝛿𝑢 + 𝜃𝑢 + 𝜇𝐻)𝐼𝑢,                        (5) 

𝑑𝐼ℎ

𝑑𝑡
= (1 − 𝜁)𝜆ℎ𝑆ℎ + 𝜏2𝐼𝑢 − (𝛿ℎ + 𝜃ℎ + 𝜇𝐻)𝐼ℎ ,         (6) 

𝑑𝑅

𝑑𝑡
= 𝜃𝑢𝐼𝑢 + 𝜃ℎ𝐼ℎ − (𝜔 + 𝜇𝐻)𝑅,                                 (7) 

𝑑𝑆𝑣

𝑑𝑡
= Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣 ,                                             (8) 

𝑑𝐼𝑣

𝑑𝑡
= 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                         (9) 

where  

𝜆𝑢 =
𝑏1𝛽𝑣ℎ𝐼𝑣

𝑁𝐻
, 𝜆ℎ =

𝑏2𝛽𝑣ℎ𝐼𝑣

𝑁𝐻
,   𝑏1 > 𝑏2, 𝜆𝑣 =

𝑏3𝛽ℎ𝑣(𝐼𝑢+𝜌𝐼ℎ)

𝑁𝐻
, 𝛿𝑢 > 𝛿ℎ ,   𝜃ℎ > 𝜃𝑢.                         (10) 

Table 1.  Variables 

Symbols Description 

𝑆𝑢 Unhygienic Susceptible Human    

𝑆ℎ Hygienic Susceptible Human   

𝐼𝑢 Unhygienic Infected Human  

𝐼ℎ Hygienic Infected Human  

𝑅 Recovered Human  

𝑆𝑣 Non-disease carrier Mosquitoes 

𝐼𝑣 Disease carrier Mosquitoes  

 

Table 2. Model Parameters 

Parameters Definitions 

Λ𝐻  Recruitment rate of Human Population  

Λ𝑣 Recruitment rate of Mosquitoes  

𝜏1 Progression from 𝑆𝑢  𝑡𝑜 𝑆ℎ 

𝜏2 Progression from 𝐼𝑢  𝑡𝑜 𝐼ℎ 

𝛿𝑢 Disease-Induced death for the unhygienic human 

class  
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𝛿ℎ Disease-Induced death for the hygienic human 

class  

𝑏1 Biting rate of mosquito for unhygienic human 

class  

𝑏2 Biting rate of mosquito for hygienic human class  

𝛽𝑣ℎ  Transmission probability of infection from 

mosquito to human  

𝛽ℎ𝑣  Transmission probability of infection from human 

to mosquitoes 

𝜆𝑢 The force of infection for unhygienic human class 

𝜆ℎ The force of infection for hygienic human class  

𝜆𝑣 Force of infection for mosquitoes 

𝑏3 Biting rate of mosquitoes 

𝜁 Rate of reduction of infection for hygienic class  

𝜌 Modification Parameter  

𝜃𝑢 Rate of recovery for unhygienic human class  

𝜃ℎ Rate of recovery for hygienic human class 

𝜔 Rate at which recovered human become 

susceptible 

𝛼 Hygienic rate  

𝜇𝐻 Natural human death rate  

𝜇𝑣 Natural death rate of mosquitoes  

𝑁𝐻  Total Human Population 

 

III. MODEL ANALYSIS 

3.1 Invariant Region 

The invariant region can be obtained by the following 

theorem. 

Theorem 3.1 

The solutions of the model are feasible for all  𝑡 > 0 if 

they enter the invariant region 

Ω = Ω𝐻 × Ω𝑣 .                                                (12) 

Proof: 

Let 

Ω = (𝑆𝑢 , 𝑆ℎ , 𝐼𝑢 , 𝐼ℎ , 𝑅, 𝑆𝑣 , 𝐼𝑣) ∈ ℝ+
7 ,                 (13) 

be any solution of the system with non-negative initial 

conditions.  

Hence, all feasible solution set of the human population 

of the malaria model enters the region  

Ω𝐻 = {(𝑆𝑢 , 𝑆ℎ , 𝐼𝑢 , 𝐼ℎ , 𝑅) ∈ ℝ+
5 : 𝑆𝑢 ≥ 0, 𝑆ℎ ≥ 0, 𝐼𝑢 ≥

0, 𝐼ℎ ≥ 0,𝑅 ≥ 0,𝑁𝐻 ≤
Λ𝐻

𝜇𝐻
}.                                     (14) 

Similarly, the feasible solution set of the vector 

population enter the region 

Ω𝑣 = {(𝑆𝑣 , 𝐼𝑣) ∈ ℝ+
2 : 𝑆𝑣 ≥ 0, 𝐼𝑣 ≥ 0,𝑁𝑣 ≤

Λ𝑣

𝜇𝑣
}.        (15) 

Therefore, the region Ω is positively invariant i.e. the 

solution remains positive for all initial values. 

Thus, the model is biologically meaningful and 

mathematically well-posed in the domain Ω. 

3.2 Disease Free Equilibrium (DFE) 

The DFE of the model equations (3 - 9) is given as  

𝐸0 = (𝑆𝑢
0, 𝑆ℎ

0, 𝐼𝑢
0, 𝐼ℎ

0, 𝑅0, 𝑆𝑣
0, 𝐼𝑣

0) =

(
(1−𝛼)Λ𝐻

(𝜏1+𝜇𝐻)
,
Λ𝐻(𝜏1+𝛼𝜇𝐻)

𝜇𝐻(𝜏1+𝜇𝐻)
, 0,0,0,

Λ𝑣

𝜇𝑣
, 0)                            (16) 

3.3 Reproduction Number (𝑹𝟎) 

The basic reproduction number (𝑅0) is defined as the 

number of secondary malaria infections produced by one 

infected individual in a completely susceptible 

community. The next-generation method will be 

employed to compute 𝑅0. 𝐹(𝑥) is the rate of new infection 

appearance while 𝑉(𝑥) is the rate of transfer of individuals 

into compartments. So we have 

𝐹𝑉−1 = 𝑅0 =

√
𝑏3𝛽𝑣ℎ𝛽ℎ𝑣Λ𝑣𝜇𝐻(𝑏1𝜇𝐻(1−𝛼)(𝑘2+𝜏2𝜌)+𝑏2𝑘1𝜌(𝛼𝜇𝐻+𝜏1)(1−𝜁))

Λ𝐻𝜇𝑣
2𝑘1𝑘2(𝜏1+𝜇𝐻)

  (17) 

 

3.4 Endemic Equilibrium (EE) 

The EE is when the disease continues in the community. 

It is computed by equating all the model equations to 

zero. It is denoted by  

𝐸∗ = (𝑆𝑢
∗ , 𝑆ℎ

∗ , 𝐼𝑢
∗ , 𝐼ℎ

∗ , 𝑅∗, 𝑆𝑣
∗, 𝐼𝑣

∗)                                       (18) 

So, 

𝑆𝑢
∗ =

Λ𝐻((1−𝛼)Λ𝐻+𝜔𝑅
∗)

Λ𝐻(𝜏1+𝜇𝐻)+𝑏1𝜇𝐻𝛽𝑣ℎ𝐼𝑣
∗,                                            (19) 
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𝑆ℎ
∗ =

Λ𝐻(𝛼Λ𝐻+𝜔𝑅
∗+𝜏1𝑆𝑢

∗ )

((1−𝜁)𝑏2𝜇𝐻𝛽𝑣ℎ𝐼𝑣
∗)+Λ𝐻𝜇𝐻

,                                         (20) 

𝐼𝑢
∗ =

𝑏1𝜇𝐻𝛽𝑣ℎ𝐼𝑣
∗𝑆𝑢
∗

Λ𝐻𝑘1
,                                                           (21) 

𝐼ℎ
∗ =

𝜇𝐻𝛽𝑣ℎ𝐼𝑣
∗((1−𝜁)𝑘1𝑏2𝑆ℎ

∗+𝑏1𝜏2𝑆𝑢
∗)

Λ𝐻𝑘1𝑘2
,                                  (22) 

𝑅∗ =
𝜃𝑢𝐼𝑢

∗+𝜃ℎ𝐼ℎ
∗

𝑘3
,                                                             (23) 

𝑆𝑣
∗ =

Λ𝑣Λ𝐻

𝑏3𝛽ℎ𝑣𝜇𝐻(𝐼𝑢
∗+𝜌𝐼ℎ

∗ )+Λ𝐻𝜇𝑣
,                                          (24) 

𝐼𝑣
∗ =

𝜆𝑣
∗𝑆𝑣
∗

𝜇𝑣
,                                                                      (25) 

Where  

𝑘1 = (𝜏2 + 𝛿𝑢 + 𝜃𝑢 + 𝜇𝐻); 𝑘2 = (𝛿ℎ + 𝜃ℎ + 𝜇𝐻); 𝑘3
= (𝜔 + 𝜇𝐻) 

Substituting (24) for 𝑆𝑣
∗ (21) and (22) for 𝐼𝑢

∗  and 𝐼ℎ
∗ 

respectively, (25) becomes  

𝑍1𝐼𝑣
∗2 − 𝑍2𝐼𝑣

∗ = 0                  (26) 

This gives solutions of  

𝐼𝑣
∗ = 0 which is the DFE point, 

or 𝐼𝑣
∗ =

𝑍2

𝑍1
                   (27) 

Where  

𝑍1 =
𝑏3𝛽𝑣ℎ𝛽ℎ𝑣𝜇𝐻𝜇𝑣(𝑏1𝜇𝐻(1−𝛼)(𝑘2+𝜏2𝜌)+𝑏2𝑘1𝜌(𝛼𝜇𝐻+𝜏1)(1−𝜁))

𝑘1𝑘2(𝜏1+𝜇𝐻)
      

                      (28) 

𝑍2 = 𝑅0 − 1                  (29) 

It therefore shows that there exist a unique Endemic 

Equilibrium point at 𝑅0 > 1. 

3.5 Local Stability of EEP 

Theorem 3.2: The EE of the model is locally 

asymptotically stable whenever 𝑅0 > 1. 

Proof:  

At the Endemic Equilibrium point, we have a Jacobian 

Matrix given as: 

𝐽(𝐸∗) =

[
 
 
 
 
 
 
−𝐴 0 0 0 𝜔 0 −𝐴1
𝜏1 −𝐴2 0 0 𝜔 0 −𝐴3
𝐴4 0 −𝑃1 0 0 0 𝐴1
0 𝐴5 𝜏2 −𝑃2 0 0 𝐴3
0 0 𝜃𝑢 𝜃ℎ −𝑃3 0 0

0 0 −𝐴6 −𝐴7 0 −(𝜆𝑣
∗ + 𝜇𝑣) 0

0 0 𝐴6 𝐴7 0 0 −𝜇𝑣 ]
 
 
 
 
 
 

                     (30) 

Where  

𝐴 = 𝜏1 + 𝜆𝑢
∗ + 𝜇𝐻; 𝐴1 =

𝑏1𝛽𝑣ℎ𝜇𝐻𝑆𝑢
∗

Λ𝐻
;  𝐴2 = (1 − 𝜁)𝜆ℎ

∗ + 𝜇𝐻 ;

𝐴3 =
(1−𝜁)𝑏2𝛽𝑣ℎ𝜇𝐻𝑆ℎ

∗

Λ𝐻
;  𝐴4 =

𝑏1𝛽𝑣ℎ𝜇𝐻𝐼𝑣
∗

Λ𝐻
;

 

𝐴5 =
(1−𝜁)𝑏2𝛽𝑣ℎ𝜇𝐻𝐼𝑣

∗

Λ𝐻
; 𝐴6 = 

𝑏3𝛽ℎ𝑣𝜇𝐻𝑆𝑣
∗

Λ𝐻
;

𝐴7 =
𝜌𝑏3𝛽ℎ𝑣𝜇𝐻𝑆𝑣

∗

Λ𝐻
;

 𝑃1 = 𝜏2 + 𝛿𝑢 + 𝜃𝑢 + 𝜇𝐻; 
𝑃2 = 𝛿ℎ + 𝜃ℎ + 𝜇𝐻;
𝑃3 = 𝜔 + 𝜇𝐻 }

 
 
 
 
 

 
 
 
 
 

 

                                                 (31) 

Applying elementary row operation to (30) we have  

𝐽(𝐸∗) =

[
 
 
 
 
 
 
−𝐴 0 0 0 𝜔 0 −𝐴1
0 −𝐴𝐴2 0 0 𝐴𝜔 0 −𝐴8
0 0 −𝐴𝑃1 0 𝐴4𝜔 0 𝐴9
0 0 0 −𝐴12 𝐴12 0 −𝐴14
0 0 0 0 −𝐴17 0 𝐴18
0 0 0 0 0 −(𝜆𝑣

∗ + 𝜇𝑣) −𝜇𝑣
0 0 0 0 0 0 −𝐴19]

 
 
 
 
 
 

                      (32) 

Where  

𝐴8 = 𝐴𝐴3 + 𝜏1𝐴1;𝐴9 = 𝐴4𝐴1 + 𝐴𝐴3; 𝐴10 = 𝐴8 −

𝐴𝐴2𝐴3; 𝐴11 = 𝐴6𝜃ℎ + 𝜃𝑢𝐴7; 𝐴12 = 𝐴𝑘1(𝐴𝐴2𝑘2 +

𝐴𝐴5𝜔);𝐴13 = 𝐴𝐴2𝐴4𝜏2𝜔;𝐴14 = 𝐴𝐴10𝑘1 +

𝐴𝐴2𝐴9𝜏2; 𝐴15 = 𝐴11𝐴13 − 𝐴3𝐴6𝐴12; 𝐴16 = 𝐴11𝐴14 −
𝐴12𝜃𝑢𝜇𝑣; 𝐴17 = 𝐴𝐴13𝑘1𝜃ℎ − 𝐴12(𝐴𝑘1𝑘3 −
𝜃𝑢𝐴4𝜔); 𝐴18 = 𝐴𝑘1(𝜃ℎ𝐴14 − 𝐴9𝐴12);𝐴19 = 𝐴15𝐴18 +

𝐴16𝐴17}                    (33) 

 

|𝐽 − 𝜆𝐼| = 0 
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[
 
 
 
 
 
 
 
−(𝐴 + 𝜆) 0 0 0 𝜔 0 −𝐴1

0 −(𝐴𝐴2 + 𝜆) 0 0 𝐴𝜔 0 −𝐴8
0 0 −(𝐴𝑃1 + 𝜆) 0 𝐴4𝜔 0 𝐴9
0 0 0 −(𝐴12 + 𝜆) 𝐴12 0 −𝐴14
0 0 0 0 −(𝐴17 + 𝜆) 0 𝐴18
0 0 0 0 0 −((𝜆𝑣

∗ + 𝜇𝑣) + 𝜆) −𝜇𝑣
0 0 0 0 0 0 −(𝐴19 + 𝜆)]

 
 
 
 
 
 
 

= 0        (34)

 

It is observed that all the eigenvalues of 𝐽(𝐸∗) are 

negative. Hence, it is concluded that the endemic 

equilibrium 𝐸∗ of the model is locally asymptotically 

stable if 𝑅0 > 1. 

3.6 Global stability of EEP. 

Theorem 3.3: The Endemic Equilibrium 𝐸∗ is globally 

asymptotically stable if 𝑅0 > 1. 

Proof: 

We define the Lyapunov function U as: 

𝑈 = (𝑆𝑢 − 𝑆𝑢
∗ − 𝑆𝑢

∗ log
𝑆𝑢

𝑆𝑢
∗) + (𝑆ℎ − 𝑆ℎ

∗ − 𝑆ℎ
∗ log

𝑆ℎ

𝑆ℎ
∗) +

(𝐼𝑢 − 𝐼𝑢
∗ − 𝐼𝑢

∗ log
𝐼𝑢

𝐼𝑢
∗) + (𝐼ℎ − 𝐼ℎ

∗ − 𝐼ℎ
∗ log

𝐼ℎ

𝐼ℎ
∗) + (𝑅 − 𝑅

∗ −

𝑅∗ log
𝑅

𝑅∗
) + (𝑆𝑣 − 𝑆𝑣

∗ − 𝑆𝑣
∗ log

𝑆𝑣

𝑆𝑣
∗) + (𝐼𝑣 − 𝐼𝑣

∗ − 𝐼𝑣
∗ log

𝐼𝑣

𝐼𝑣
∗)

                                                  (35) 

𝑑𝑈

𝑑𝑡
= (1 −

𝑆𝑢
∗

𝑆𝑢
)
𝑑𝑆𝑢

𝑑𝑡
+ (1 −

𝑆ℎ
∗

𝑆ℎ
)
𝑑𝑆ℎ

𝑑𝑡
+ (1 −

𝐼𝑢
∗

𝐼𝑢
 )
𝑑𝐼𝑢

𝑑𝑡
+

(1 −
𝐼ℎ
∗

𝐼ℎ
)
𝑑𝐼ℎ

𝑑𝑡
+ (1 −

𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
+ (1−

𝑆𝑣
∗

𝑆𝑣
)
𝑑𝑆𝑣

𝑑𝑡
+ (1−

𝐼𝑣
∗

𝐼𝑣
)
𝑑𝐼𝑣

𝑑𝑡

               (36) 

 
𝑑𝑈

𝑑𝑡
= 𝐺1 − 𝐺2              (37) 

Substituting the expression for the derivatives and 

separating positive and negative terms as 𝐺1  and 𝐺2 , we 

have  

𝐺1 = Λ𝐻 + 2𝜔𝑅 + (𝜏1 + 𝜆𝑢)𝑆𝑢 + (1 − 𝜁)𝜆ℎ𝑆ℎ +

(𝜏2 + 𝜃𝑢)𝐼𝑢 + 𝜃ℎ𝐼ℎ + Λ𝑣 + 𝜆𝑣𝑆𝑣 +
𝜔𝑅∗𝑆𝑢

∗

𝑆𝑢
+

𝜔𝑅∗𝑆ℎ
∗

𝑆ℎ
+

𝜏1𝑆𝑢
∗𝑆ℎ
∗

𝑆ℎ
+

(1−𝜁)𝜆ℎ𝑆ℎ
∗𝐼ℎ
∗

𝐼ℎ
+

𝜏2𝐼𝑢
∗ 𝐼ℎ
∗

𝐼ℎ
+

𝜃𝑢𝐼𝑢
∗𝑅∗

𝑅
+

𝜃ℎ𝐼ℎ
∗𝑅∗

𝑅
+

𝜆𝑣𝑆𝑣
∗𝐼𝑣
∗

𝐼𝑣
   

          (38)       

𝐺2 = 𝜏1𝑆𝑢
∗ + (1 − 𝜁)𝜆ℎ𝑆ℎ

∗ + (𝜏2 + 𝜃𝑢)𝐼𝑢
∗ + 𝜃ℎ𝐼ℎ

∗ +

2𝜔𝑅∗ + 𝜆𝑣𝑆𝑣
∗ +

(1−𝛼)Λ𝐻𝑆𝑢
∗

𝑆𝑢
+

𝜔𝑅𝑆𝑢
∗

𝑆𝑢
+

(𝜏1+𝜆𝑢+𝜇𝐻)(𝑆𝑢−𝑆𝑢
∗ )2

𝑆𝑢
+

𝛼Λ𝐻𝑆ℎ
∗

𝑆ℎ
+

𝜔𝑅𝑆ℎ
∗

𝑆ℎ
+

𝜏1𝑆𝑢𝑆ℎ
∗

𝑆ℎ
+

((1−𝜁)𝜆ℎ+𝜇𝐻)(𝑆ℎ−𝑆ℎ
∗)2

𝑆ℎ
+

𝜆𝑢𝑆𝑢𝐼𝑢
∗

𝐼𝑢
+

𝑘1(𝐼𝑢−𝐼𝑢
∗ )2

𝐼𝑢
+

(1−𝜁)𝜆ℎ𝑆ℎ𝐼ℎ
∗

𝐼ℎ
+

𝜏2𝐼𝑢𝐼ℎ
∗

𝐼ℎ
+

𝑘2(𝐼ℎ−𝐼ℎ
∗ )2

𝐼ℎ
+

𝜃𝑢𝐼𝑢𝑅
∗

𝑅
+

𝜃ℎ𝐼ℎ𝑅
∗

𝑅
+

𝑘3(𝑅−𝑅
∗)2

𝑅
+

Λ𝑣𝑆𝑣
∗

𝑆𝑣
+

(𝜆𝑣+𝜇𝑣)(𝑆𝑣−𝑆𝑣
∗)2

𝑆𝑣
+

𝜆𝑣S𝑣𝐼𝑣
∗

𝐼𝑣
+

𝜇𝑣(𝐼𝑣−𝐼𝑣
∗)2

𝐼𝑣
          (39) 

If 𝐺1 < 𝐺2 , then 
𝑑𝑈

𝑑𝑡
≤ 0, 

𝑑𝑈

𝑑𝑡
= 0 if and if 𝑆𝑢 = 𝑆𝑢

∗ , 𝑆ℎ =

𝑆ℎ
∗ , 𝐼𝑢 = 𝐼𝑢

∗ , 𝐼ℎ = 𝐼ℎ
∗ , 𝑅 = 𝑅∗, 𝑆𝑣 = 𝑆𝑣

∗, 𝐼𝑣 = 𝐼𝑣
∗. The largest 

invariant set in {(𝑆𝑢
∗ , 𝑆ℎ

∗ , 𝐼𝑢
∗ , 𝐼ℎ

∗ , 𝑅∗, 𝑆𝑣
∗, 𝐼𝑣

∗) ∈ Ω; 
𝑑𝑈

𝑑𝑡
= 0} is 

a singleton of 𝐸∗ with 𝐸∗ as the endemic equilibrium.  

Therefore by the Lasalle’s invariant principle, 𝐸∗ is 

globally asymptotically stable in Ω if 𝐺1 < 𝐺2 .  

3.7 Numerical Simulation 

In this section, we carry out numerical simulations for the 

model equations using the parameter values in table 3 

and initial conditions 𝑆𝑢(0) = 55, 𝑆ℎ = 45, 𝐼𝑢(0) =

45, 𝐼ℎ(0) = 30,𝑅(0) = 50, 𝑆𝑣(0) = 1000, 𝐼𝑣(0) = 50. 

Table 3: Parameter values of Model 

Symbols Values Source 

Λ𝐻  100 [13] 

Λ𝑣 1000 [14] 

𝜏1 0.25 (Assumed) 

𝜏2 0.5 (Assumed) 

𝛿𝑢 0.13 (Assumed) 

𝛿ℎ 0.06 (Assumed) 

𝑏1 0.17 (Assumed) 

𝑏2 0.1 (Assumed) 

𝛽𝑣ℎ  0.03 [15] 

𝛽ℎ𝑣  0.09 [15] 

𝑏3 0.12 [16] 

𝜁 0.08 (Assumed) 

𝜌 0.5 (Assumed) 

𝜃𝑢 0.05 (Assumed) 

𝜃ℎ 0.15 (Assumed) 

𝜔 0.7902 [14]  

𝛼 0.46 (Assumed) 

𝜇𝐻 0.00004 [13]  

𝜇𝑣 0.0000569  [14] 

 

 



                 International Journal of Engineering Applied Sciences and Technology, 2021    
                                         Vol. 5, Issue 10, ISSN No. 2455-2143, Pages 84-90 
                             Published Online February 2021 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                          

 

89 
 

 

Figure 2: Plots of Susceptible Unhygienic Individuals 

for various values of 𝛼 

 

Figure 3: Plots of Susceptible Hygienic Individuals for 

various values of 𝛼 

 

 

 

Figure 4: Plots of Infected Unhygienic Individuals for 

various values of 𝛼 

 

 

 

Figure 5: Plots of Infected Hygienic Individuals for 

various values of 𝛼 

 

IV. CONCLUSION 
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In this study, we proposed and analyzed the endemic 

equilibrium point of a malaria hygiene mathematical 

model. We solve the mathematical model showing the 

endemic equilibrium points. The analysis show that the 

endemic equilibrium point is locally stable if 𝑅0 > 1 given 

that the eigenvalues of the Jacobian matrices are negative, 

also by the Lasalle’s invariant principle defining a 

Lyapunov function we show that the endemic equilibrium 

is globally in the set Ω. 
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