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Abstarct- The software engineering is the 

technology to process the software and perform 

various operations on that software . The testing 

the important application of software engineering 

in which test cases are applied to detect defects 

from the software . In the recent times, it is been 

analyzed that defects may also raised in the test 

cases which are used for the defect prediction. In 

this work, Rank-to-learn algorithm is applied for 

the prediction of defects from the software. To 

improve performance of Rank-to-learn algorithm 

in terms of defect prediction rate the technique of 

back propagation is applied which learn from the 

precious experience and drive new values. The 

system is tested on 10 test cases and simulation   is 

performed in MATLAB. The simulation results 

show that the defect prediction rate is increased 

and execution time is reduced.  

Keywords -Defects, test Cases, neural networks, 

Boltzmann learning, learning to rank approach 

I. INTRODUCTION 

Software defects can lead to undesired results. To 

predict defective files, a prediction model must be 

built with predictors (e.g., software metrics) obtained 

from either a project itself (within-project) or from 
other projects (cross-project). A universal defect 

prediction model that is built from a large set of 

diverse projects would relieve the need to build and 

tailor prediction models for an individual project. The 

current software defects prediction mainly uses the 

software metrics to predict the amount and 

distribution of the software defects. The research 

method of software defects classification prediction 

is based on the program properties of the historical 

software versions, to build different prediction models 

and to forecast the defects in the coming versions. We 

can divide this technique into three parts: the 

software metrics, the classifier and the evaluation of 

the classifier [10].  

A software defect alludes to a defect in a system. An 

error is irregularity between the observed 

performance of a system and its specified 
performance. A software failure happens when the 

delivered product deviates from correct service and 

perform sudden behavior from user requirements. A 

software defect or error may not necessarily cause a 

software failure. Defect prediction is recognizing that 

a problem has occurred, regardless of the possibility 

that you don't have a clue about the reason. Defects 

might be predicted by a variety of quantitative or 

qualitative approaches. This includes a number of the 

multivariable, model-based approaches. Defect 

diagnosis is investigating at least one root causes of 
problems to the point where corrective action can be 

taken. This is additionally referred to as "defect 

isolation", particularly when need to demonstrate the 

distinction from defect prediction. A "defect" or 

"problem does not need to be the result of a complete 

failure of a software product. In a procedure plant, 

root causes of non-optimal operation may be 

hardware failures however problems may likewise be 

caused by poor decision of operating targets, poor 

feedstock quality or human error. 

Software Based Defect Prediction Techniques  

1. Algorithm Based Defect Tolerance (ABFT):- 
ABFT is used for detecting, locating, and correcting 

defects with a software procedure. It exploits the 

structure of numerical operations. This approach is 

effective however lacks of generality. It is 

appropriate for applications utilizing regular 
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structures, and in this manner it is used for a limited 

arrangement of problems.  
2. Assertions:- Assertions or the logic statements 

embedded at various points in the program reflect 

invariant relationships between the variables of the 

program and they regularly prompt to different 

problems as assertions are not transparent to a 

programmer and their effectiveness depends on the 

way of an application and on a programmer's 

capacity.  

3. Control Flow Checking (CFC):- The fundamental 

task of CFC is to partition an application program in 

essential blocks or the without branch parts of code. 

A deterministic signature (or number) is assigned to 
every block and defects are predicted by comparing 

the run-time signature with a pre-computed one. In 

most CFC strategies one of the significant problems 

is to tune the test granularity that ought to be used.  

4. Procedure Duplication (PD):- The programmer 

decides to duplicate the most critical procedures and 

to compare the got results on executing the 

procedures on two distinct processors. This approach 

requires a programmer to choose which procedures to 

be duplicated and to introduce legitimate checking on 

the results. These code modifications are done 
manually and might introduce errors.  

5. Error Prediction by Duplicated Instructions 

(EDDI):- Computation results from master and 

shadow instructions are compared before writing to 

memory. Upon mismatch, the program jumps to an 

error handler that will cause the program to restart. 

EDDI has high error coverage at the cost of 

performance penalty because of time redundancy as 

introduced into the system. Since we use general 

purpose registers as shadow registers, more register 

spilling happens with EDDI. Additional spilling 

causes more performance overhead since it increases 
the number of memory operations.  

6. Software Implemented Error Prediction and 

Correction (EDAC):- Software Implemented EDAC 

approaches (e.g., Cyclic Redundancy Checks or 

CRC, Hamming Codes, Bose-Chaudhuri-

Hocquenghem or BCH and so forth,) are effective in 

error prediction yet they suffer from high time 

overhead. Hamming, BCH and RS codes have 

pleasant mathematical structures. In any case, there is 

a limitation with regards to code lengths.  

7. Periodic Memory Scrubbing:- This approach 
depends on periodic reloading of code on 

fundamental memory from an immutable memory. 

This is effective for protecting the code segment of 

Operating system and application programs. 

Performance penalty is because of repetitive memory 

reading.  

8. Masking Redundancy:- This approach implies 

running an application in the presence of defects. 
Couple of processors is used to run a similar program 

and vote to identify errors in any single processor. 

Errors can be masked from application software. No 

software rollbacks are required to fix errors.  

9. Reconfiguration:- This implies removing failed 

modules from the system. At the point when failure 

happens in a module, its impacts on the rest of the 

segments of the system which are isolated. A 

substantial number of functional modules are used, 

which are switched automatically to replace a failing 

module.  

10. Replication:- This ensures reliability however is 
expensive regarding hardware or runtime cost. The 

idea is to take a majority vote on a calculation 

replicated N times. Its software solution requires 

every processor to run N copies of surrounding 

computations and afterward vote on the result. This 

backs off the computation by no less than a factor of 

N.  

11. Restore Architecture:- Transient errors or soft 

errors are predicted through time redundancy in the 

ReStore architecture. The novelty of the ReStore 

architecture is the use of transient error symptoms, 
for example, memory protection violation and 

incorrect control flow etc.  

12. Dual Modular Redundancy (DMR) & Backward-

Error Recovery (BER) & Checkpoint:- Error is 

predicted through differences in execution across a 

dual modular redundant (DMR) processor pair. DMR 

is a backward-error recovery (BER) technique where 

two processors are used to detect errors in execution. 

 

II. LITERATURE SURVEY 

Gao K. et al. [2007] proposed that how count models 

based upon poisson regression model and negative 

binomial regression model can be used for software 

defect predictions. It evaluates the comparative 

hypothesis testing, model selection and performance 

evaluation for the count models [3]. Zimmermann T. 

et al. [2007] mapped defects from the bug database of 

Eclipse to source code locations. The resulting data 

set lists the number of pre and post release defects for 
every package and file in the Eclipse releases 2.0, 

2.1, and 3.0 [4].  Lessmann S. et al. [2008] improved 

software quality and testing efficiency by 

constructing predictive classification models from 

code attributes to enable a timely identification of 

defect-prone modules. Several classification models 

have been evaluated for this task [5]. Moser R. et al. 

[2008] identified a comparative analysis of the 

predictive power of two different sets of metrics for 

defect prediction. It choose one set of product related 
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and one set of process related software metrics and 

use them for classifying Java files of the Eclipse 
project as defective respective defect-free [6]. 

D'Ambros M. et al. [2011] described the performance 

of the approaches using different performance 

indicators: classification of entities as defect-prone or 

not, ranking of the entities, with and without taking 

into account the effort to review an entity [11]. Rawat 

S. et al. [2012] introduced causative factors which in 

turn suggest the remedies to improve software quality 

and productivity. The paper also showcases on how 

the various defect prediction models are implemented 

resulting in reduced magnitude of defects [13].  Yang 

X. et al. [2012] presented the ranking approach for 
allocating testing resources to software modules. In 

this paper predicting models can be used for predict 

the defects. This paper only concerned with the 

construction of models, which include the ranking 

performance measure in the objective function, 

perform better in predicting defect-proneness 

rankings of multiple modules [16].  Yang X. et al. 

[2015] proposed a linear LTR approach. In this paper 

LTR approach can be compared with different count 

models. LTR approach provides better results than 

the different count models. This approach increases 
the performance of software. A learning-to-rank 

approach to construct software defect prediction 

models by directly optimizing the ranking 

performance. It shows comparison of the learning -

to-rank method against other algorithms that have 

been used for predicting the order of software 

modules according to the predicted number of defects 

[17]. 

III. LEARNING TO RANK ALGORITHM  

Learning to rank method refers to machine learning 

techniques for training the model in a ranking task. 

LTR approach can be used for measure the model 

performance. LTR is a linear model which is used for 

optimizing the ranking performance directly. LTR 

model is mostly used as compare to other models 
LTR approach can be also compare with the existing 

non-linear models. In LTR approach trained data can 

be used. LTR approach cans also works on different 

data sets. LTR is useful for many applications in 

information retrieval, Natural language processing 

and data mining. The LTR approach obtains a linear 

model by optimizing the ranking performance 

directly. The LTR approach can work with different 

models. Count models can be used with the LTR 

approach. Different data sets can be used in LTR 

approach for evaluating ranking of the software 

defects. We provide a comprehensive evaluation and 
comparison of the LTR approach against more 

algorithms for constructing SDP models for the 

ranking task. In previous work LTR approach can be 
compared with many other methods [17].  

Many learning-to-rank algorithms can fit into the 

above framework. Keeping in mind the end goal to 

better comprehend them, a categorization is 

performed on these algorithms. 

a. The pointwise approach: The input space of the 

pointwise approach contains the feature vector of 

every single document. The output space contains the 

relevance degree of every single document. The 

hypothesis space contains functions that take the 

feature vector of a document as the input and predict 

the relevance degree of the document. The loss 

function examines the accurate prediction of the 

ground truth label for every single document. In 

different pointwise ranking algorithms, ranking is 
displayed as regression, classification, and ordinal 

regression.  

b. The pairwise approach: The input space of the 

pairwise approach contains a pair of documents, both 

represented as feature vectors. The output space 

contains the pairwise preference (which takes values 

from {1,−1}) between every pair of documents. The 

hypothesis space contains bi-variate functions h that 
take a pair of documents as the input and output the 

relative request between them. 

c. The listwise approach: The input space of the 

listwise approach contains the entire group of 

documents connected with query q. There are two 

sorts of output spaces utilized as a part of the listwise 

approach. For some listwise ranking algorithms, the 

output space contains the relevance degrees of the 
considerable number of documents connected with a 

query.  

IV. BOLTZMANN LEARNING  

Boltzmann machines are systems of symmetrically 
connected units that settle on stochastic decisions 

about whether to be on or off. They have a simple 

learning algorithm that permits them to discover 

complex distributions behind observed data. Learning 

or inference in Boltzmann machines is imperative for 

many scientific tasks. For inference problems, the 

weights on connections and thresholds are settled and 

are utilized to represent a cost function. Inference in 

the Boltzmann machines is frequently utilized as a 

tool for some advancement problems, including 

troublesome combinatorial problems that have a 
place with NP finish or - hard issue classes, for 

example, the traveling salesman issue. Learning in 
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Boltzmann machines requires expectations of one 

unit as well as correlations between two units. 
Accordingly, the precise estimation of the 

correlations is essential.  

It has been realized that the linear response 

approximation (LRA) improves the accuracy of 

correlations estimated by the mean field strategy. 

Utilizing such approximation methods inside learning 

systems amounts to match the empirical moments, to 

those acquired by the inexact inference methods. 
Hence, the inexact learning algorithms, with or 

without the LRA, are technically in light of the 

concept of pseudo-moment matching. Pseudo-

moment matching problems, including the learning 

algorithm of Boltzmann machines, have likewise 

been addressed by a few researchers. The accuracy of 

probabilistic inference systems constructed by joining 

the BP algorithm with the LRA is investigated and 

concluded that the LRA can improve the estimation 

of correlations by including the impacts of loops in a 

particular system to the BP algorithm.  

The global energy, E, in a Boltzmann machine is 

identical 

                   
    

  

Where, wij is the connection strength between unit j 

and unit i. 

si is the state, si   {0,1}, of unit i. 

ϴi is the bias of unit i in the global energy function. 

Often the weights are represented in matrix form with 

a symmetric matrix W, with zeros along the diagonal. 

V. PROPOSED METHODOLOGY  

The defect prediction is the technique which is 

applied to predict the percentage of defects in the test 

cases. This work is based on to detect defects from 

the test cases using learn-to-rank algorithm. The 

learn-to-rank algorithm is based on three steps. The 
first step is selection of population. The second step 

is calculation of mutation value. The last step is 

calculation of fitness value. The calculation of fitness 

value depends upon the initial population value 

which is selected randomly. In this work, Back 

Propagation technique is applied in which system 

learns from the experience values and derives new 

values. The selection of population value is not 

random. It depends upon the system condition which 

is derived using back propagation algorithm.  
 

a. Proposed Algorithm 

 

  Init population P (t)    

   evaluate P (t); 

   t := 0; 

Network  ConstructNetworkLayers() 

  InitializeWeights(Network, test cases) 

For ( i=0;i=test cases; i++) 

      Select Input Pattern(Input defect values) 

      Forward Propagate(p) 

    Backward Propagate Error(P) 

    Update Weights(P ) 

End 

Return (P) 

   while not done do 

                t := t + 1; 

         

        P' := test case P (t); 

         

 recombine P' (t); 

         

mutate P' (t); 

         

        evaluate P' (t); 

         

        P := survive P,P' (t); 

    

     end  
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                    Fig 1: Proposed Flow chart 

 

VI. SIMULATION RESULTS  

 

The Rank-to-rank and improved Rank-to-learn 

algorithms are implemented in MATLAB.  The 

dataset is considered for the implementation which is 

described in the table 1 
 

Attributes  Values 

Number test cases 10 

Repeated Test cases No 

Defect in the Test cases Yes 

Number of applications  1 

  

                       Table 1: Properties of dataset 

 

The proposed algorithm is implemented and interface 

is designed for the implementation which is described 

in the figures shown below  

 

 
 

           Fig 1: Interface is designed for implementation  

   

As shown in figure 1, the interface is designed for the 

implementation of rank-to-learn and improved rank-

learn algorithm. In the interface ten test cases are 

shown in which is executes existing and proposed 

algorithm. The result in analyzed in terms of defect 

prediction rate.  

 

 

 

     START 

Generate test cases of selected software  

Check the initial ranking of the test cases  

Apply learning to rank approach on test cases  

Apply Boltzmann learning technique by using 

APFD metrics 

Desire value 

achieved  

Compare results of learning-to-rank approach 

with boltzman learning  

     STOP 
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 Fig 2: Comparison Graph  

 

As illustrated in figure 2, the comparison graph is 

drawn between proposed and exiting algorithm. The 

existing algorithm is Rank-to-learn algorithm and 

proposed algorithm is improved Rank-to-learn 

algorithm. When the back propagation algorithm is 

implemented with Rank-to-learn algorithm the defect 

prediction rate is improved as shown the graph . 

 

VII. CONCLUSION 
 

Defect prediction is the testing technique which is 

applied to detect defects from the software or from 

the input test cases. The Rank-to-learn is the 

algorithm which is applied for the defects in the 

software. This algorithm selects population randomly 

which reduce defect prediction rate. In this work, 

technique of back propagation is applied in which 

system learns from the previous experiences and 

drive new values. This leads to improve defect 

prediction rate and reduce execution time . In future 
technique will be proposed which is based on bio-

inspired techniques for the defect prediction rate  
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