MICROWAVE SYNTHESIS OF CdO AND SnO₂ NANOSTRUCTURES AND COMPARISON OF STRUCTURAL, OPTICAL AND DIELECTRIC PROPERTIES

N. Rajesh
Department of Physics, PG Assistant,
Government Higher Secondary School,
Alathur, Karur, Tamilnadu – 623131,
India

Abstract - Potentially important metal oxides CdO and SnO₂ nanostructures were synthesized in same conditions by microwave assisted technique. The synthesized samples were characterized by XRD, TEM, EDX, UV-DRS, dielectric constant and Photoluminescence studies. The XRD pattern reveals that, CdO sample has face centered cubic structure with a preferential orientation along the (111) plane, SnO₂ sample has cassiterite-type tetragonal structure with a preferential orientation along the (110) plane. Rod like and spherical shaped nanostructures were obtained from TEM analysis for CdO and SnO₂ samples, respectively. The band gap values of CdO and SnO₂ samples were found to be 4.20 and 4 eV, respectively. Microstructural properties such as strain, dislocation density, number of crystallites; optical properties such as reflectance, refractive index, absorption coefficient, extinction coefficient, optical conductivity and dielectric properties of CdO and SnO₂ nanostructures were investigated and compared. Room temperature photoluminescence spectra of CdO and SnO₂ nanostructures also studied.

Keywords - Microwave processing; Metal oxides; X-ray methods; Electron microscopy; Optical properties.

I. INTRODUCTION

In recent years, a wide range of metal oxides nanoparticles were synthesized to get desired chemical, electrical, mechanical and optical properties. Metal oxides have long been a subject of various investigations due to their unique physical properties and applications in commercial devices [1,2]. Metal oxides such as cadmium oxide and tin oxide have been widely studied because of their potential uses in optoelectronic devices. Due to their electrical and optical properties, the materials are used in liquid crystal displays, photovoltaic solar cells, phototransistors, optical heaters, gas sensors, transparent electrodes [3]. At present, CdO and SnO₂ nanoparticles have received considerable attention mainly due to their important potential applications.

Cadmium oxide possesses high transparency in the visible region of solar spectrum and low electrical resistance. Cadmium oxide has metal-like charge transport behaviour with an exceptionally large carrier mobility which is necessary for high transparent conducting oxide materials, especially when low free carrier absorbance is desired [4]. Cadmium oxide is a n-type semiconductor with a direct band gap of 2.5 eV, an indirect band gap of 1.98 eV [5,6]. Cadmium oxide nanoparticles have wide applications based on its specific optical and electrical properties such as diodes, phototransistors, transparent electrodes and sensors [7].

Tin oxide is a n-type semiconductor with high transparency, good electrical conductivity and it exhibit high chemical stability even at high temperature. It has a wide band gap ~3.6 eV at room temperature [8]. Tin oxide nanoparticles have wide range of technological applications such as highly reflective coatings, UV and IR filters, transparent electrodes in solar cells, flat panel displays, and gas sensors [9].
The following methods were used to synthesis the metal oxide nanostructures such as sol-gel [10], spray pyrolysis [11], pulsed laser deposition [12], hydrothermal [13], solvothermal [14], microemulsion [15], spray pyrolysis [16] and microwave assisted method [9]. Among the methods mentioned above, microwave assisted synthesis method used in this present work. Microwave assisted synthesis method is comparatively simple, low cost, uniform particle size distribution and offers several advantages over other methods [17-19]. The microwave assisted method offer to larger reaction volumes, allows faster reaction time and remove the need of high temperature injection. The other existing methods demands post synthesis of annealing, huge requirement of time and large energy consumption. But using microwave assisted method, it is possible to synthesize the crystals with good crystalline property without post synthesis of annealing, in less time with low energy consumption.

In this present work, cadmium oxide and tin oxide nanostructures were synthesized by microwave assisted synthesis method. Microstructural properties like strain, dislocation density, number of crystallites; optical properties like reflectance, refractive index, absorption coefficient, extinction coefficient, optical conductivity and dielectric properties like dielectric constant, dielectric losses of CdO and SnO nanostructures were investigated and compared. It is believed such type of research work is more useful for researchers and industrialist for choosing material of their requirements.

II. EXPERIMENTAL

A. Synthesis

All the chemical reagents used in the experiments were obtained from commercial sources and used utilized without further purification. In order to prepare CdO nanostructure, the precursor cadmium acetate dihydrate (Cd(COOCH₃)₂·2H₂O) was added to the double distilled water with 0.1 M concentration. The ammonia solution (NH₄OH) was added drop by drop into the above precursor solution and the resulting mixture was stirred at room temperature until the pH of the solution is 8. The obtained precipitate was placed in a microwave oven (2.45 GHz, 800 W) and irradiated for 15 min, finally the precipitate was filtered and dried at 120 °C. Similar procedure was used to synthesize SnO₂ nanostructure and stannous chloride (SnCl₂·2H₂O) was taken as precursor material.

B. Characterization

The crystalline structure, average crystalline size of the samples were analyzed by X-ray diffraction (XRD) using a Bruker AXS D8 advance instrument and using the CuKα1 wavelength of 1.5406 Å. TEM analysis was performed on a Philips instrument Model CM12 operating at 120 kV and directly interfaced with a computer for real-time image processing. EDS analysis was observed by JEOL5600LV microscope at an accelerating voltage of 10 kV. The DRS spectra of samples were recorded on a Perkin Elmer UV–visible DRS spectrophotometer. Photoluminescence spectrum was carried out using Spectro fluorometer-Fluorolog-FL3-11.

III. RESULTS AND DISCUSSION

A. Structural analysis

Fig. 1(a,b) depicts the XRD patterns of CdO and SnO₂ samples were synthesized by the microwave assisted method. The XRD pattern of CdO nanostructures are shown in Fig. 1a. The diffraction peaks observed at 2θ values of 33.01°, 38.30°, 55.28°, 65.91° and 69.24° correspond to the diffraction lines produced by (111), (200), (220), (311) and (222) planes of the face centered cubic (FCC) structured CdO (JCPDS card No. #65-2908). Further, no traces of impurity phases other than CdO were detected in the XRD pattern, indicating the formation of CdO crystalline phase. The lattice parameter of CdO was found to be a = 4.669Å and the values are in good agreement with the standard values (JCPDS Card # 78-0653) of cadmium oxide crystals.

Fig. 1b shows the XRD pattern of SnO₂ nanostructures. The diffraction peaks observed at 2θ values of 26.58°, 33.77°, 37.95°, 51.8°, 54.81°, 62°, 64.62°, 66.05°, 71.37° and 78.72° correspond to the diffraction lines produced by [110], [101], [200], [211], [220], [310], [112], [301], [202] and [321] planes of the cassiterite-type tetragonal crystal structured SnO₂ (JCPDS card No. # 41–1445). Further, no traces of impurity-type phases other than SnO₂ were detected in the XRD pattern, indicating the formation of SnO₂ crystalline phase. The lattice parameters of the microwave irradiated tin oxide samples were calculated as a = 4.7380 Å and c = 3.3502 Å, which matches well with the standard values of tin oxide crystals [20].
The crystalline size and the microstructural parameters such as strain, dislocation density and number of crystallites of the CdO and SnO\(_2\) nanostructures were calculated using equations (1 – 4) and the obtained values are presented in Table. 1.

B. Surface morphological analysis

TEM analysis was performed to analyze surface morphology of the CdO and SnO\(_2\) nanostructures and it is shown in Fig. 2a&c. The surface morphology of CdO sample is shown in Fig. 2a. The rod like shaped nanostructures was observed and sizes in the ranges from 5 to 30 nm, thickness 25-40 nm and length is few μm. The TEM micrograph of the SnO\(_2\) sample is shown in Fig. 2c. The presence of less agglomerated spherical shaped morphology of tin oxide nanostructures was observed. The particle size observed from TEM micrograph is 23 nm.

![XRD pattern of the CdO and SnO\(_2\) nanostructures](image1)

![TEM (a,c) and EDX (b,d) images of the CdO and SnO\(_2\) nanostructures](image2)

The average crystalline size was determined using the Scherrer’s equation

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \] \hspace{1cm} (1)

where \(\lambda \) is the wavelength of incident X-ray, \(\beta \) is the full width at half maximum (FWHM) measured in radians and \(\theta \) is the Bragg’s angle of diffraction peak.

The microstructural parameters such as strain (\(\varepsilon \)), dislocation density (\(\delta \)) and number of crystallites (\(N \)) were determined by using the following formulae:

\[\text{strain}(\varepsilon) = \frac{\beta \cos \theta}{4} \] \hspace{1cm} (2)

\[\text{Dislocation density}(\delta) = \frac{1}{D^2} \] \hspace{1cm} (3)

\[\text{Number of crystallites}(N) = \frac{1}{D^3} \] \hspace{1cm} (4)

Fig. 1. XRD pattern of the CdO and SnO\(_2\) nanostructures

Fig. 2. TEM (a,c) and EDX (b,d) images of the CdO and SnO\(_2\) nanostructures
Table 1: Microstructural parameters

<table>
<thead>
<tr>
<th>Sample</th>
<th>Average crystalline size (nm)</th>
<th>Lattice parameter (Å)</th>
<th>Strain (ε) x 10⁵</th>
<th>Dislocation density (δ) x 10¹⁵</th>
<th>Number of crystallites (N) x 10²¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdO</td>
<td>51</td>
<td>a = 4.6699</td>
<td>34.70</td>
<td>0.38</td>
<td>7.53</td>
</tr>
<tr>
<td>SnO₂</td>
<td>24</td>
<td>a = 4.7380, c = 3.3502</td>
<td>80.28</td>
<td>1.73</td>
<td>72.33</td>
</tr>
</tbody>
</table>

EDS analysis (Fig. 2b&d) was carried out to investigate the elemental composition of CdO and SnO₂ samples. Fig. 2b reports the spectrum of CdO, shows the characteristic peaks associated with O and Cd elements, which confirms the formation of CdO. Small amount of elementary carbon is identified from the figure which is due to produced in result of pyrolysis of format groups [21]. Fig. 2d reports the spectrum of SnO₂, shows the characteristic peaks associated with O and Sn elements, which confirms the formation of SnO₂.

C. Optical studies

The optical constants (reflectance, refractive index, absorbance coefficient, extinction coefficient, real and imaginary parts of optical conductivity) of the microwave irradiated CdO and SnO₂ nanostructures were analyzed and compared using UV-DRS spectra.

Fig. 3 shows the variations of reflectance with wavelength of the CdO and SnO₂ nanostructures. Both samples exhibit similar behavior that is reflectance increases with increase of wavelength. Minimum and maximum reflectance was observed in UV and IR region, respectively. Increase of reflectance with wavelength was observed in visible region. Reflectance of the SnO₂ sample starts to increase at 300 nm but the reflectance of CdO starts to increase at 450 nm. Maximum reflectance (50 %) was observed for CdO sample nearly 800 nm than SnO₂ sample (47 %). Such low reflectance property of the sample makes antireflection coatings and solar thermal applications in flat-plate collectors.

To obtain the optical band gap of CdO and SnO₂ samples, the reflectance values are first converted to absorbance by application of Kubelka–Munk transformation,

\[
F(R) = \frac{(1-R)^2}{2R} \quad \text{(5)}
\]

where F(R) is the Kubelka-Munk function and R is the reflectance. The optical band gap is determined from the relation, \((\alpha h\nu) = (h\nu - E_g)^n\), where \(\alpha\) is the linear absorption coefficient of the material, \(E_g\) is the optical band gap and \(n\) is a constant which determines the type of optical transitions.
The refractive index is an important parameter for optical applications. Thus, it is important to determine optical constants of the CdO and SnO2 samples. The refractive index (n) and extinction coefficient (k) of the CdO and SnO2 samples are determined by following relation [29,30]:

\[
 n = \left(\frac{1 + R}{1 - R} \right) + \left[\frac{4R}{(1 - R)^2} - k^2 \right]^{1/2} \quad \text{---------- (6)}
\]

\[
 k = \frac{\alpha \lambda}{4\pi} \quad \text{---------- (7)}
\]

Fig. 5 shows the variations of refractive index with wavelength of CdO and SnO2 nanostructures. The refractive index of CdO lies between 2 and 5.99, SnO2 lies between 2 and 5.05 with respect to the wavelength ranges from 200 – 1000 nm. From both samples, minimum and maximum value of refractive index was observed in UV and IR region, respectively also refractive index rises with wavelength through visible region. The gradual increase of refractive index with wavelength shows normal dispersion. High value of refractive index 5.99 was observed in IR region for CdO sample than SnO2. The increase of refractive index may be due to the presence of different type of polarizations. The refractive index and reflection spectrum are quite similar due to very small value of extinction coefficient.

Fig. 6a shows the variations of absorbance coefficient with wavelength of CdO and SnO2 samples. The calculated values of absorption coefficient are in the order of 10^7 cm^{-1}. It was observed from Fig. 6a, the absorbance coefficient decreases with wavelength increases. For both samples, small peak was observed in UV region. In the case of SnO2, after the peak the absorbance coefficient linearly decreases with wavelength increases.
Fig. 6. Variation of absorption coefficient (a) and Extinction coefficient (b) with wavelength of the CdO and SnO$_2$ samples.

But for CdO, absorbance coefficient is maintained constant up to 450 nm after that decreases gradually. Minimum value of absorbance coefficient was observed nearly 800 nm for CdO and the same minimum value of absorbance coefficient was observed nearly 1000 nm for SnO$_2$. Fig. 6b shows the variations of extinction coefficient with wavelength of CdO and SnO$_2$ nanostructures. From Fig. 6b the values of k changed in the range 0.00010 - 0.00025 for CdO and 0.000121 - 0.000221 for SnO$_2$. Such low value of extinction coefficient represents samples possesses high transmittance. Initially, the value of k increases with increase of wavelength and reaches minimum value again starts to increases with further increase of wavelength. The extinction coefficient has an inverse relation with the transmittance spectra. Compare to CdO, low value of extinction coefficient is registered for SnO$_2$. Hence, SnO$_2$ exhibits high transmittance than CdO.

Fig. 7. Variation of real (a) and imaginary (b) part of optical conductivity with wavelength of CdO and SnO$_2$ samples

The optical conductivity is one of the parameter used to study the optical response of the samples. It is defined as [31,32],

$$\sigma_1 = \omega\varepsilon_2\varepsilon_0$$(8)

$$\sigma_2 = \omega\varepsilon_1\varepsilon_0$$(9)
where, σ_1 is the real part of optical conductivity, σ_2 is the imaginary part of optical conductivity, ω is the angular frequency and ε_0 is the free space dielectric constant.

The variations of real part of the optical conductivity with wavelength of CdO and SnO$_2$ nanostructures are shown in Fig. 7a. From the figure for both samples, maximum and minimum value of real part of optical conductivity was observed in UV and IR region, respectively. The variations of imaginary part of optical conductivity with wavelength of CdO and SnO$_2$ nanostructures are shown in Fig. 7b. From the figure for both samples, minimum and maximum value of imaginary part of optical conductivity was observed in UV and IR regions, respectively. After attain the maximum value it starts to decreases towards higher wavelength. Such variation of optical conductivity was believed due to reduction of polarization and crystal defects.

D. Dielectric analysis

The dielectric constant is one of the parameter used to study the electrical response of the samples also it represents the ability of a material to store electrical energy in the presence of an electric field. It is defined as [31],

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$ (10)

where ε_1, ε_2 are called real and imaginary part of dielectric constants which are related to refractive index (n) and extinction coefficient (k) values. The ε_1 and ε_2 values are calculated using the formulas,

$$\varepsilon_1 = n^2 - k^2$$ (11)

$$\varepsilon_2 = 2nk$$ (12)

The variation of ε_1 with wavelength of CdO and SnO$_2$ nanostructures are shown in Fig.8a. From the figure for both samples, low and high value of real part of dielectric constant was observed in UV and IR region, respectively and gradual increase of real part of dielectric constant is observed in visible region. CdO sample exhibits high value of real part of dielectric constant than SnO$_2$. The variation of ε_2 with wavelength of CdO and SnO$_2$ nanostructures are shown in Fig. 8b. From the figure for both samples, imaginary part of the dielectric constant linearly increases with wavelength. There is no significance difference of imaginary part of the dielectric constant was observed for both samples.

Fig. 8. Variation of real (a) and imaginary (b) part of dielectric constant with wavelength of CdO and SnO$_2$ samples

From the Fig. 8 (a & b) both real and imaginary part of dielectric constant increases with wavelength increases. However, the value of real part of dielectric constant was higher than that of the imaginary part of dielectric constant. Presence of different type of polarizations and its significance losses at higher frequencies may be the reason for variations of dielectric constant. From the figure, SnO$_2$ exhibits low dielectric constant than CdO. The optoelectronic materials demands low dielectric constant because such type of material acquired good optical quality with lesser defects. The spectra of real part of dielectric constant is closely similar to spectra
of refractive index, this is obtained because of too small value of extinction coefficient.

The dielectric loss is the loss of energy to heating of an object that is made of a dielectric material if a variable voltage is applied to it. Fig. 9 shows the variations of dielectric loss with wavelength of CdO and SnO$_2$ nanostructures. For both samples, initially dielectric loss increases and attains maximum value with wavelength increases. Further increase of wavelength dielectric loss starts to decreases and reaches the minimum value. It is clearly from the figure, both maximum (0.00022) and minimum (0.000048) value of dielectric constant was observed for CdO in the visible region. The losses due to changes of polarization, the tiny electron shifts can be regarded as an alternating current flow. Such variations of dielectric losses at different wavelengths accounted for some high frequency applications.

![Dielectric Loss Graph](image)

Fig. 9. Variations of dielectric loss with wavelength of CdO and SnO$_2$ samples

According to equation (3), crystal defect decreases with increase of particle size. Based on that, CdO has less crystal defect than SnO$_2$. Fig. (3-9) demonstrated the optical properties of CdO and SnO$_2$ nanostructures. For all the cases, both samples exhibits quite similar behavior follow the same trend. However, based on our experimental conditions, optical properties like reflection, refractive index, absorption coefficient, extinction coefficient, optical conductivity, dielectric constant and dielectric loss of CdO is higher than SnO$_2$.

E. Photoluminescence analysis

The photoluminescence spectra of the CdO and SnO$_2$ nanostructures were synthesized by the microwave assisted method at room temperature are shown in Fig. 10. From the photoluminescence spectra of the CdO sample, the emission peak at 471 nm due to artifact which arises because of lamp source [33]. The peak at 528 nm arises due to recombinant of a photo generated hole in the valence band with an electron in the conduction band from the oxygen vacancy of the CdO sample [34]. Basically, Vo0, Vo$^+$ and Vo$^{++}$ are the possible charge state of oxygen vacancies due to the photo-excitation of SnO$_2$ the hole might be trapped at the Vo$^+$ center to

![Photoluminescence Spectra](image)

Fig. 10. Photo photoluminescence spectra of the CdO and SnO$_2$ nanostructures

Vo$^{++}$ center [35,36]. From the photoluminescence spectra of the SnO$_2$ sample, the emission peak at 483 nm corresponds to blue emission due to single charged oxygen vacancies (Vo) [37].The emission peak at 524 nm is due to the electron transition mediated by defect levels in the band gap such as oxygen vacancies [38].

IV. CONCLUSION

Potentially important metal oxides CdO and SnO$_2$ were successfully synthesized by microwave assisted technique. XRD pattern reveals that, microwave radiation improves the crystalline property of CdO and SnO$_2$ nanostructures. Microstructural, optical and dielectric properties of CdO and SnO$_2$ nanostructures were analyzed and compared. The calculated values
of absorption coefficient for both the samples were in the order of 10^2 cm$^{-1}$. Refractive index of both samples increases with increase in wavelength confirming the fact that the samples exhibit normal dispersion. The synthesized samples exhibit good optical property which makes them suitable for many applications especially for solar cell applications. Due to their good dielectric properties, low dielectric loss can be used as a promising material for fabrication of dielectric varistors and transparent electrodes in solar cells.

V. REFERENCE

[19] N. Rajesh, J.C. Kannan, T. Krishnakumar,

