
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

94

SECURE SPREAD: AN INTEGRATED
ARCHITECTURE FOR SECURE GROUP

COMMUNICATION

Arjeeta Tripathi Anshika Mishra Shudhanshu Purwar Kirti Sharma

 G.L.B.I.TM G.L.B.I.T.M G.L.B.I.T.M G.L.B.I.T.M

Abstract - Group communication systems are high-
availability distributed systems providing reliable and ordered
message delivery as well as a membership service to group-
oriented applications. Many such systems are built using a
distributed client-server architecture where a relatively small
set of servers – sharing information about the groups in the
system – provide service to numerous clients.
In this work, we show how group communication systems can
be enhanced with security services without sacrificing
robustness and performance

Index Terms— Protocol architecture (C.2.2.b) and Distributed
applications (C.2.4.b)

I. INTRODUCTION

UBIQUITOUS information access and communication have

become essential to everyday life, global business, and national

security. Activities, including personal, commercial and

international financial transactions, studying and teaching,

shopping for goods or managing modern battlefields have

fundamentally changed over the last decade as a result of the

expanding capabilities of computers and networks. Most such

activities are supported by distributed applications which, in

turn, increasingly rely on messaging systems to provide secure

and uninterrupted service within acceptable throughput and

latency parameters. This is difficult to guarantee in a complex

network environment that is susceptible to a multitude of

human and/or electronic threats, especially, as network attacks

have become more sophisticated and harder to contain.

A distributed messaging system is essentially an abstraction

layer built on top of an underlying network. It provides

distributed applications with: (1) services not available from

the native network, e.g., security, ordered message delivery, or

(2) services that are enhanced, e.g., higher availability,

improved reliable delivery. Group communication systems,

overlay networks, and middleware are all examples of

messaging systems serving as infrastructure for applications,

such as: web clusters, replicated databases, scalable chat

services and streaming video. This work tries to fill this gap,

by showing how high availability systems (such as group

communication systems) can be enhanced with security

services without sacrificing robustness and performance.

A. Group Communication Systems

Group communication systems (GCS) are distributed

messaging systems that enable efficient communication

between a set of processes logically organized in groups.

Processes communicate via multicast in an asynchronous

environment where failures can occur. More specifically, a

GCS provides two services: group membership as well as

reliable and ordered message delivery. The membership

service provides all members of a group with information

about the list of currently connected and alive group members
1

and notifies group members about every group change. A

group can change for several reasons. In an idealized fault-free

setting, a change can be caused by members voluntarily

joining or leaving the group. In a more realistic environment,

faults can occur, e.g., processes can become disconnected or

simply crash and network partitions can prevent members from

communicating. When faults are healed, group members can

communicate again. All the above events can trigger

corresponding changes in group membership.

The core of GCS is in achieving agreement between multiple

participants about group membership views and about the

order of messages to be delivered. Many agreement protocols

were proved to have no solution in asynchronous systems with

failures [2]. Practical GCS-s overcome the problem by using

time-out based failure detection to sense network

(dis)connectivity and process faults. One risk of this approach

is that alive and connected members communicating over high

delay links can be excluded from the group membership. If the

network is stable, GCS membership reflects the current list of

connected and alive group members.

Membership and message delivery services were formalized in

two models: Virtual Synchrony [3] (VS) and Extended Virtual

Synchrony [4] (EVS). The main difference between the two

models has to do with the relation between the views in which

messages are sent and delivered.

B. Security Services for Group Communication Systems

Security is crucial for distributed and collaborative

applications that operate in a dynamic network environment

and communicate over insecure networks, such as the Internet.

Basic security services needed in such a dynamic peer group

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

95

setting are largely the same as in point-to-point

communication.

The minimal set of security services that should be provided by

any GCS include: C. New Contributions The main goal of this

work is to investigate scalable solutions for securing GCS-s

that do not result in the severe degradation of performance and

preserve the fault-tolerance properties. In particular, we focus

on securing Spread [7], a GCS resilient to process crashes and

network partitions. To put this work into context, we briefly

outline our earlier efforts. Some of our previous results [8]

demonstrate how authentication and access control for a client-

server GCS can be efficiently addressed. The framework

specified that clients are authenticated when connecting to a

server, while access control to group resources is enforced by

the local server. Another recent work focused on designing a

robust contributory group key agreement [9], [10]. In the

present work, complimentary to previous work, we propose

scalable and efficient secure architectures for Spread, focusing

on providing authentication, data confidentiality and data

integrity. More specifically, our contributions are: • Improved

scalability of group key generation: Contributory key

agreement protocols provide strong security properties, which

makes them appealing for secure group communication.

However, when used in a layered architecture, they scale

poorly. We show how this limitation can be overcome by using

an integrated approach in a light-weight/heavy-weight [11]

group architecture, such that the cost of key management is

amortized over many groups, while each group has its own

unique key.

 Group confidentiality support for EVS semantics: We

discuss the relationship between group communication

semantics and group confidentiality. Providing confidentiality

in systems supporting the VS model is an easier task (than in

EVS) since the semantics provides a form of synchronization

between the group membership and data message delivery.

The task is more challenging in systems supporting the EVS

model, however, such systems have better performance; thus,

it is desirable to provide solutions for them as well.

 Experimental evaluation and comparison of secure

group architectures: We proposed three variants of scalable

integrated architectures for Spread, supporting both VS and

EVS semantics. We discuss the accompanying trust issues and

present experimental results that offer insights into their

scalability and practicality.

II. RELATED WORK

RESEARCH in group communication systems operating in a

local area network (LAN) environment has been quite active in

the last 15-20 years. Initially, high availability and fault

tolerance were the main goals. This resulted in systems like

ISIS [12], Transis [13], Horus [14], Totem [15].

These systems explored several different models of group

communication such as Virtual Synchrony [3] and Extended

Virtual Synchrony [4].

With the increased use of GCS-s over insecure open networks,

some research interests shifted to securing these systems.

Research on securing group communication is fairly new.

Although efficient, this method does not provide certain

security properties such as key independence and perfect

forward secrecy. Ensemble is used for authorization. In

addition, the system allows application dependent trust models

in the form of access control lists which are treated as

replicated data within a group. Recent research on Bimodal-

Multicast, Gossip-based protocols and the Spin glass system

has largely focused on increasing scalability and stability of

reliable group communication services in more hostile

environments – such as wide-area and lossy networks – by

providing probabilistic guarantees about delivery, reliability,

and membership.

Some other approaches focus on building highly configurable

dynamic distributed protocols. Cactus is a framework that

allows the implementation of configurable protocols as

composition of micro-protocols. Survivability of the security

services is enhanced by using redundancy for specific security

services. Redundancy of data confidentiality is obtained by

encrypting data multiple times, each time using a different

encryption algorithm. This approach is not appropriate for

data-stream applications where throughput is a concern.

Enclaves are used for secure group communication. It provides

group control and communication (both point-to-point and

multicast) and data confidentiality using a shared key. The

group utilizes a centralized key distribution scheme where a

member of the group (group leader) selects a new key every

time the group changes and securely distributes it to all

members of the group. The main drawback of this system is

that it does not address failure recovery when the leader of the

group fails.

A collaborative application can have its own specific security

requirements and its own security policy. Policy flavors

addressed by Antigone include: rekeying, membership

awareness, process failure and access control. The system

implements group rekeying mechanisms in two flavors:

session rekeying - all group members receive a new key, and

session key distribution - the session leader transmits an

existing session key. Both schemes present some problems:

distributing the same key when the group changes violate

perfect forward secrecy, while the session rekeying mechanism

– although able to detect the leader’s failure – cannot recover

from it.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

96

Unlike aforementioned systems, we focus on using

contributory group key agreement as a building block for other

security services in Spread [7]. Contributory key agreement

protocols provide strong security properties. In particular, they

can guarantee that: (1) compromise of any subset of old group

keys does not lead to compromise future group keys; (2)

compromise of any subset of group keys does not lead to

compromise of previous group keys; and, (3) more generally,

compromise of all-but-one group keys does not lead to

compromise of the one “missing” group key. Moreover, even

compromise of the members’ long-term secret keys does not

lead to compromise of any group keys. Our work investigates

trade-offs between security and group communication

semantics support. Our secure GCS supports two strong group

communication semantics: Virtual Synchrony and Extended

Virtual Synchrony.

III. SPREAD

THE work presented in this paper evolved from integrating

security services into the Spread GCS. In this section we

present an overview of group communication semantics and

describe the Spread architecture.

Spread [7] is a general-purpose GCS for wide- and local area
networks. It provides reliable and ordered delivery of messages
(FIFO, causal, total ordering) as well as a membership service.

The system consists of a server and a client library linked with

the application. This architecture amortizes the cost of

expensive distributed protocols, since such protocols are

executed only by a relatively small number of servers (as

opposed to all clients). This way, a simple join or a leave of a

client process translates into a single message, instead of a full-

fledged membership change. Only network partitions
1
 incur

the heavy cost of a full-fledged membership change.

When securing a GCS providing VS, it is both natural and

efficient to use a shared group key per view (securely refreshed

upon each membership change) for data confidentiality. A

message is guaranteed to be encrypted, delivered and

decrypted in the same group view and, hence, with the same

current key. This property does not hold in EVS, since a

message can be sent in one view and delivered in another, and

also due to the support for open groups. Therefore, a natural

solution for EVS is to use two kinds of shared keys: one shared

between the client and the server it connects to, and another –

shared among the group of servers. The former is used to

protect client-server communication, while the latter – to

protect server-server communication.

The Spread toolkit is publicly available and is being used by
several organizations in both research and production settings.
It supports cross-platform applications and has been ported to
several UNIX platforms as well as to Windows and Java
environments.

IV. SECURITY ASSUMPTIONS

Our goals include protecting client data from eavesdropping by

passive adversaries and preventing impersonation and data

modification/fabrication attacks by active adversaries. An

adversary in this context is anyone who is not a current group

member.

We do not consider insider attacks in this work. We

acknowledge that such threats are significant, especially, for

the underlying group membership protocols; some of our

ongoing work focuses on this direction. However, in this paper

we assume that each entity (client or server) can be directly

authenticated and each has an X.509v3 public key certificate

that allows it to sign messages.

The method of computing the group key is essential for the

security of the system. An ideal group key management

protocol should provide: Key Independence, Perfect Forward

Secrecy and Backward/Forward Secrecy.

Informally, key independence means that a passive adversary

who knows any proper subset of group keys cannot discover

any future or previous group key. Forward Secrecy guarantees

that a passive adversary who knows a subset of old group keys

cannot discover subsequent group keys, while Backward

Secrecy guarantees that a passive adversary who knows a

subset of group keys cannot discover preceding group keys.

Perfect

Forward Secrecy means that a compromise of a member’s long

term key cannot lead to the compromise of any short term

group keys.

Tree-Based Group Diffie-Hellman (TGDH) protocol provides

key independence and perfect forward secrecy; it was also

proven secure with respect to passive outside eavesdropping.

In addition, active outsider attacks – consisting of injecting,

deleting, delaying and modifying protocol messages – that do

not aim to cause denial of service are prevented by the

combined use of timestamps, unique protocol message

identifiers, and sequence numbers which identify the particular

protocol execution. Impersonation of group members is

prevented by the use of public key signatures: every protocol

message is signed by its sender and verified by all receivers.

(Attacks aiming to cause denial-of service are not considered.)

1) Three-Step Client-Server: The most intuitive architecture

is one derived from the client-server model of the group

communication system. The architecture can support both VS

and EVS semantics at the expense of decreased (due to

encryption) throughput. We refer to it as Three-Step Client

Server.

We note that the communication taking place in the system can

be classified in two logical communication channels: client-

server and intra-servers. The goal is to protect these two

channels. Spread’s architecture uses a TCP connection when a

client connects remotely to a server. In this case, the best

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

97

approach to protect the client-server communication is is using

a standard two-party secure communication protocol, such as

SSL/TLS. If a client connects to a server running on the same

machine, Spread architecture uses IPC. In this case, no data

protection is needed and client-server communication is not

encrypted.

 Fig.1. A Three-Step Client-Server architecture for Spread

The intra-server communication channel is provided by a

multicast protocol developed on top of UDP. In order to

provide confidentiality of this communication, a block cipher

encryption protocol based on a key shared by the servers is a

good solution.

Figure 1 presents such architecture. The Servers Agreement

Engine detects changes in the server group connectivity and

for each connectivity change performs a key management

protocol between servers. In addition, time-based or data-based

key refresh can be enforced. As mentioned above protocol for

key management. Servers can distinguish between

communication coming from peer servers and communication

from the clients, and therefore, use the appropriate key in order

to encrypt/decrypt the information.

One of the challenges with integrating a key agreement

protocol into a group communication system is the interactions

between the former and the membership protocol. Until the

membership protocol completes, the key agreement protocol

cannot run, since there is no fixed group of servers among

which to perform key agreement. While the membership

protocol is running, the set of known servers may change again

(referred to as cascaded membership), and basic

communication services between them may become

unavailable. To cope with this issue, the group key is provided

only when the servers’ group membership is stable and while

the group communication membership protocol is not

executing. This allows the key agreement protocol to run with

its normal assumptions once the membership protocol

completes, yet prior to notifying the client applications about

the change. Thus, applications do not experience any change in

semantics or the APIs (such as a new key message) but do

experience an additional delay during each server membership

change. (This is in order for the key agreement protocol to

execute following the completion of the membership protocol.)

The servers’ membership protocol is secured by using public

key cryptography to encrypt and sign all membership

messages, since the shared key is not available during its

execution. The small number of messages sent during the

membership algorithm and their small size, ensures that the

overhead of public-private encryption can be tolerated.

The Three-Step Client-Server architecture allows individual
policies for rekeying the server group key and the per-client
SSL keys, as each is handled separately.

Once the master server group key is generated, the servers

communication is protected by encryption using a key derived

from it. The default protocol to encrypt communication

between servers is Blowfish in CBC mode; however, the

system supports any encryption algorithm in the OpenSSL

library, including AES [6], while integrity and authentication

are performed using HMAC-SHA1 [5]. Two different shared

keys are derived, one used for encryption and one for the

HMAC computation. In addition, the system can be configured

to use only HMAC and no encryption.

The total end-to-end cost of sending an encrypted data

message from one client to another (both are connected to the

Spread server remotely) includes six encryption and decryption

operations: client encrypts the message and sends it over SSL

to the server; server decrypts it and then re encrypts using the

server group key; servers that receive this message decrypt it

and then re-encrypt it again using SSL for the receiving client;

finally, each receiving client decrypts the message.

Note that the receiving servers need to encrypt the message

separately for each remote client who needs to receive it. This

is potentially a large number since each server can support

about 1,000 client connections. Thus, if more than one receiver

is connected remotely on the same server, the load on the

server will increase linearly with each remote receiver, since

each remote receiver receives the same message encrypted

separately on its own SSL connection. Local receivers do not

require client-server encryption. We note that several solutions

can be defined to decrease the number of encryption

operations, particularly for the server that needs to decrypt and

re-encrypt all the messages under the SSL client pair-wise

keys. We discuss them in more details in Section

2) Integrated VS: Although the Three-Step Client-Server
architecture presented above is relatively simple, it suffers
from decreased throughput due to encryption performed by
servers.

Therefore, it is not recommended when clients connect
remotely. Recall that we aim to design architecture with
reasonable performance, not only in key management, but also
in throughput. This can be achieved if encryption is pushed to
the clients, which, in turn, requires client group keys.

We now describe a second variant of our architecture, referred

to as Integrated VS. It supports the VS group communication

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

98

model and combines the advantage of a less expensive key

management building block (by integrating it in the servers)

with the advantage of encryption done in the client library. In

this aspect, Integrated VS is similar to the layered architecture.

The client groups are closed, i.e., a client needs to be a member

in order to send messages to the group. As mentioned above,

this requires client group’s keys. However, unlike the layered

architecture where key agreement was performed by each

group, in this case, client group keys are generated by servers,

without involving costly key agreement protocols. Since the

library operates in the VS model, in a manner similar to the

layered architecture (see Section V-A), a per-view shared key

associated with the group can be used to provide

confidentiality. The key is refreshed by the servers when the

group views changes.

Figure 2 depicts the Integrated VS architecture. The Servers

Agreement Engine (SAE) initiates a key agreement protocol

between the servers whenever it detects a change in server

group connectivity.

 Fig. 2. Integrated VS architecture for Spread

The Group Keys Engine (GKE) generates, for each group, a

shared key whenever the group membership changes. In case

of a network connectivity change, the SAE is invoked first,

followed by the GKE. The latter refreshes the key for each

group that suffered changes in membership due to a change in

server connectivity. The new group key is attached to the

membership notification and delivered to the group. Client

group keys are generated by the servers based on three values:

1) server group shared key Ks, 2) group name (unique within

the system), and 3) unique number that identifies the group

Fig. 3. An Optimized EVS Architecture for Spread

The group key for group g in view v, where v is uniquely
identified by view idgv is

3) Optimized EVS: Out of the variants presented thus far,

only Three-Step Client-Server supports the EVS model and

open groups. As discussed in Section I-A, EVS is faster, thus,

it is desirable to have a secure group communication system

supporting this model. The Three-Step Client-Server serves

this purpose, but incurs heavy encryption overhead when

clients connect remotely to servers.

One way to alleviate the large number of encryption operations

is to have clients perform encryption by using a shared per-

view group key, in a manner similar to the Integrated VS

architecture. However, unlike VS, EVS does not guarantee that

all messages are delivered to receivers in the same view in

which they were sent. Therefore, there might be messages that

group members will be unable to decrypt as they do not have

the key used to encrypt that message in the first place. Our

next variant addresses this issue.

In order to support EVS semantics and client message

encryption, we developed an architecture that relies on servers

not only to generate client group keys, but also to “adjust”

messages that are not encrypted with the current group key.

Clients operate without any disruption since servers guarantee

that all messages delivered to the clients are encrypted with the

current group key.

Figure 3 presents this variant, referred to as Optimized EVS.

The Servers Agreement Engine and Group Keys Engine

perform key management of the servers’ shared secret and

client group keys, respectively. The method of generating

client group keys is the same as in Integrated VS. The main

change is the addition of the EVS-Fix-Messages module that

detects when a message for a certain group is encrypted with a

key that is no longer valid. Each such message is decrypted

and reencrypted with the current group key before being

delivered to the clients. Clients, in turn, decrypt all group

messages normally. TGDH is used as the server group key

agreement protocol.

The EVS-Fix-Messages module solves two problems: it

detects whenever a message is encrypted with the wrong key

and determines the correct key to use for encrypting the

message.

The first problem is addressed by having the sender include in

each message a unique Key id of the group key that was used

to encrypt it. This Key id is independently and randomly

computed each time a new key is generated (it is also

distributed along with each new client group key). However,

since it does not provide integrity, but merely identifies the

client group key, Key id can be relatively short, e.g., 64 bits. It

is transported in the un-encrypted portion of the message

header.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 94-99
 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

99

To detect messages encrypted with an “old” key, a server

stores each client group along with its Key id. Each server also

tags one key as the “current” key for each client group. The

current key is the key that matches the last membership (or key

refresh) delivered to the group members. Then, before

delivering a message to a client, it checks if the Key id on the

message matches that of the current key. If so, the message is

immediately delivered. Otherwise, the message is decrypted

with the appropriate stored “old” key and re-encrypted under

the current key. Since the message stream delivered to each

client is a reliable FIFO channel, the client eventually receives

the message in the same view that the server expects it to.

Accumulating old keys and Key ids ad infinitum is clearly not

viable. Thus, old keys have to be periodically flushed by each

server. Different expiration metrics can be used either by each

server individually or in concert: time-outs and key-outs. A

time-out occurs when no message encrypted under a given key

has been received for a certain length of time. A key-out takes

place when some pre-set maximum number of keys-per group

is exceeded. Many combinations and variations on the theme

are clearly possible.

If the servers’ key is compromised, the confidentiality of the

communication of all the groups in the system is compromised,

as opposed to the layered model where in order to compromise

the confidentiality of all the groups in the system, an attacker

needs to compromise the shared key for each group. We note

that in the case of the layered architecture, an attacker can

perturb service availability by attacking the servers’

communication.

V. REFERENCES

[1] The choice of a key expiration methodology can affect the
L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A.

Agarwal,“Extended virtual synchrony,” in Proceedings of the

IEEE 14th International Conference on Distributed Computing

Systems, pp. 56–65, IEEE Computer Society Press, Los

Alamitos, CA, June 1994.
[2] The Keyed-Hash Message Authentication Code (HMAC).

No. FIPS 198,

National Institute for Standards and Technology (NIST), 2002.
http://csrc.nist.gov/publications/fips/index.html.

[3] Y. Amir, C. Nita-Rotaru, and J. Stanton, “Framework for

authentication and access control of client-

server group communication systems,” in 3rd International

Workshop on Networked Group Communication, (London,

UK), November 2001.

[4] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,

and G. Tsudik, “Exploring robustness in group key

agreement,” in Proceedings of the 21th IEEE International

Conference on Distributed Computing Systems,, pp. 399–408,

IEEE Computer Society Press, April 2001.

 [5] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Stanton, and G.

Tsudik, “Secure group communication using robust

contributory key agreement,” IEEE Transactions on Parallel

and Distributed Systems (TPDS), vol. 15, pp. 468–480, May

2004.

[6] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik,

“Scaling secure group communication systems: Beyond peer-

to-peer,” in Proceedings of DISCEX3, (Washington, DC,

USA), April 2003.

[7] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost,

“On the impossibility of group membership.,” in 15th ACM

Symposium on Principles of Distributed Computing (PODC),

pp. 322–330, May 1996.

[8] K. P. Birman and T. Joseph, “Exploiting virtual synchrony

in distributed systems,” in 11th Annual Symposium on

Operating Systems Principles, pp. 123–138, November 1987.

[9] M. K. Reiter, “Secure agreement protocols: reliable an d

atomic group multicast in Rampart,” in Proceedings of the 2nd

ACM Conference on Computer and Communications Security,

pp. 68–80, ACM, November 1994

[10] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agarwal,
and P. Ciarfella, “The Totem single-ring ordering and
membership protocol,” ACM Transactions on Computer
Systems, vol. 13, pp. 311–342, November 1995.
[11] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1996
[12] B. Whetten, T. Montgomery, and S. Kaplan, “A high
perfor mance totally ordered multicast protocol,” in Theory
and Practice in Distributed Systems, International Workshop,
Lecture Notes in Computer Science, p. 938, September 1994.
[13] I. Keidar, K. Marzullo, J. Sussman, and D. Dolev, “A clie
nt-server oriented algorithm for virtually synchronous group
membership in WANs,” Tech. Rep. CS99-623, Univ. of
California, San Diego, June 1999.
[14] M. A. Hiltunen, R. D. Schlichting, and C. Ugarte, “Enhan
cing surviv-ability of security services using redundancy,” in
Proceedings of The International Conference on Dependable
Systems and Networks, June 2001.
[15] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement
in dynamic peer groups,” IEEE Transactions on Parallel and
Distributed Systems, August 2000

