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Abstract: Electrocardiography is the most useful method 

for diagnosing cardiovascular disease such as arrhythmia. 

Heartbeat classification of electrocardiography signals is a 

valuable and hopeful technology for early warning of 

dysrhythmia because it contains the cardiac electrical 

activities and reflects the abnormal cardiac activity. 

Therefore, a novel electrocardiogram-based arrhythmic 

beats classification was proposed to automatically detect 

the main types of dysrhythmia using electrocardiography 

signal in this work. A convolutional neural network model 

was used to automatically detect the normal and the types 

of dysrhythmia electrocardiography beats. The beat was 

transformed into a matrix as two-dimensional input to the 

model. The classification system was assessed to detect the 

normal, left bundle branch block, premature ventricular 

contraction and right bundle branch block beats using the 

MIT-BIH arrhythmia database. The results showed that 

an average accuracy of 99.30% and 98.85% was achieved 

by using ML2 lead of electrocardiography data with 

one-dimensional and 2-dimensional input, respectively. An 

average accuracy of 97.00% and 97.20% was achieved by 

using V1 lead of electrocardiography data with 

one-dimensional and 2-dimensional input, respectively. 

Moreover, no feature extraction of signals was carried out 

in this study. Consequently, the proposed model can 

accurately test the unknown electrocardiography signal 

and aid the clinician in the diagnosis of dysrhythmia. 
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I. INTRODUCTION 

Dysrhythmia (also called heart arrhythmia or arrhythmia) is a 

set of conditions in which the heartbeat is abnormal. 

Arrhythmias are due to problems with the electrical conduction 

system of the heart [1]. Supraventricular tachycardias, 

bradyarrhythmias, extra beats, and ventricular arrhythmias are 

the four main types of dysrhythmia which usually have no 

symptoms. Ventricular arrhythmias result in about 80% of 

sudden cardiac death [2]. Electrocardiography (ECG) contains 

a lot of information about the function of heart’s electrical 

conduction system and its structure. An experienced clinician 

can distinguish different types of cardiac of dysrhythmia by 

monitoring the patient’s ECG signals. These conditions can 

indicate serious cardiovascular diseases. Heartbeat 

classification of ECG signals is a valuable and hopeful 

technology for early warning of dysrhythmia for the study of 

dysrhythmia detection in medical center. Electrocardiography 

has been widely used because of its low cost, convenience and 

noninvasive detection. Early diagnosis of dysrhythmia may 

help patients to get timely treatment, and hence decreasing the 

mortality [3]. Currently, there is a challenge for the computer 

to carry out automatic analysis because of the variety and 

complexity in ECG signals [1]. Accurate ECG beat 

classification is essential for automated detection of 

dysrhythmia and is one of the most challenges in heartbeat 

analysis. ECG signal amplitude is generally in millivolts and 

its duration is in seconds [4]. Analysis of ECG signals is a 

time-consuming and laborious work. Furthermore, the 

explanation of ECG signals is subjective and might change in 

the different clinicians. The disadvantaged manual 

examination of ECG signals can be defeated by using 

computer-aided diagnosis (CAD) system. Computer-aided 

diagnosis system is more and more paid attention because of its 

objective, speedy, and trustworthy analysis. Many studies have 

been performed on the development of CAD for dysrhythmia 

[5-10]. 

The QRS complex is the combination of three of the graphical 

deflections seen on a typical ECG. The QRS complex detection 

is the basis of automated ECG analysis algorithms. Many 

approaches to QRS detection have been proposed such as 

calculus of variation [3], swarm intelligence-based search 

method called salp swarm algorithm [11], wavelet transform 

[12], deep learning [13,14], adaptive filtering [15].Moreover, 

many researches have provided some techniques of ECG 

feature classification and delimited the parameter structure of 

different ECG features such as hidden Markov models, discrete 

wavelet transform, feature selection, and mixture of experts’ 

method [16-18]. These approaches need to have basic 

knowledge of physiological signals analysis, which limit the 
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method application. Greater and more complex changes may 

be appeared when processing a new subject’s ECG signals. 

However, it is a difficult task to locate the P, Q, R, S and T 

waves of ECG for dysrhythmia and their extraction is 

uncertain. Many researchers focus on convolutional neural 

network (CNN) to avoid the limitation of these approaches that 

need manual feature selection. CNN has relatively little data 

pretreatment comparing to other classification algorithms and 

is independent of manual feature extraction knowledge. CNN 

has been used in drug discovery [19], image recognition 

systems [20], video classification [21], health risk assessment 

and biomarkers of aging discovery [22]. Recent researches 

have also displayed great potentialities of CNN in handling 

biomedical applications, such as people sleep behavior 

disorder classification [23], histopathological images diagnosis 

[24], relative location prediction in computed tomography 

(CT) scan images [25], and thyroid nodule classification in 

ultrasound images [26]. Recent researches have also exhibited 

encouraging application of CNN in electro-physiological 

signals such as ECG classification [27], electromyography 

(EMG) pattern recognition [28], and mental load classification 

based on electroencephalogram (EEG) [29].  

CNN structure possesses apparent superiority in using 

large-scale training data for promoting classification 

performance. For example, an average accuracy, sensitivity, 

and specificity of 93.53%, 93.71%, and 92.83% are achieved 

using myocardial infarction ECG beats with noise by CNN 

[30]. Some recent researches have exhibited promoting 

performance of automatic detection with CNN for 

classification of normal sinus rhythm, atrial fibrillation, other 

rhythm [31-33]. These improvements of classification and 

recognition may result from the feature learning ability of 

CNN. Detection of ECG classification and recognition was 

performed with 1-dimensional CNN in most of the previous 

studies. CNN does not need for manual feature extraction or 

selection comparing to many conventional methods in 

detection of ECG classification, which may bring about loss of 

some information in the data at different stages. Based on the 

superiority of feature learning ability of CNN, we tried to 

explore the 2-dimensional method for ECG classification with 

CNN. 

 

II. MATERIALS AND METHODS 

2.1 Database 

In this study, the ECG signals was gained from the MIT-BIH 

arrhythmia database (https:// www.physionet.org/ content/ 

mitdb/1.0.0/). The MIT-BIH arrhythmia database contains 48 

thirty-minute excerpts of two-channel ambulatory ECG 

recordings, obtained from 47 subjects studied by the BIH 

arrhythmia laboratory. In this study, we used the signals of 

modified lead II (ML2) and V1 lead. Seven records (#100, 

#102, #103, #104, #114, #123 and #124) were excluded 

because they do not contain ML2 and V1 lead signals. The 

record information of all patients is available at the website 

(https:// www.physionet.org/ physiobank/ database/html/ 

mitdbdir/records.htm#101). According to the annotations, 

every ECG beat is classified as N (normal beat), S (premature 

or ectopic supraventricular beat), A (atrial premature beat), L 

(left bundle branch block beat), R (right bundle branch block 

beat), V (premature ventricular contraction), F (fusion beat) or 

Q (unclassifiable beat). 

 

2.2 Pre-processing 

The R-peak detection of both datasets (ML2 and V1 lead) was 

carried out by Pan Tompkins algorithm [34]. After segmenting 

all the ECG signals, Z-score normalization was used to 

normalize every segment which can solve the problem of 

amplitude scale and remove the offsetting effect before taking 

the ECG segment into the one-dimension deep learning CNN. 

Every ECG beat contains 256 samples (100 samples before 

R-peak and 155 samples after R-peak) and was reconstructed 

matrix with image size 16×16 for ML2 and V1 lead datasets, 

respectively (Figure 1-2). Mapminmax function was used to 

adjust every ECG beat data between 0 and 1, and the data were 

rearranged into 16 rows and 16 columns by reshape function in 

the software program Matlab (version 2017b). The adjusted data 

were multiplied by 255 to show in the right of Figure 1-3 with 

0-255 gray levels. After classifying the types of ECG beat, type 

A, type S, type F and type Q were excluded because they are too 

few. Each ECG beat consists of 484 samples (242 ML2 samples 

plus 242 V1 lead samples) and was reconstructed matrix with 

image size 22×22 for ML2 plus V1 lead datasets (Figure 3). The 

242 samples were composed of 100 samples before R-peak and 

142 samples after R-peak for ML2 and V1 lead datasets, 

respectively. Pre-processing of datasets was completed by the 

software program Matlab (version 2017b), and the number of 

beats was showed in Table 1. 

 

 

 

 

http://www.physionet.org/
http://www.physionet.org/
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Figure 1. Sample normal and dysrhythmia electrocardiography beat with ML2 lead. Left: one-dimensional beat signals. Right: 

the beat was transformed into a matrix as 2-dimensional inputs 
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Figure 2. Sample normal and dysrhythmia electrocardiography beat with V1 lead. Left: one-dimensional beat signals. Right: the 

beat was transformed into a matrix as 2-dimensional inputs 
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Figure 3. Sample normal and dysrhythmia electrocardiography beat with ML2 plus V1 lead. Left: one-dimensional beat signals. 

Right: the beat was transformed into a matrix as 2-dimensional inputs 

 

2.3 CNN framework 

The CNN structure is composed of four-stage process: 

convolution layer, rectified linear activation layer, pooling layer 

and fully-connected layer. Table 2 shows the detailed 

information of the CNN framework employed in this study. The 

CNN structure includes three convolutional layers, three pooling 

layers, one fully-connected layer and a softmax layer. Activation 

function uses rectified linear units (ReLU). 

 

Table 1. A summary table with the breakdown of the 4 classes of beat subtypes 

Lead Type Number of beats 

(every beat contains 256 samples) 

Number of beats 

(every beat contains 242 samples) 

V1 

R 5724 5724 

L 8058 8058 

N 63644 63645 

V 6426 6426 

ML2 

R 5724 5724 

L 8068 8068 

N 67048 67049 

V 6939 6939 
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N=normal beat, L=left bundle branch block beat, R=right bundle branch block beat, V=premature ventricular contraction, ML2= 

modified lead II. 

 

Table 2. The convolutional neural network model structure for electrocardiography data 

Layers Type Output maps Kernel size Stride 

1 convolution 6 5 - 

2 pooling - - 2 

3 convolution 12 3 - 

4 pooling - - 1 

5 convolution 24 3 - 

6 pooling - - 1 

7 fully-connected 2 - - 

 

2.4 Training and testing 

Four types of beats were extracted from 41 patients. 5000 heart 

beats were selected in each arrhythmia type according to the 

result of beats segmentation, and the total number of heart beats 

was 20000. After randomly sorting these beats samples,90% 

ECG beat was randomly selected as CNN training data, and 10% 

ECG beat was selected as CNN testing data for each ECG lead 

type. Batch size, learning rate and epoch parameter in the 

backpropagation were set to10, 0.999and 30, respectively. We 

adjusted these parameters accordingly for optimal performance. 

Data training and testing were completed bythe software 

program Matlab (version 2017b). 

 

2.5 Evaluation indicators 

Four statistical indicators were used to access the performance 

of the proposed classifier in this work, which are classification 

sensitivity (Sen), positive predictive value (PPV), accuracy 

(Acc) and specificity (Spe). The classification accuracy reflects 

the total performance of the suggested way on all valid beats. 

Sen, PPV and Spe can objectively evaluate the classifier 

performance for different types of beat vary. The calculation 

method of four indicators is as follows: 

Acc=
TP+TN

TP+TN+FN+FP
                                  (1) 

Sen=
TP

TP+FN
                                       (2) 

PPV=
TP

TP+FP
                                      (3) 

Spe=
TN

TN+FP
                                       (4) 

 

Where TN is true negative, TP is true positive, FN is false 

negative and FP is false positive.False positive is an error in 

data reporting in which a test result improperly indicates 

presence of a condition (the result is positive), when in reality it 

is not present, while a false negative is an error in which a test 

result improperly indicates no presence of a condition (the 

result is negative), when in reality it is present. True positive is 

a correctness in data reporting in which a test result properly 

indicates presence of a condition (the result is positive), when 

in reality it is present, while a true negative is a correctness in 

which a test result properly indicates no presence of a condition 

(the result is negative), when in reality it is not present. For 

example, the Table 3 shows the result of four category of a 

classification model. For the first category, the number of TP, 

TN, FP and FN is respectively obtained as follows: TP=a, 

TN=f+k+p, FP=e+i+m, FN=b+c+d. 

 

Table 3. Confusion matrix of a classification model 

 Predict category 

1 2 3 4 

True  

category 

1 a b c d 

2 e f g h 

3 i j k l 

4 m n o p 

Note: Lowercase letters represent the number of samples 

 

III. RESULTS 

Our algorithm was trained on a workstation with quad-core 

Intel i7-7700HQ 2.80 GHz processor and an 8GB RAM in this 

work. It took about 1996.2371 s to finish the training and 

testing for ECG beat data with modified lead II and 2068.6156 

s for ECG beat data with V1 lead. It took about 10 s per epoch 

to train the input data with 1D or 2D. 

The confusion matrix for ECG beats with modified lead II 

inputs in 1D level was presented in Table 4. It can be observed 

from Table 4 that, out of 504 left bundle branch block beats, 

approximately 0.40% of the ECG beat was wrongly identified 

as normal beats and only one beat was wrongly classified as 

premature ventricular contraction beat. Similarly, few normal 

beats, right bundle branch block beats and premature 

ventricular contractionbeats were wrongly classified as the 

others, respectively. The model’s average accuracy and 
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specificity value exceeded 99.00%. The sensitivity and positive 

predictive value also exceeded 98.30%. The overall accuracy of 

ML2 inputs in 2D level was increased by 0.45% comparing to 

ML2 inputs in 1D level. 

The confusion matrix for ECG beats with V1 lead inputs in 1D 

level was presented in Table 4. It can be observed from Table 4 

that, out of 506 left bundle branch block beats, approximately 

1.19% of the ECG beat was wrongly identified as premature 

ventricular contraction beats and only one beat is wrongly 

classified as the others. Out of 488 normal beats, approximately 

4.10% of the ECG beat was wrongly identified as premature 

ventricular contraction beats and approximately 1.64% of the 

ECG beat was wrongly identified as left bundle branch block 

beats. Few right bundle branch block beats were wrongly 

classified as the others. Out of 514 premature ventricular 

contraction beats, approximately 1.36% of the ECG beat was 

wrongly identified as normal and left bundle branch block beats 

respectively. The model’s average accuracy was 97.00% and 

the specificity value exceeded 98.00%. The sensitivity and 

positive predictive value also exceeded 94.00%. The overall 

accuracy of V1 inputs in 2D level was decreased by 0.20% 

comparing to V1 inputs in 1D level. Overall, classification 

recognition results of the ML2 lead were superior to the V1 

lead for the four heartbeat types in this study. 

As Table 4 shows, there were differences among the three 

datasets in the levels of accuracy, sensitivity and positive 

predictive value. No significant differences were found in the 

level of specificity for the three datasets. Accuracy of ML2 plus 

V1 lead group was increased by 1.25% comparing to V1 lead 

group. However, its accuracy was decreased by 1.05% 

comparing to ML2 lead group. It is noteworthy that the 

sensitivity of ML2 plus V1 lead group is 100.00% for the right 

bundle branch block beat type. Overall, classification 

recognition results of the ML2 plus V1 lead was superior to the 

V1 lead for the four heartbeat types in this study. 

 

Table 4. Confusion matrix of the electrocardiography beat classification result for different leads 

Original/Predicted L N R V Acc (%) PPV（%） Sen (%) Spe (%) 

ML2(1D) 

L 496 1 0 1 98.85 98.22 99.60 99.40 

N 8 496 1 9 98.85 99.40 96.50 99.80 

R 0 2 493 0 98.85 99.80 99.60 99.93 

V 1 0 0 492 98.85 98.01 99.80 99.33 

ML2(2D) 

L 501 2 0 1 99.30 99.60 99.40 99.87 

N 0 486 1 1 99.30 98.78 99.59 99.60 

R 0 1 509 0 99.30 99.22 99.80 99.73 

V 2 3 3 490 99.30 99.59 98.39 99.87 

V1 lead(1D) 

L 459 9 1 1 97.20 96.84 97.66 99.00 

N 13 463 8 12 97.20 96.26 93.35 98.80 

R 0 3 512 1 97.20 98.27 99.22 99.38 

V 2 6 0 510 97.20 97.33 98.46 99.03 

V1 lead(2D) 

L 498 1 1 6 97.00 97.08 98.42 98.97 

N 8 459 1 20 97.00 97.87 94.06 99.33 

R 0 2 487 3 97.00 98.78 98.98 99.59 

V 7 7 4 496 97.00 94.48 96.50 98.03 

ML2+V1(1D) 

L 492 7 0 0 98.95 98.99 98.60 99.66 

N 4 506 0 1 98.95 97.50 99.02 98.99 

R 0 2 497 0 98.95 100.00 99.60 100.00 

V 1 6 0 484 98.95 99.7 98.57 99.93 

ML2+V1(2D) 

L 485 2 0 6 98.25 98.58 98.38 99.53 

N 3 503 2 4 98.25 98.05 98.24 99.32 

R 0 0 514 0 98.25 98.47 100.00 99.45 

V 4 8 6 463 98.25 97.89 96.26 99.34 

 

Acc=accuracy, PPV=positive predictive value, Sen=sensitivity, 

Spe=specificity, N=normal beat, L=left bundle branch block 

beat, R=right bundle branch block beat, V=premature 

ventricular contraction, ECG= electrocardiogram, ML2= 

modified lead II 

 

 

 

IV. DISCUSSION 

The different techniques were employed by some researchers to 

detect dysrhythmia using ECG signals gained from the 

MIT-BIH public database. However, most studies mainly 

focused on one-dimensional sequential signals of one lead 

(ML2) ECG signals. For example, a principal component 

analysis network was applied for feature extraction of noisy 
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ECG signals in the MIT-BIH database and a linear support 

vector machine (SVM) was applied for classification, which 

identified five types of noise-free ECGs and obtained 97.08% 

accuracy [35]. Similarly, the features of ECG samples (RR 

series) were computed by different scales of the wavelet 

transform and the results achieved global accuracy of 93.00% 

[36]. In order to improve recognition performance, ECG signals 

in time-frequency space were represented by discrete cosine 

transform and the time-frequency features were decreased in 

smaller dimensional space through principal component 

analysis. Additionally, these morphological characteristics 

combined with dynamic features (RR-interval information) to 

represent the feature vectors as the input of SVM [37]. In recent 

years, some researchers turned attention to CNN and used it for 

identifying category of heartbeats in ECG signals. A nine-layer 

deep CNN was used to automatically pick out five different 

categories of heartbeats in ECG signals. The CNN was trained 

with original dataset and obtained an accuracy of 89.07%% and 

89.3% in noisy and noise free ECG, respectively. When the 

CNN was trained using the augmented data, the accuracy of the 

CNN increased to 94.03% and 93.47% in original and noise 

free ECG [5]. Ten seconds ECG signals fragments were 

analyzed by deep one-dimensional-CNN and achieved the 

overall accuracy of 91.33% in seventeen cardiac arrhythmia 

disorders [32]. In this study, the overall accuracy was over 

97.00% in classification of the four types of rhythm with 

two-dimensional-CNN. On the basic of MIT-BIH arrhythmia 

database, a classification method achieved sensitivity of 93.40% 

and positive predictivity of 94.90% in ventricular ectopic beat 

detection by two-level one-dimensional-CNN [38]. 

We have used ML2 and V1 lead in this study because they 

were a usually employed lead for cardiac rhythm monitoring. 

Moreover, ML2 can achieve good ECG morphological 

information. After the beat was transformed into matrix as 

two-dimensional input to the CNN classifier, Table 2 showed 

that the proposed system has perfect classification capability for 

the ECG beats. It suggested that more morphological 

information is contained in the ML2 comparing to the V1 lead 

for ECG signals with 2D-reconstruction. In general, the ECG 

beats noise weakened the overall performance of the presented 

system because noise was redundant information in the signals. 

In our study, the unidentified noisy ECG beats were accurately 

classified by CNN deep learning method. It suggested that our 

presented method is robust to unwanted noise and can 

distinguish the intrinsic structural characteristics of ECG with 

noise interference. Besides, it saved time for removing the 

noise in this method. CNN deep learning method does not need 

different types of feature selection or extraction technologies in 

ECG signals analysis which is the superiority of deep learning 

over the traditional machine learning methods. Moreover, the 

proposed system performance will be enhanced with the 

growing number of ECG data. The major high points of our 

presented method were as follows: (1) 7-layer CNN was carried 

out; (2) Denoising was not needed; (3) Feature selection and 

extraction technologies were not required. Meanwhile, the 

disadvantages of our presented method were computationally 

expensive and required a diversified and massive data. Actually, 

the long training time is less important when our presented 

method can accurately categorize the normal and the 

arrhythmia types. Our presented method can promptly classify 

an unknown ECG beat after it is trained. Additionally, it can 

contribute to lessen computational complexity and power 

dissipation if the CNN is trained with graphics processing unit 

(GPU). 

In future studies, we plan to get more ECG data from different 

sources to improve the system overall performance. On the 

other hand, we also plan to popularize the method to other 

cardio-diseases such as myocardial infarction and heart-failure. 

 

V. CONCLUSIONS 

This study proposed a new method to automatically classify 

dysrhythmia types by seven-layer CNN which gains high 

performance result in the ECG signals and can help doctor in 

the course of diagnosis. 
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